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Abstract

We present behavioral existence and parametrization results for input
observers of IO (input/output) behaviors and for pseudo state observers
of Rosenbrock equations, i.e., of systems given by polynomial matrix de-
scriptions. Our results signi�cantly extend those of Wolovich from 1974.
Valcher and Willems started the behavioral theory of observers in 1999
and Fuhrmann treated all aspects of observers in a recent comprehensive
paper. We use the (behavioral) observers and associated error behaviors
of these authors, but in contrast to them require the observers to be IO
behaviors which are proper, but not necessarily consistent. Our results
are also applicable to their more general behaviors and, conversely, their
theorems are applicable to our situations. More recently Bisiacco, Valcher
and Willems also considered non-consistent dead-beat observers.We dis-
cuss the relation of our work to that of our predecessors in some detail.
The T in the title refers to a multiplicatively closed set of ordinary di�er-
ential or shift operators in the standard cases, gives rise to T -autonomy, T -
stability and T -observers and enables the simultaneous study of tracking,
asymptotic, dead-beat, exact and other observers both in the continuous
and the discrete cases. We derive new algorithms for the construction of
proper T -observers and apply them in an instructive example, computed
with MAPLE. Our proofs rely on module-behavior duality and on linear
algebra over the ring of proper and T -stable rational functions.

Keywords : observer, Rosenbrock equations, polynomial matrix descriptions,
behavior, proper transfer matrix, asymptotic stability

AMS subject classi�cation: 93B25, 93B40, 93B52, 93D20

1 Introduction

Since Luenberger's [13] ingenious and seminal introduction of state observers
for Kalman state equations these observers have played a signi�cant part for
the feedback stabilization of linear systems. The �rst treatment of pseudo state
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observers of systems described by Rosenbrock equations ( = di�erential operator
representations = polynomial matrix descriptions) [18], [23, Ch.5], [11, Ch.8],
[20, Ch.2], [1, Ch.7] is due to Wolovich [23, �5.5, Ch.7] under the name Frequency
domain compensation. Wolovich's theory is applicable to IO (input/output)
behaviors since these are de�ned by special Rosenbrock equations. Notice that
Wolovich's theory precedes Willems' introduction of behaviors by more than ten
years. Valcher and Willems [19] started the behavioral theory of observers in
1999 and Fuhrmann [9] wrote a very comprehensive recent paper on all aspects
of them. We use the (behavioral) observers and associated error behaviors of
these authors, but in contrast to them require the observers to be IO behaviors
which are proper, but not necessarily consistent as in [19] and [9]. In the more
recent paper [2] Bisiacco et al. also consider non-consistent dead-beat observers.

We signi�cantly extend Wolovich's theory and present existence and parame-
trization results for input observers [23, �5.5] of IO behaviors and pseudo state
observers [23, Thm.7.3.23] of Rosenbrock equations. Our results are also appli-
cable to the more general behaviors of [19] and [9]. Conversely, the theorems
of these papers are applicable to our situations. In Remarks 3.16 and 4.8 we
relate our results to those of Wolovich, Valcher/Willems and Fuhrmann in some
detail.

Our approach is characterized by the following features:

1. We discuss T -observers for an arbitrary multiplicatively closed subset of
the polynomial algebra F [s] (F a �eld) which in the standard cases is
the ring of ordinary di�erential or shift operators. This T gives rise to
the notions of T -autonomy, T -stability and T -observers and enables the
simultaneous study of tracking, asymptotic, dead-beat, exact and other
observers following [19], [2] and [9] both in the continuous and the discrete
cases. For this purpose we use the quotient ring F [s]T of T -stable rational
functions and the ring S of the proper functions in F [s]T . According to
one of the reviewers special quotient rings F [s]T were already used by
Morse in [14].

2. We constantly use the module-behavior duality which was derived in [15]
for multidimensional systems, and especially �nitely generated modules
and matrices over the rings F [s]T and S. A predecessor of our duality
theory is Fuhrmann's paper [6], a more complete version of which is [8].
Matrices, but not modules, and algorithms, especially the Smith form
algorithm, over special rings S play a prominent part in the books [21]
and [20] by Vidyasagar resp. Vardulakis. Our algorithms are distinct from
those in [21] and [20]. Our module theoretic proofs and algorithms are
di�erent from those in the literature and have many advantages in our
opinion.

3. Essentially we only consider T -observers which are proper IO behaviors
and can therefore be realized by Kalman state space equations. In our
opinion such observers su�ce, the observers derived in [19] and [9] are
more general, however.

4. The IO structures and transfer matrices of the given equations and be-
haviors and of the observers play an important part in our assumptions
and derivations as already in Wolovich's work [23].
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5. The non-obvious algorithms for the construction of proper T -observers use
new techniques.

Our main observer results are Theorems 3.7 and 3.12 on proper input T -observers
for IO behaviors, Theorems 4.3 and 4.5 on proper T -observers of the pseudo state
of Rosenbrock equations and Theorem 4.4 on proper T -observers for internally
proper Rosenbrock equations. Following Wolovich [23, �5.5] we also include
Theorem 3.15 on output T -controllers. An important technical ingredient is
given by Theorem 2.13 on the existence and construction of left inverses of ma-
trices over principal ideal domains which is applied in all theorems listed above
to the rings F [s]T and S and which is implicitly also used by our predecessors
in particular cases. Theorem 2.15 resp. Corollary 2.18 characterize T -autonomy
and T -stability resp. T -observability. The algorithms are contained in Theo-
rems 3.12, 4.4 and 4.9 and are demonstrated by the instructive Example 4.10,
computed with MAPLE.

2 T-autonomy and T-observability

We �rst recall Willems' one-dimensional behavior theory [22],[17], but in the
module theoretic language and with the results of [15], [16] where the corre-
sponding multidimensional theory was developed. See also Remark 2.2 for some
historical notes.
Let D := F [s] be the polynomial ring over a �eld F with its quotient �eld
K := F (s) of rational functions and let F be an injective cogenerator signal
module over D with the scalar multiplication f ◦ y, f ∈ D, y ∈ F [15, p.29-30,
Thm.2.54]. A module F over the principal ideal domain D is injective if and
only if it is divisible. This signi�es that each equation f ◦ y = u with nonzero
f and given right side u ∈ F has a solution y ∈ F . The injective module F is a
cogenerator if HomD(M,F) is nonzero whenever M is nonzero. The standard
injective cogenerator signal spaces F are the following.

Example 2.1. 1. Continuous case: F = R or F = C, F := C∞(R, F ) or
F := D′(R, F ) := {F -valued distributions} with the action by di�erentia-
tion, i.e., s ◦ y = dy/dt.

2. Discrete case:

F := FN := {y : N→ F} = {F -valued sequences} ∼= F [[s−1]]

y = (y(0), y(1), y(2), · · · )↔
∑
t∈N

y(t)s−t

with the action by left shift, i.e., (sk ◦ y)(t) := y(t+ k).
Notice that the scalar multiplication f ◦ y of the module F is the action by

the operator f◦ : F → F .

We consider F-behaviors which in the standard cases are solutions of linear
systems of di�erential or di�erence equations with constant coe�cients and thus
of the form

B := {w ∈ F l; R ◦ w = 0}, R ∈ Dk×l. (1)

The matrix R gives also rise to the modules

U := D1×kR ⊆ D1×l and M := D1×l/U, (2)
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the latter being furnished with its canonical system of generators

δj := δj + U ∈M, δj = (0, · · · , 0,
j

1, 0, · · · , 0) ∈ D1×l, j = 1, · · · , l. (3)

Then
B = U⊥ := {w ∈ F l; U ◦ w = 0} and

HomD(M,F) ∼= B, ϕ↔ w = (w1, · · · , wl)>, ϕ(δj) = wj ,
(4)

is a canonical isomorphism (following Malgrange). The cogenerator property of
F implies [17, Thm.3.6.2], [15, Cor.2.48]

D1×kR = U = B⊥ := {ξ ∈ D1×l; ξ ◦ B = 0}, (5)

i.e., all equations satis�ed by the trajectories w ∈ B are linear combinations of
the given equations R ◦ w = 0. Equation (5) especially implies

annD(M) := {f ∈ D; fM = 0} = annD(B) := {f ∈ D; f ◦ B = 0}. (6)

In the standard cases the signal module F is even a large injective cogenerator.
This signi�es that each �nitely generated module can be embedded into some
�nite power F l. In the discrete case with F = FN = F [[s−1]] this was already
observed and essentially used in [4]. The injective cogenerator property of F
induces a categorical duality

M = D1×l/U ←→ HomD(M,F) ∼= B := U⊥ (7)

between the categories of �nitely generated D-modules and that of behaviors
[15, Thm.2.56]. In particular, for modules and behaviors

Ui ⊆ D1×li , Mi := D1×li/Ui and Bi = U⊥i , i = 1, 2, the isomorphism

HomD(M2,M1) ∼= Hom(B1,B2)
(8)

holds. Therefore each behavior morphism from B1 to B2 has the form

P◦ : B1 → B2 with P ∈ Dl2×l1 and U2P ⊆ U1. (9)

This morphism is zero if and only if D1×l2P ⊆ U1.

Remark 2.2. The duality theory by means of injective cogenerators [15] has, of
course, various predecessors. The paper [15] was inspired by Willems' work [22]
and essentially used the fundamental principle, i.e., the injectivity of various
multidimensional signal modules, proven in deep papers by Ehrenpreis, Mal-
grange and Palamodov in the beginning 1960s. The divisibility and therefore
injectivity of the standard one-dimensional signal modules were already used by
Hinrichsen/Prätzel-Wolters [10] and Blomberg/Ylinen [3]. Fuhrmann's discrete
one-dimensional duality [4], [6], [8] between polynomial and rational models is
also an instance of the quoted categorical duality. Behavior morphisms were
already studied in [5] and again in [7].

The torsion submodule of M is de�ned as t(M) := {x ∈ M ; ∃0 6= t ∈
D with tx = 0}. The module M is called torsionfree resp. a torsion module
if t(M) = 0 resp. t(M) = M . A torsionfree module over the principal ideal
domain D is free, see Corollary 2.6 below. In particular U is free, i.e., has a
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basis. Therefore it is always possible, but not necessary to assume that the rows
of R are a basis of U or that k = dimD(U).
The matrix R is contained in Kk×l = F (s)k×l and as such has the usual rank(R).
Derived from this are the ranks

p := rank(U) := dimD(U) = dimK(KU) = rank(R) and

m := rank(B) := rank(M) := dimK
(
K1×l/KU

)
= l − rank(R).

(10)

The behavior is autonomous if it satis�es the following equivalent properties
[4, Cor.3.3 and Lem.3.6], [17, �3.2],[15, Thm.2.69, p.159]:

M is a torsion module ⇐⇒ ∃0 6= t ∈ D with tM = 0 or t ◦ B = 0 ⇐⇒
rank(U) = rank(R) = l ⇐⇒ rank(M) = 0.

(11)

The behavior is controllable if and only if its module is torsionfree and thus free
[17, 5.2.10], [15, Thms.7.21,7.52,7.53].
An IO structure of B consists in the choice of p = rank(R) linearly independent
columns of R and gives rise, possibly after a permutation of the columns of R
and the entries of w, to an IO (input/output) representation of B of the form
[17, �3.3], [15, Thm.2.69]

B :=

{
w =

(
y

u

)
∈ Fp+m; P ◦ y = Q ◦ u

}
where R = (P,−Q) ∈ Dk×(p+m),

U0 := U

(
idp
0

)
= D1×kP, p = rank(R) = rank(P ) or KU0 = K1×p,

m = rank(M), PH = Q, H ∈ Kp×m.
(12)

The matrix H depends on B and the chosen IO structure only and is called the
transfer matrix of the IO behavior B. Since rank(P ) = p the behavior

B0 := (U0)⊥ = {y ∈ Fp; P ◦ y = 0} (13)

is autonomous and called the autonomous part of the IO behavior. For every
choice of u there is a trajectory ( yu ) in B and therefore u resp y are called the
input resp. the output of B.
For a general behavior the transfer matrix is replaced by the transfer space,
called signal �ow space in [15, p.43].

Result 2.3 (Transfer space [15, Thm.2.91]).

1. For a behavior B =
{
w ∈ F l; R ◦ w = 0

}
, R ∈ Dk×l, we de�ne its trans-

fer space BK as the solution space

BK :=
{
w̃ ∈ Kl; Rw̃ = 0

}
⊆ Kl, K = F (s),

of dimension dimK(BK) = l − rank(R) = rank(B).

2. If behaviors

Bi = {w ∈ F li ; Ri ◦ w = 0}, i = 1, 2, 3, and matrices

P1 ∈ Dl2×l1 , P2 ∈ Dl3×l2 are given and if B1
P1◦−→ B2

P2◦−→ B3

is well-de�ned and exact then so is the sequence of transfer spaces

B1,K
P1◦−→ B2,K

P2◦−→ B3,K.
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3. If B = {( yu ) ∈ Fp+m; P ◦ y = Q ◦ u} is an IO behavior then

BK =

{(
ỹ

ũ

)
∈ Kp+m; P ỹ = Qũ

}
∼= Km,

(
ỹ

ũ

)
=

(
Hũ

ũ

)
↔ ũ.

This signi�es that the transfer space of the IO behavior is the graph of the
transfer matrix.

In the sequel we will repeatedly need the Smith form of a matrix with respect
to a speci�ed ring, especially with respect to the ring S of proper and stable
rational functions (see below). We recall the basic properties.

Reminder 2.4. Let R be any principal ideal domain, K = quot(R) its quotient
�eld and M ∈ Kk×l a matrix with rank(M) =: p. The matrix M has a Smith
form or Smith-McMillan form(

E 0
0 0

)
= UMV where E =

(
e1 0

. . .
0 ep

)

with respect to R which is de�ned by the following properties:

U ∈ Glk(R), V ∈ Gll(R), 0 6= ei ∈ K for i = 1, . . . , p, and

e1 |
R

e2 |
R

. . . |
R

ep, i.e., there are ri ∈ R such that ei+1 = riei, i = 1, . . . , p− 1.

The elements e1, . . . , ep are called the elementary divisors and are unique up
to association, i.e., up to units in R. The element erank(M) = ep is called the
highest elementary divisor of M .

Remark 2.5. 1. The Smith form of a matrix in F (s)k×l with respect to
F [s] can be easily computed by means of any standard computer algebra
system.

2. The Smith form of a matrix in Kk×l with respect to R is also the Smith
form with respect to any principal ideal domain R′ with R ⊆ R′ ⊆ K.

Corollary 2.6. Assume M ∈ Rk×l in Reminder 2.4. The Smith form induces
the module isomorphisms

R1×l/R1×kM ∼= R/Re1 × · · · ×R/Rep ×Rl−p

ξ := ξ +R1×kM ←→ η := (η1 +Re1, · · · , ηp +Rep, ηp+1, · · · , ηl)
η = ξV, ξ = ηV −1

and

t
(
R1×l/R1×kM

) ∼= R/Re1 × · · · ×R/Rep = t
(
R/Re1 × · · · ×R/Rep ×Rl−p

)
In particular, the module R1×l/R1×kM is torsionfree and then free if and

only if all elementary divisors of M or, equivalently, its highest one are units
in R. For R = D = F [s] the module is a torsion module if and only if its
F -dimension is �nite. Also

annD(t(M)) = De1 ∩ · · · ∩ Dep = Dep. (14)
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De�nition and Lemma 2.7 (Universal left annihilators). Let R be a principal
ideal domain, K := quot(R) its quotient �eld and M a matrix in Kk×l. A
matrix L ∈ Rm×k is called a universal left annihilator of M if the sequence

0 −→ R1×m ◦L−−→ R1×k ◦M−−→ K1×l

is exact or, in other words, if

ker
(
◦M : R1×k → K1×l) = {ξ ∈ R1×k; ξM = 0} = R1×mL. (15)

A universal left annihilator of a matrix M ∈ Rk×l can be computed in the
following fashion: If S = UMV is the Smith form of M the matrix of the last
k − rank(M) rows of U is a universal left annihilator of M .

The injectivity of the signal module implies and is indeed equivalent to the
following result.

Result 2.8 (Images of behaviors [17, Thm.6.2.6], [15, Thm.2.34]). Consider a
behavior

B1 =
{
w1 ∈ F l1 ; R1 ◦ w1 = 0

}
, R1 ∈ Dk1×l1 , and P ∈ Dl2×l1 .

Then the image

P ◦ B1 :=
{
w2 ∈ F l2 ; there exists a w1 ∈ B1 such that w2 = P ◦ w1

}
.

is also a behavior, indeed

P ◦ B1 =
{
w2 ∈ F l2 ; R2 ◦ w2 = 0

}
where (−X,R2) is a universal left annihilator of

(
R1

P

)
.

Example 2.9 (Elimination of the pseudo state of a Rosenbrock system [15,
Cor.2.41]). Consider Rosenbrock equations ( = di�erential operator representa-
tion in [23, p.135] = polynomial matrix description in [20, p.55])

A ◦ x = B ◦ u, y = C ◦ x+D ◦ u where

A ∈ Dn×n, det(A) 6= 0, B ∈ Dn×m, C ∈ Dp×n, D ∈ Dp×m.
(16)

They give rise to two behaviors

B1 :=

{(
x
u

)
∈ Fn+m; A ◦ x = B ◦ u

}
and

B2 :=

(
C D
0 idm

)
◦ B1 =

{(
y
u

)
∈ Fp+m; ∃x ∈ Fn with (16)

}
.

(17)

In this case Result 2.8 can be simpli�ed and B2 can be computed as

B2 =

{(
y
u

)
∈ Fp+m; P ◦ y = (Y B + PD) ◦ u

}
where (−Y, P ) is a universal left annihilator of (AC ). Moreover B1 resp. B2

are IO behaviors with transfer matrices H1 = A−1B resp. H2 = D + CH1 =
D + CA−1B.
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Result 2.10 (Unique controllable realization [4, Thm.6.1], [15, Thms.7.21,7.24]).
For any transfer matrix H ∈ F (s)p×m there is a unique controllable IO realiza-
tion of H, i.e., a controllable IO behavior

Bcont =

{(
y
u

)
∈ Fp+m; Pcont ◦ y = Qcont ◦ u

}
, Pcont ∈ Dp×p, PcontH = Qcont,

with transfer matrix H. The matrices (Pcont,−Qcont) resp. Pcont satisfy

D1×p(Pcont,−Qcont) = ker

(
◦
(
H

idm

)
: D1×(p+m) → F (s)1×m

)
and

D1×pPcont =
{
ξ ∈ D1×p; ξH ∈ D1×m} .

Hence the matrix (Pcont,−Qcont) can be computed as universal left annihilator
of
(
H

idm

)
or of d·

(
H

idm

)
where d 6= 0 is a common denominator of all entries of

H, i.e., dH ∈ Dp×m.
If B is any IO behavior with transfer matrix H the behavior Bcont is the largest
controllable subbehavior of B. Its moduleMcont = D1×(p+m)/B⊥cont is canonically
isomorphic to M/ t(M) where M = D1×(p+m)/B⊥ is the module of B.

According to Kalman and, for instance, Wolovich [23, �5.4] any IO behavior
B := {( yu ) ∈ Fp+m; P ◦ y = Q ◦u} with transfer matrix H ∈ F (s)p×m admits a
unique (up to similarity) observable Kalman state space realization, i.e., there
are essentially unique matrices

A ∈ Fn×n, B ∈ Fn×m, C ∈ F p×n, D ∈ F [s]p×m such that(
C D
0 idm

)
◦ : B1 :=

{(
x

u

)
∈ Fn+m; (s idn−A) ◦ x = Bu

}
∼= B :(

x

u

)
7→
(
Cx+D ◦ u

u

)
and H = D + C(s idm−A)−1B.

(18)

The matrix D is constant too, i.e., D ∈ F p×m, if and only if the IO behavior or,
equivalently by de�nition, its transfer matrix H are proper. This signi�es that
the entries of H belong to the ring

F (s)
pr

:=

{
r :=

f

g
∈ F (s); f, g ∈ F [s], degs(r) := degs(f)− degs(g) ≤ 0

}
(19)

of proper rational functions. In the standard cases the behavior can then be
technically realized as interconnection of adders, multipliers and integrators
or delay elements. This is one of the important technical implications of the
properness of H.

De�nition and Corollary 2.11 (Characteristic variety [15, Cor.7.78], [16,
Thm.2]). Let F := R,C be the real or complex �eld. For f ∈ D = F [s] let VC(f)
denote the set of complex roots of f . Let B ⊆ F l be any behavior, B⊥ = D1×kR
its module of equations with p := rank(R) = dimD(B⊥), M := D1×l/B⊥ its
module and ep the highest elementary divisor of R. Corollary 2.6 furnishes
annD(t(M)) = Dep . Then

ch(B) := ch(M) := VC(ep) = {λ ∈ C; rank(R(λ)) < p = rank(R)}
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is called the characteristic variety of M and B and is �nite.
Hence B is controllable or M is free or t(M) = 0 if and only if ch(B) = ∅ [17,
Thm.5.2.5 ],[15, Cor.7.71].
If B = {( yu ) ∈ Fp+m; P ◦ y = Q ◦ u} is an IO behavior with transfer matrix H
and autonomous part B0 = {y ∈ Fp; P ◦ y = 0} the (�nite) variety ch(B0)
contains ch(B) and the elements of the �rst resp. the second are the poles resp.
the uncontrollable poles of B in the usual language.

Result 2.12 ([17, Thm.3.2.5], [16, Thm.2,(38),(62),(69)]). In the situation of
the preceding de�nition assume F := D′(R,C) and that B ⊂ F l is autonomous,
i.e., rank(R) = l. Then

dimF (B) = dimF (M) <∞ and

B ⊆ ⊕λ∈ch(B)C[t]leλt ⊆ C∞(R,C)l ⊆ D′(R,C)l
(20)

where ⊕λ∈CC[t]eλt = t(D′(R,C)) is the space of polynomial-exponential func-
tions. For the other standard F -signal spaces over F = R,C analogous results
hold [16]. Equation (20) describes the analytic signi�cance of the characteristic
variety.

The following theorem will be applied whenever the existence of a left inverse
matrix of a given matrixM in a speci�ed ring has to be checked. It also provides
all possible left inverses if there are any. Since full column rank of M is a
necessary condition for the existence of a left inverse we will assume this in the
theorem.

Theorem 2.13 (Compare [18, Thm.6.1]). Let R be a principal ideal domain,
K = quot(R) its quotient �eld and M a matrix in Kk×l with rank(M) = l,
hence M has a left inverse in Kl×k. Let(

E
0

)
= UMV with E :=

(
e1 0

...
0 el

)
be the Smith form of M with respect to R.

1. The following statements are equivalent:

(a) The matrix M has a left inverse M ′ ∈ Rl×k (not only in Kl×k!), i.e.,
satisfying M ′M = idl.

(b) E−1 ∈ Rl×l.
(c) e−1

l ∈ R.

2. If the conditions in (1) are satis�ed the set of all left inverses of M in
Rl×k is the a�ne submodule

V (E−1, 0)U +Rl×(k−l)U2

where U2 consists of the last (k − l) rows of U .

3. If the entries of M and thus its highest elementary divisor el belong to R
condition (c) of item 1. signi�es that el and then all ei are units of R.

Proof. 1. It is obvious that (1b) implies (1c) since e−1
l is an entry of E−1.
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(1c)⇒ (1b): The relationship ei+1 = riei leads to

e−1
i = e−1

i+1ri for i = 1, . . . , l − 1.

Hence, e−1
l−1 = e−1

l rl−1 is an element of R since e−1
l is so by

statement (1c), and so, inductively, e−1
i ∈ R for i = 1, . . . , l.

Thus the matrix

E−1 =

 e−1
1 0

. . .
0 e−1

l


is in Rl×l as well.

(1b)⇒ (1a): Computing

V (E−1, 0)UM = V (E−1, 0)U · U−1

(
E
0

)
V −1 = idl

yields that M ′ := V (E−1, 0)U ∈ Rl×k is one possible left
inverse of M .

(1a)⇒ (1b): The equation M ′M = idl implies M ′U−1UMV = V and
hence
V −1M ′U−1 (E0 ) = idl. Since M

′ has entries in R so does

Z := V −1M ′U−1 =: (Z1, Z2) ∈ Rl×k = Rl×(l+(k−l)) with

Z1E = (Z1, Z2)

(
E
0

)
= idl, hence Z1 = E−1 ∈ Rl×l.

2. According to De�nition and Lemma 2.7 the sequence

0 −→ R1×(k−l) ◦U2−−→ R1×k ◦M−−→ K1×l

is exact. If M ′ is any matrix in Rl×k it is a left inverse of M if and only if

M ′M = idl = V (E−1, 0)UM, i.e.,
(
M ′ − V (E−1, 0)U

)
M = 0.

By the exactness of the preceding sequence this is equivalent to the exis-
tence of an

N ∈ Rl×(k−l) such that M ′ − V (E−1, 0)U = NU2, i.e.,

M ′ = V (E−1, 0)U +NU2 or M ′ ∈ V (E−1, 0)U +Rl×(k−l)U2.

We are now going to de�ne T -autonomy, T -stability and T -observability for
a multiplicatively closed set T of polynomials. For this purpose let T ⊆ D \ {0}
be such a set, i.e., satisfying (i) 1 ∈ T and (ii) (t1, t2 ∈ T =⇒ t1t2 ∈ T ), and
let

DT =

{
f

t
∈ F (s); t ∈ T

}
⊆ K = F (s)

denote the quotient ring with respect to T , also called the ring of T -stable
rational functions. We may and do always assume that T is saturated, i.e., that
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it contains all divisors of elements of T . If this is not the case we replace T by the
saturated multiplicatively closed set of all these divisors with the same quotient
ring. Saturation implies T = D∩U(DT ) and U(DT ) = {t1t−1

2 ; t1, t2 ∈ T} where
U(DT ) denotes the group of units or invertible elements of DT . The ring DT
is also a principal ideal domain. A representative system of its prime elements,
up to units, are the monic irreducible polynomials f ∈ D = F [s] which do not
belong to T .
More generally we also consider the quotient module [12, �II.3] MT for a D-
module M :

MT :=
{x
t

; x ∈M, t ∈ T
}

with the canonical map can : M →MT , x 7→
x

1
, and

tT (M) := ker(can) = {x ∈M ; ∃t ∈ T with tx = 0}.

(21)

The module tT (M) is called the T -torsion submodule of M and contained in
t(M). The module MT is a DT -module in the natural fashion, and the the
functor (assignment) M 7→ MT is exact, i.e. it maps exact sequences of D-
modules onto exact sequences of DT -modules.
For the construction of proper observers in Sections 3 and 4 we need Smith form
computations over the ring

S := DT ∩ F (s)
pr

(22)

of proper and T -stable rational functions. In [21, Ch.2] and [20, Ch.5] it is
shown that in many cases this ring is euclidean and therefore admits a Smith
form algorithm. Instead we derive a di�erent algorithm which is implemented
in every standard computer algebra system. Assume that T contains a linear
polynomial

s− α and pose σ :=
1

s− α
, hence degs(σ) = −1, σ ∈ S,

F [σ] = F

[
1

s− α

]
⊆ S and K = F (s) = F (σ).

(23)

If f(s) =
∑n
i=0 ai(s − α)i ∈ F [s] = F [s − α] is any nonzero polynomial with

degs(f) = n the rational function

f̂(σ) := fσn =
f

(s− α)n
= an + an−1

1

s− α
+ · · ·+ a0

1

(s− α)n
=

an + an−1σ + · · ·+ a0σ
n with degs(f̂) = degs(f)− n = 0 and f =

f̂(σ)

σn
(24)

is a polynomial in σ. Its σ-degree degσ(f̂(σ)) is equal to n = degs(f) if and
only if f(α) = a0 6= 0.

De�nition and Lemma 2.14. The subset

T1 :=

{
t̂ =

t

(s− α)deg(t)
; t ∈ T

}
⊆ F [σ]

is multiplicatively closed and saturated in F [σ] and contained in the group U(S)
of units of S. Its quotient ring is S = F [σ]T1

.

11



Hence S is a principal ideal domain. The Smith form of a rational matrix
R ∈ F (s)k×l = F (σ)k×l with respect to S is the same as that with respect to
F [σ] and can be easily computed with any standard computer algebra system.

Proof. The equation

t

(s− α)deg(t)

(s− α)deg(t)

t
= 1 in S implies T1 ⊆ U(S) and F [σ]T1

⊆ SU(S) = S.

Conversely, if

0 6= r = ft−1 ∈ S = F (s)
pr
∩ DT , i.e.,

t ∈ T and deg(f) ≤ deg(t) then r = ft−1 =(
σdeg(t)−deg(f)fσdeg(f)

)(
tσdeg(t)

)−1

= σdeg(t)−deg(f)f̂ t̂−1 ∈ F [σ]T1
.

Theorem and De�nition 2.15 (T -autonomy and T -stability).

1. The following properties are equivalent for a behavior B = {w ∈ Fp; R ◦
w = 0} with R ∈ Dk×l, U := D1×kR and M := D1×l/U :

(a) M = tT (M) or, equivalently, MT = 0.

(b) There is a t ∈ T with tM = 0 or, equivalently, t ◦ B = 0.

(c) The matrix R has a left inverse in Dl×kT .

(d) rank(R) = l, i.e., B is autonomous, and the highest elementary divi-
sor of R belongs to T . If R is square (without loss of generality) this
also signi�es that det(R) ∈ T since this determinant is the product
of all elementary divisors of R.

Under these conditions B is called T -autonomous. Trajectories w that
satisfy t ◦w = 0 for some t ∈ T are called T -small or T -negligible. Hence
a behavior is T -autonomous if all its trajectories are T -small.

2. An IO behavior B = {( yu ) ∈ Fp+m; P ◦ y = Q ◦ u} is called T -stable if it
satis�es the following equivalent conditions:

(a) Its autonomous part B0 := {y ∈ Fp; P ◦ y = 0} is T -autonomous or,

equivalently, P has a left inverse in Dp×kT or its highest elementary
divisor belongs to T .

(b) (i) H ∈ Dp×mT (ii) The highest elementary divisor of (P,−Q) belongs
to T . This condition holds in particular if B is controllable, i.e., if
this elementary divisor is even a nonzero constant in F .

Proof. 1. (b) =⇒ (a): obvious.
(a) =⇒ (b): Let xj := δj denote the canonical generators ofM . By assumption
there are elements tj ∈ T with tjxj = 0. Then t := t1 ∗ · · · ∗ tl ∈ T annihilates
M , i.e. tM = 0. Moreover

tM = 0 ⇐⇒ tD1×l ⊆ U ⇐⇒ B = U⊥ ⊆
(
tD1×l)⊥ =

{w ∈ F l; (tD1×l) ◦ w = D1×l ◦ (t ◦ w) = 0} = {w ∈ F l; t ◦ w = 0} ⇐⇒
t ◦ B = 0.

12



(a) ⇐⇒ (c):

0 = MT =
(
D1×l/D1×kR

)
T

= D1×l
T /D1×k

T R ⇐⇒

D1×l
T = D1×k

T R ⇐⇒ ∃X ∈ Dl×kT with XR = idl .

(c) ⇐⇒ (d): According to Theorem 2.13 the matrix R ∈ Dk×l ⊆ Dk×lT has a

left inverse in Dl×kT if and only if l = rank(R) and its highest elementary divisor
is invertible in DT . But T = D ∩U(DT ) since T is saturated.
2. We assume k = p without loss of generality.
(a) =⇒ (b): By assumption and 1.(d) P ∈ Glp(DT ) or, equivalently, det(P ) ∈
D ∩ U(DT ) = T . Then (i) H = P−1Q ∈ Dp×mT . (ii) Due to P ∈ Glp(DT )

and H ∈ Dp×mT the matrices (idp,−H) and (P,−Q) = P (idp,−H) are row

equivalent in Dp×(p+m)
T and have the same elementary divisors. But those of

(idp,−H) are one.
(b) =⇒ (a): Let X(P,−Q)Y = (E, 0) be the Smith form of (P,−Q) with
respect to D. The conditions (i) and (ii) imply

H ∈ Dp×mT and E ∈ Glp(DT ), hence XP

(
(idp,−H)Y

(
E−1

0

))
= idp in Dp×pT .

This implies P ∈ Glp(DT ).

Example 2.16. Let F = R,C be the real or complex �eld and F one of the
standard continuous or discrete injective cogenerator signal modules.

1. T = {1}: This set is not saturated, its saturation is U(F [s]) = F \ {0}.
Only the zero behavior is T -autonomous. This set T is de�ned for all base
�elds F .

2. T := D \ {0}, hence DT = F (s): In this case each nonzero polynomial is
invertible in DT and hence T -autonomy and autonomy coincide. This set
T is also de�ned for any base �eld F .

3. Let F be one of the standard injective cogenerator signal modules and let

C := Λ1 ] Λ2 with Λ1 ⊆

{
{λ ∈ C; <(λ) < 0} in the continuous case

{λ ∈ C; |λ| < 1} in the discrete case

(25)
be a non-trivial disjoint decomposition of the complex plane into a stable
region Λ1 and an unstable region Λ2. We assume that Λ1 and hence Λ2 are
symmetric with respect to the real axis, i.e., Λ1 = Λ1 with the complex
conjugate λ. De�ne

TΛ := {t ∈ F [s]; VC(t) ⊆ Λ1} resp. DTΛ
=

{
f

t
; f ∈ F [s], t ∈ TΛ

}
. (26)

The polynomials in TΛ and rational functions in DTΛ
are called stable for

the chosen decomposition (25). These stable objects were also de�ned and
discussed in [21, Ch.2, p.14] and [20, Ch.5]. According to Theorem 2.15
and Result 2.12 TΛ-autonomy of a behavior B ⊂ D′(R,C)l signi�es that
it is C-�nite-dimensional and contained in ⊕λ∈Λ1

C[t]leλt, and analogous
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properties hold for all other standard cases. In particular, all its trajec-
tories w satisfy limt→∞ w(t) = 0. If ( y1

u ) and ( y2
u ) are two trajectories

of a TΛ-stable IO behavior with same input u the outputs y1 and y2 are
asymptotically equal, i.e. , limt→∞(y1(t)− y2(t)) = 0.

4. The set T :=
{
sk; k ∈ N

}
is not saturated, its saturation is the set T̃ =

{αsk; 0 6= α ∈ F, k ∈ N}. Let B be T -autonomous in one of the standard
signal spaces. In the continuous case this signi�es that all trajectories of
B are polynomial functions. In the discrete case all trajectories w ∈ B are
�nally zero, ie., there is a time instant t0 such that w(t) = 0 for all t ≥ t0.
This set T is also de�ned for arbitrary base �elds F .

Corollary 2.17. Let T := TΛ from item 3. of the preceding example and B a
behavior as in Theorem 2.15.

1. If B is autonomous it is T -autonomous if and only if ch(B) ⊆ Λ1.

2. If B is an IO behavior it is T -stable if and only if ch(B0) ⊆ Λ1, i.e., if all
poles of B belong to Λ1, or, equivalently, if H ∈ Dp×mTΛ

and ch(B) ⊆ Λ1.

Proof. According to De�nition and Corollary 2.11 the characteristic variety of
B resp. B0 equals VC(e) where e is the highest elementary divisor of R resp. P ,
and the inclusion VC(e) ⊆ Λ1 signi�es e ∈ T . The assertion thus follows from
items 1.d resp. 2.a of Theorem 2.15.

De�nition and Corollary 2.18 (T -observability). Consider a behavior

B1 =
{
w ∈ F l1 ; R1 ◦ w = 0

}
, R1 ∈ Dk1×l1 , and P ∈ Dl2×l1 .

We call w ∈ B1 resp. B1 T -observable from P ◦ w resp. P ◦ B1 if the behavior

ker
(
P◦ : B1 → F l2

)
=

{
w ∈ F l1 ;

(
R1

P

)
◦ w = 0

}
is T -autonomous. According to Theorem 2.15 this signi�es that there is a left

inverse matrix (Y, Z) ∈ Dl1×(k1+l2)
T of

(
R1

P

)
or that for w1, w̃1 ∈ B1 with equal

image P ◦ w1 = P ◦ w̃1 the di�erence w1 − w̃1 is T -small.
For the Rosenbrock equations from Example 2.9 the behavior B1 is T -observable

from B2 if and only if (AC ) has a left inverse in Dn×(n+p)
T since

ker

(
A

C

)
◦ ∼= ker

A −B
C D
0 idm

 ◦, x←→ (
x

0

)
.

Example 2.19. In the situation of the De�nition 2.18 and Example 2.16 dif-
ferent choices of T furnish the following special cases of T -observability and
T -observers (see the following sections):

1. T = {1}: In this case the morphism P◦ is injective on B1 and B1 is
called observable from P ◦B1 [15, Def.7.62, Thm.7.63], [17, Def.5.3.2], [19,
Def.3.1], [9, Defs.3.1,4.1]. If (Y, Z) ∈ Dl1×(k1+l2) is a left inverse of

(
R1

P

)
,

i.e., Y R1 + ZP = idl1 and if w ∈ B1 then R1 ◦ w = 0 and therefore
w = idl1 ◦w = Z ◦ (P ◦ w). Thus w can be computed from P ◦ w, but
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only by means of the operator Z◦, i.e., in general and the standard cases,
by higher derivatives or shifts which are unsuitable from the engineering
point of view. Proper asymptotic observers [13] were introduced to avoid
these higher derivatives.

2. T =
{
sk; k ∈ N

}
: B1 is reconstructible from P ◦ B1 [9, Defs.3.1,4.1]. In

the discrete case a T -observer is called a dead-beat observer [2].

3. T = TΛ: B1 is Λ-detectable from P ◦ B1 [17, Def.5.3.16], [19, Def.3.1]. The
associated observers are called Λ-asymptotic [9, Defs.3.1,4.1].

4. T = D \ {0}: B1 is trackable from P ◦ B1 [9, Def.3.1].

In the following sections we will de�ne T -observers of a desired component
of a trajectory as suitable IO behaviors and discuss their existence and con-
struction.

3 Input T-observers and output T-controllers

This section can be considered as a behavioral extension of Wolovich's work in
[23, Sect.5.5] where he treated input function observability and output function
controllability. Concerning the behavioral de�nitions, especially of observers and
their error behaviors, we follow Valcher/Willems [19] and Fuhrmann [9]. Also
in our theory Result 2.8 on image behaviors and elimination plays an important
part, compare [9, Rem. on p.104].

De�nition 3.1. In this section we start with two IO behaviors

B1 :=

{(
y1

u

)
∈ Fp+m; P1 ◦ y1 = Q1 ◦ u

}
, P1 ∈ Dp×p, det(P1) 6= 0,

B2 :=

{(
y2

y1

)
∈ Fm+p; P2 ◦ y2 = Q2 ◦ y1

}
, P2 ∈ Dm×m, det(P2) 6= 0

with transfer matrices H1 = P−1
1 Q1 resp. H2 = P−1

2 Q2 which can be connected
in series. We de�ne the serial interconnection behavior B and the error behavior
Berr as

B :=


y2

y1

u

 ∈ Fm+p+m;

(
y2

y1

)
∈ B2 and

(
y1

u

)
∈ B1


=


y2

y1

u

 ∈ Fm+p+m;

(
P2 −Q2 0
0 P1 −Q1

)
◦

y2

y1

u

 = 0

 and

Berr :=

y2 − u ∈ Fm; ∃

y2

y1

u

 ∈ B


= (idm, 0,− idm) ◦ B =: {e ∈ Fm; Perr ◦ e = 0}

where Perr exists according to Result 2.8. Then B2 is called an input T -observer
of B1 or B1 an output T -controller of B2 if Berr is T -autonomous (compare [23,
p.164]).
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Remark 3.2. 1. The serial behavior B in De�nition 3.1 has the representation

B =


y2

y1

u

 ∈ Fm+p+m;

(
P2 −Q2

0 P1

)
◦
(
y2

y1

)
=

(
0
Q1

)
◦ u


which shows that it is an IO behavior with input u and output ( y2

y1 ). The
following picture is a visualization of B:

- -r r r
u ∈ Fm y1 ∈ Fp y2 ∈ Fm

B1 B2

2. In the standard cases of T := TΛ from Example 2.16,(3), the T -autonomy
of Berr implies that all trajectories in Berr tend to zero for t→∞, i.e., that all

trajectories
(
y2
y1
u

)
∈ B satisfy limt→∞(y2(t) − u(t)) = 0. If an input T -observer

B2 of a given plant B1 is used in serial connection the output of the intercon-
nected system is asymptotically equal to the input u of the plant B1. Therefore
an input T -observer is called an asymptotic input observer in this case.
Likewise, if an output T -controller B1 of a given plant B2 is used in serial con-
nection the output y2 of the interconnected system y2 is asymptotically equal
to a desired output u which is taken as input of the controller.
3. According to Theorem 2.15 B is T -stable if and only if det(P ) = det(P1) det(P2)
belongs to T . Since T is saturated this signi�es that both B1 and B2 are T -stable.

For the proof of the theorems in this section we need some lemmas.

Lemma 3.3. For two IO systems B1 and B2 as in De�nition 3.1 let (X,Y ) ∈

Dk×(m+p) be a universal left annihilator of

(
P2 −Q2

−Q1 P1

)
. Then the matrix

Perr of equations of Berr is Perr = XP2.

Proof. It follows from the basic Result 2.8 on image behaviors that Perr can be
computed by means of a universal left annihilator (X,Y,−Perr) of the matrix P2 −Q2 0

0 P1 −Q1

idm 0 − idm

 .

This annihilator satis�es the three conditions

XP2 = Perr, XQ2 = Y P1 and Y Q1 = Perr or

XP2 = Y Q1, XQ2 = Y P1 and Perr = XP2

which, in turn, are equivalent to

(X,Y )

(
P2 −Q2

−Q1 P1

)
= 0 and Perr = XP2.

We conclude that (X,Y ) is a universal left annihilator of

(
P2 −Q2

−Q1 P1

)
and

Perr = XP2.
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Lemma 3.4. In the situation of Lemma 3.3 assume that the transfer matrix
H2 is a left inverse of H1, i.e. H2H1 = idm. Then:

1. rank(X,Y ) = m. Therefore we can and do assume that (X,Y ) ∈ Dm×(m+p).

2. Perr = XP2 ∈ Dm×m has rank(Perr) = m, i.e., Berr is autonomous, and

(X,Y ) = Perr(P
−1
2 , H2P

−1
1 ).

Proof. 1.(
P2 −Q2

−Q1 P1

)
=

(
P2 0
0 P1

)(
idm −H2

−H1 idp

)
=

(
P2 0
0 P1

)(
idm −H2

0 idp

)(
0 0
−H1 idp

)
,

the last equality following from H2H1 = idm. The �rst matrix in the last
product has rank p + m, the second one as well, and the third one has

rank p. This implies rank

(
P2 −Q2

−Q1 P1

)
= p. Since (X,Y ) is a universal

left annihilator of this matrix we infer

rank(X,Y ) = (m+ p)− rank

(
P2 −Q2

−Q1 P1

)
= (p+m)− p = m.

2. We de�ne the matrices X1 and Y 1:

0 = (X,Y )

(
P2 −Q2

−Q1 P1

)
= (X,Y )

(
P2 0
0 P1

)(
idm −H2

0 idp

)
︸ ︷︷ ︸

=:(X1,Y 1)

(
0 0
−H1 idp

)

with X1 = XP2 = Perr and rank(X1, Y 1) = rank(X,Y ) = m. The
equation

0 = (X1, Y 1)

(
0 0
−H1 idp

)
= (−Y 1H1, Y

1)

implies Y 1 = 0 and thus rank(X1) = m, hence rank(Perr) = rank(X1) =
m. We �nally rewrite the matrix (X,Y ) as

(X,Y ) = (X1, Y 1)

(
idm H2

0 idp

)(
P−1

2 0
0 P−1

1

)
= (Perr, 0)

(
P−1

2 H2P
−1
1

0 P−1
1

)
= Perr(P

−1
2 , H2P

−1
1 ).

Lemma 3.5. If in the situation of Lemma 3.3 H2 is a left inverse of H1, i.e.,
H2H1 = idm, and if, in addition, P−1

2 ∈ Dm×mT and H2P
−1
1 ∈ Dm×pT then the

behavior Berr is T -autonomous.
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Proof. The equation

(P−1
2 , H2P

−1
1 )

(
P2 −Q2

−Q1 P1

)
= (idm−H2H1,−H2 +H2) = 0

shows that

(P−1
2 , H2P

−1
1 ) ∈ Dm×(m+p)

T is a left annihilator of

(
P2 −Q2

−Q1 P1

)
.

According to Lemma 3.3 (X,Y ) ∈ Dm×(m+p) is a universal left annihilator of
this matrix with respect to D and hence also with respect to DT because the
functor (assignment)M 7→MT preserves exactness. By de�nition of a universal
annihilator there exists a matrix X2 ∈ Dm×mT such that

(P−1
2 , H2P

−1
1 ) = X2(X,Y ).

On the other hand Lemma 3.4 yields

(X,Y ) = Perr(P
−1
2 , H2P

−1
1 ).

Combining these two equations implies

(X,Y ) = PerrX
2(X,Y ), hence PerrX

2 = idm since rank(X,Y ) = m and

1 = det(Perr) det(X2), det(X2) ∈ DT , thus det(Perr) ∈ D ∩U(DT ) = T.

According to Theorem 2.15 this signi�es that Berr is T -autonomous.

Lemma 3.6. Let B1, B2, B and Berr be the behaviors from De�nition 3.1. If
Berr is T -autonomous then

1. H2H1 = idm and

2. B2 is T -stable.

Proof. 1. For ũ ∈ Km, K := quot(D) = F (s), we obtain

(
H1ũ
ũ

)
∈ B1K,

(
H2H1ũ
H1ũ

)
∈ B2K,

H2H1ũ
H1ũ
ũ

 ∈ BK and

H2H1ũ− ũ ∈ BerrK

where B1K etc. denote the transfer spaces according to Result 2.3 and
where we have also used the exactnes of the functor (assignment) B 7→ BK.
But BerrK = 0 because Berr is T -autonomous and thus autonomous. Hence

H2H1ũ = ũ for all ũ ∈ Km, i.e. H2H1 = idm .

2. The equation H2H1 = idm and Lemma 3.4 imply Perr = XP2 ∈ Dm×m.
By assumption we have det(Perr) = det(X) det(P2) ∈ T . From the satu-
ration of T we conclude that also det(P2) ∈ T . This signi�es that B2 is a
T -stable IO behavior.
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We �nally prove our main result on input T -observers.

Theorem 3.7 (Input T -observers). Let

B1 :=

{(
y1

u

)
∈ Fp+m; P1 ◦ y1 = Q1 ◦ u

}
, P1 ∈ Dp×p, det(P1) 6= 0,

be an IO behavior with transfer matrix H1 = P−1
1 Q1.

A. Existence of a T -observer B2 of B1: The following three statements are equiv-
alent:

1. There exists an input T -observer B2 of B1.

2. There is a matrix H2 ∈ Dm×pT such that

(a) H2H1 = idm and

(b) H2P
−1
1 ∈ Dm×pT .

3. The matrix Q1 has a left inverse Z ∈ Dm×pT or, equivalently according
to De�nition and Corollary 2.18, u is T -observable from y1, and then
H2 = ZP1 satis�es (A2).

If these conditions are satis�ed each input T -observer B2 is automatically T -
stable. The unique controllable realization B2 of H2 is the unique controllable
T -input observer of B1 with transfer matrix H2 and, of course, also T -stable.
Condition (A3) can be constructively checked by means of Theorem 2.13.
B. Parametrization: If the equivalent conditions of item A. hold all input T -
observers of B1 are obtained by the following algorithmic steps:

1. Compute one and then all left inverses Z of Q1 in Dm×pT according to
Theorem 2.13. De�ne H2 := ZP1 for a chosen Z.

2. Compute the unique controllable realization of H2 = ZP1 by means of
Result 2.10:

Bcont =

{(
y2

y1

)
∈ Fm+p; Pcont ◦ y2 = Qcont ◦ y1

}
.

3. Choose a matrix P̃2 ∈ Dm×m with det(P̃2) ∈ T and de�ne

(P2,−Q2) := P̃2(Pcont,−Qcont).

The IO behaviors B2 := {( y2
y1 ) ∈ Fm+p;P2 ◦ y2 = Q2 ◦ y1} are exactly the input

T -observers of B1. In other words: The inverses Z ∈ Dm×pT of Q1 parametrize

all controllable input T -observers and the pairs (Z, P̃2) all input T -observers.
According to Lemma 3.3 the error behavior of this observer is

Berr = {e ∈ Fm; XP2 ◦ e = 0} with a universal left annihilator (X,Y ) of(
P2 −Q2

−Q1 P1

)
or XP̃2(Pcont,−Qcont) = X(P2,−Q2) = Y (Q1,−P1).

C. Properness:
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1. If (Z, P̃2) is chosen as in item B. the associated observer B2 and especially
its transfer matrix H2 = ZP1 are T -stable, hence H2 ∈ Dm×pT . If H2 is
also proper the input T -observer is proper by de�nition. The existence and
construction of such Z and H2 will be discussed in Theorem 3.12.

2. If B1 is T -stable, i.e., det(P1) ∈ T , and if H2 is any left inverse of H1

in Sm×p then Z = H2P
−1
1 ∈ Dm×pT and thus all conditions in A. are

satis�ed. The corresponding input T -observer according to B. is proper,
and all proper input T -observers are obtained in this fashion.
Theorem 2.13 again enables to check the existence of such a left inverse
H2 of H1 and to construct all of them if there is one.

Proof. A. 1. ⇒ 2.: Let B, Berr, X, and Y denote the same behaviors resp.
matrices as in De�nition 3.1 and Lemma 3.3. The assumption that B2 is an
input T -observer of B1 implies by de�nition that Berr is T -autonomous. By
means of Lemma 3.6 we conclude

P2 ∈ Glm(DT ), hence H2 = P−1
2 Q2 ∈ Dm×pT , and H2H1 = idm .

Now we apply Lemma 3.4 and use the equation

(X,Y ) = Perr(P
−1
2 , H2P

−1
1 ).

The T -autonomy of Berr implies Perr ∈ Glm(DT ) and then

H2P
−1
1 = P−1

err Y ∈ D
m×p
T .

2.⇒ 1.: Let B2 be the unique controllable realization of H2 according to Result
2.10:

B2 =

{(
y2

y1

)
∈ Fm+p; P2 ◦ y2 = Q2 ◦ y1

}
, P2 ∈ Dm×m, det(P2) 6= 0.

Since B2 is controllable the elementary divisors of (P2,−Q2) are units in D and
therefore in DT . With H2 ∈ Dm×pT according to condition 2. we conclude from
Theorem 2.15, 2., that B2 is a T -stable IO behavior and thus P2 ∈ Glm(DT )
and P−1

2 ∈ Dm×mT .
The conditions 2. and Lemma 3.5 �nally imply that Berr is T -autonomous,

i.e., that B2 is really a (T -stable) input T -observer of B1.
2.⇒ 3.: De�ne Z := H2P

−1
1 . Then 2. implies

Z ∈ Dm×pT and ZQ1 = H2P
−1
1 Q1 = H2H1 = idm .

3.⇒ 2.: De�ne H2 := ZP1 ∈ Dm×pT since Z ∈ Dm×pT by condition 3. Then

H2H1 = ZP1H1 = ZQ1 =
3.

idm and H2P
−1
1 = Z ∈ Dm×pT .

B. All input T -observers are obtained by these three steps: If B2 is such an ob-
server with transfer matrix H2 the conditions from part A. are satis�ed. There-
fore H2 and Z = H2P1 are obtained as in step 1. If Bcont is the unique con-
trollable realization of H2 according to step 2. Result 2.10 implies the inclusion
Bcont ⊆ B2 and thus the existence of some P̃2 ∈ Dm×m with

(P2,−Q2) = P̃2(Pcont,−Qcont), hence

P2 = P̃2Pcont and det(P2) = det(P̃2) det(Pcont) ∈ T.
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Since T is saturated this implies det(P̃2) ∈ T as in step 3.
All constructed B2 are indeed input T -observers: The assumptions imply

ZQ1 = idm, Z ∈ Dm×pT , H2 := ZP1, hence H2, H2P
−1
1 ∈ Dm×pT .

From part A. of the proof we know that Bcont is a T -stable input T -observer,
hence Pcont ∈ Glm(DT ) and then also P2 = P̃2Pcont ∈ Glm(DT ) by the choice

of P̃2. This signi�es that B2 is T -stable. Again like in part A. of the proof
we conclude from Lemma 3.5 that Berr is T -stable and that B2 is an input
T -observer too.

Example 3.8. We consider the case p = m = 1, i.e., P1 andQ1 are polynomials,
P1 6= 0, and H1 = Q1

P1
=

Q1,cont

P1,cont
with gcd(P1,cont, Q1,cont) = 1 is a rational

function. We want to check whether

B1 =

{(
y1

u

)
∈ F1+1; P1 ◦ y1 = Q1 ◦ u

}
admits a proper input T -observer B2. By Theorem 3.7 this is equivalent to the
existence of Z ∈ DT with

ZQ1 = 1 or Q1 ∈ T and

H2 = ZP1 =
P1

Q1
=
P1,cont

Q1,cont
∈ F (s)

pr
, i.e., deg(P1) ≤ deg(Q1).

If this is the case all input T -observers have the form

B2 :=

{(
y2

y1

)
∈ F1+1; P̃2Q1,cont ◦ y2 = P̃2P1,cont ◦ y1

}
, P̃2 ∈ T.

Notice that for P̃2 = 1 the matrix

(Q1,cont,−P1,cont) =
1

f
(Q1,−P1) with f := gcd(P1, Q1)

de�nes the unique controllable T -input observer B2 of B1 where 1
f is a ratio-

nal function, but not a polynomial in general, compare [19, Thm.3.4] and [9,
Thm.4.1].

We are now going to discuss the construction of proper input T -observers
in general, i.e., without the assumption of T -stability of B1 as in Theorem 3.7,
item (C2). We assume that an input T -observer exists, and that Z0 ∈ Dm×pT

is one left inverse of Q1 ∈ Dp×m according to Theorem 3.7, part A, hence
rank(Q1) = m. Let L ∈ D(p−m)×p be a universal left annihilator of Q1. Then

rank(L) = p−m, D1×(p−m)L =
{
ξ ∈ D1×p; ξQ1 = 0

}
,

D1×(p−m)
T L =

{
ξ ∈ D1×p

T ; ξQ1 = 0
}
.

(27)

According to Theorem 2.13 all left inverses Z of Q1 in Dm×pT are of the form

Z = Z0 +X0L, X0 ∈ Dm×(p−m)
T . (28)
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We study when H2 := ZP1 is proper. From rank(P1) = p we infer rank(LP1) =
p −m. We need the Smith form of LP1 with respect to S, compare Reminder
2.4, i.e.,

U1(LP1)V 1 = (E, 0) ∈ F (s)(p−m)×p, E = diag(e1, · · · , ep−m) ∈ Glp−m(F (s)),

U1 ∈ Glp−m(S), V 1 ∈ Glp(S), hence H = Y +X(E, 0) with

H := ZP1V
1 ∈ Dm×pT , Y := Z0P1V

1 ∈ Dm×pT and

X := X0(U1)−1 ∈ Dm×(p−m)
T .

(29)
Notice that E, H, Y and X are rational matrices. But

H = Y +X(E, 0) ⇐⇒

Hij =

{
Yij +Xijej for 1 ≤ i ≤ m, 1 ≤ j ≤ p−m
Yij for 1 ≤ i ≤ m, p−m+ 1 ≤ j ≤ p.

(30)

The inclusions U1, V 1 ∈ Gl•(S) ⊆ Gl•(DT ) imply the equivalences

H = ZP1V
1 ∈ Sm×p ⇐⇒ H2 = ZP1 ∈ Sm×p,

X ∈ Dm×(p−m)
T ⇐⇒ X0 = XU1 ∈ Dm×(p−m)

T .

Corollary 3.9. Assume that the equivalent conditions A. of Theorem 3.7 are
satis�ed, that Z0 ∈ Dm×pT is one left inverse of Q1 and the additional data from
equations (27)-(30). The T -stability of B1 is not assumed. Then B1 admits a
proper input T -observer if and only if

Yij ∈

{
DT ej + S for 1 ≤ i ≤ m, 1 ≤ j ≤ p−m
S for 1 ≤ i ≤ m, p−m+ 1 ≤ j ≤ p.

(31)

If this is the case and if

Yij = −Xijej +Hij ∈ DT ej + S for 1 ≤ i ≤ m, 1 ≤ j ≤ p−m,

Xij ∈ DT , Hij ∈ S, X := (Xij)ij ∈ Dm×(p−m)
T ,

(32)

the matrix Z := Z0 + XU1L ∈ Dm×pT is a left inverse of Q1 with proper H2 =
ZP1 and gives rise to a proper input T -observer of B1 according to Theorem
3.7, part B.

We have yet to compute DT ej +S to make the preceding corollary construc-
tive.

Lemma 3.10. Let S be any principal ideal domain with quotient �eld K, σ a
prime element of S and f, g ∈ S two nonzero coprime elements. Consider the
quotient ring

Sσ :=

{
h

σk
∈ K; h ∈ S, k ≥ 0

}
=

∞⋃
k=0

Sσ−k. Then

Sσ = Sσf + Sg.
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Proof. The coprimeness of f and g implies S = Sf + Sg and Sσ = Sσf + Sσg.
The only S-submodules of

Sσ/S =

∞⋃
k=0

Sσ−k, Sσ−k = Sσ−k/S ∼= S/Sσk,

are Sσ/S and the Sσ−k/S, k ≥ 0, as is easily seen. This is indeed a standard
result, and Sσ/S is the unique minimal injective cogenerator over the local ring
SS\Sσ. Therefore the only S-submodules of Sσ containing S are Sσ and the

Sσ−k, k ≥ 0. But Sσf + Sg is such a submodule. Assume

Sσf + Sg = Sσ−k =⇒ ∀` : σ−`f ∈ Sσ−k =⇒ f ∈
∞⋂
k=0

Sσk = 0.

This is a contradiction to f 6= 0, and therefore Sσf + Sg = Sσ.

The preceding lemma is applicable to the ring S of proper T -stable rational
functions (compare De�nition and Lemma 2.14)

S = F [σ]T1
, T1 :=

{
t

(s− α)deg(t)
; t ∈ T

}
with σ :=

1

s− α
.

The indeterminate σ is a prime element of F [σ] and not contained in T1 and
therefore also a prime element of the quotient ring S. Moreover

Lemma 3.11. DT = Sσ =
⋃∞
k=0 Sσ−k =

⋃∞
k=0 S(s− α)k.

Proof. ⊇: Both S and s− α are contained in DT .
⊆: r = ft−1 ∈ DT =⇒ r = f

(
t(s− α)deg(f)

)−1
(s− α)deg(f) ∈ S(s− α)deg(f).

Theorem 3.12 (Proper input T -observer). Assume that the equivalent condi-
tions 1. of Theorem 3.7 are satis�ed, i.e., that B1 admits an input T -observer
and that Z0 ∈ Dm×pT is one left inverse of Q1. Consider the additional data
from equations (27)-(30). The T -stability of B1 is not assumed. Let

ej =
fj(σ)

gj(σ)
, fj , gj ∈ F [σ], gcd(fj , gj) = 1, j = 1, · · · , p−m

be the reduced representations of the elementary divisors ej. Then B1 admits a
proper input T -observer if and only if

Yij ∈

{
DT g−1

j for 1 ≤ i ≤ m, 1 ≤ j ≤ p−m
S for 1 ≤ i ≤ m, p−m+ 1 ≤ j ≤ p.

(33)

All proper input T -observers are then constructed according to Theorem 3.7 and
Corollary 3.9.

Proof. Since the polynomials fj , gj are nonzero and coprime in F [σ] they have
the same property with respect to the overring S ⊃ F [σ]. By means of Lemmas
3.10 and 3.11 we infer

DT ej + S = Sσ
fj
gj

+ S =
1

gj
(Sσfj + Sgj) =

1

gj
Sσ =

1

gj
DT .

The theorem now follows from Corollary 3.9.
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There is still the need to �nd explicit representations in (32).

Algorithm 3.13. Let f(σ), g(σ) ∈ F [σ] be coprime polynomials and let f =
σ`f1(σ) be the decomposition with f1(0) 6= 0 or gcd(σ, f1) = 1. Compute a
representation 1 = a1(σ)f(σ) + a2(σ)g(σ) by means of the euclidean algorithm.
Let r := h(s)t(s)−1 be any element in DT . The following algorithm computes a
representation

r = af + bg, a ∈ DT , b ∈ S (34)

as needed in Corollary 3.9. As in De�nition and Lemma 2.14 write r in the
form

r = (s− α)deg(h)−deg(t)
(
h(s− α)− deg(h)

)(
t(s− α)− deg(t)

)−1

=

σnĥ(σ)t̂(σ)−1, n := deg(t)− deg(h), t̂ ∈ T1 ⊂ F [σ].

1.case deg(h) ≤ deg(t) or n ≥ 0: Then r belongs to S = F (s)
pr
∩DT and the

desired representation (34) is given by r = r1 = (ra1)f + (ra2)g.
2.case n < 0: Since σ−n and f1 are coprime the euclidean algorithm for F [σ]

furnishes a representation

ĥ = a3f1 + a4σ
−n =⇒ σnĥ = a3σ

nf1 + a4 = a3σ
n−`f + a4a1f + a4a2g =(

a3σ
n−` + a4a1

)
f + a4a2g ∈ F [σ, σ−1]f + F [σ]g =⇒

r = σnĥt̂−1 =
((
a3σ

n−` + a4a1

)
t̂−1
)
f +

(
a4a2t̂

−1
)
g ∈ Sσf + Sg = DT f + Sg.

Corollary 3.14. Assume the situation of the preceding algorithm, and let
(a0, b0) ∈ DT × S satisfy

r = a0f + b0g.

Then all other pairs (a, b) satifying (34) can be constructed as

a = a0 − cσ−`g, and

b = b0 + cσ−`f

where c is an arbitrary element of S and f is again decomposed as f(σ) =
σ`f1(σ), f1(0) 6= 0.
Algorithm 3.13 with the choices of the present corollary furnishes all proper
input T -observers.

Proof. Equation (34) implies that

r = b g in Sσ/Sσf, g := g + Sσf, DT = Sσ.

Since gcd(f, g) = 1 the element g is invertible in Sσ/Sσf and hence

b = r (g)−1 in Sσ/Sσf,

i.e., b is uniquely determined modulo f . In other words, each b satisfying (34)
is of the form

b = b0 + c̃f for some c̃ ∈ Sσ.

By (34) b has to be an element of S and therefore c̃ ∈ Sσ must be choosen such
that c̃f ∈ S. Again c̃ ∈ Sσ can be written as c̃ = c1σ

−k for some c1 ∈ S with
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c1(0) 6= 0 and k ∈ N. Remember that f(σ) = σ`f1(σ), f1(0) 6= 0. With this
notation, c̃f ∈ S is equivalent to

c1σ
−k · σ`f1 ∈ S or k ≤ ` or c̃ = c1σ

−k ∈ Sσ−`.

Therefore any admissible c̃ has the form

c̃ = cσ−` for some arbitrary c ∈ S.

The asserted form of b follows now directly and (34) implies the equation for
a.

The next theorem furnishes conditions for the existence of output T -controllers
for T -stable IO behaviors.

Theorem 3.15. Let

B2 :=

{(
y2

y1

)
∈ Fm+p; P2 ◦ y2 = Q2 ◦ y1

}
, P2 ∈ Dm×m, det(P2) 6= 0,

be an IO behavior with transfer matrix H2 = P−1
2 Q2. Then the following state-

ments are equivalent:

1. There exists a T -stable resp. proper T -stable output T -controller B1 of B2.

2. B2 is T -stable and its transfer matrix H2 has a right inverse H1 in Dp×mT

resp. Sp×m.

If H1 is a right inverse of H2 in Dp×mT resp. Sp×m the controllable realization
B1 of H1 is one T -stable resp. proper T -stable output T -controller of B2.
Condition 2. of this theorem can be constructively checked by means of Theorem
2.13, applied to H>2 , and Theorem 2.15.

Proof. Let B and Berr be the behaviors introduced in De�nition 3.1. We show
the equivalence of the statements for proper output T -controllers B1, for non-
proper ones the proof is analogous.
1.⇒ 2.: By assumption the behavior Berr is T -autonomous. Hence Lemma 3.6
yields that B2 is T -stable and H2H1 = idm. Since B1 is assumed to be proper
and T -stable its transfer matrix H1 = P−1

1 Q1 belongs to Sp×m.
2.⇒ 1.: Let H1 ∈ Sp×m be a right inverse of H2 and

B1 =

{(
y1

u

)
∈ Fp+m; P1 ◦ y1 = Q1 ◦ u

}
the controllable realization of H1. The condition H1 ∈ Dp×mT , the controllability
of B1 and Theorem 2.15,(2), yield that B1 is T -stable, i.e., P1 ∈ Glp(DT ). This
and the T -stability of B2 imply

P−1
2 ∈ Dm×mT and H2P

−1
1 ∈ Dm×pT .

With Lemma 3.5 we conclude that Berr is T -autonomous and that B1 is a proper
T -stable output T -controller of B2.

Remark 3.16 (Relation to [23], [19], [9]).
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1. For T = F [s] \ {0} autonomy and T -autonomy coincide. In this case the
equivalence A, 1.⇔ 2., of Theorem 3.7 and the corresponding equivalence
in Theorem 3.15 were already proven by Wolovich in [23, Thm.5.5.7], but
in a di�erent language and under additional conditions [23, (5.5.6)]. It is
implicitly used that a behavior is autonomous if and only if its trajectories
are determined by the initial conditions. The input T -observer B2 is called
a left inverse system to B1 since H2 is a left inverse of H1 whereas the
output controller is called a right inverse system. In the Remarks 1-4 in
[23, pp.171-174] controllability and stability properties of the left and right
inverse systems are also discussed.

2. Consider the special case T = TΛ, Λ1 := {z ∈ C; <(z) < 0}. Valcher
and Willems discuss proper T -observers in [19, �IV]. Here we apply their
results to our situation with our notations, their admissible plants are
more general. The translation of their notations into ours is given by

VW R1 R2 Q P w1 w2 Ŵ
BO P1 Q1 P2 Q2 y1 u H2

.

The condition rank(H1) = rank(Q1) = rank(R2) = m is assumed. After
elementary row transformations we assume their normal form [19, (5),(6)]

(P1,−Q1) =

(
N1 −D2

D1 0

)
∈ D(m+(p−m))×(p+m), det(D2) 6= 0. (35)

Properness refers to the transfer matrix Ŵ = H2, hence their observer is
also an IO behavior in this case. The transfer matrix H1 does not ap-
pear in [19] because their general plant is not assumed IO. The equation
(P2,−Q2) = T (Q1,−P1) [19, Thm.3.4, p.2302] shows that they consider
consistent IO observers only which are only part of those parametrized
in Theorem 3.7. According to De�nition 2.18 condition (A3) from The-
orem 3.7 signi�es that u is T -observable or detectable from y1 or that
det(D2) ∈ T , hence (A1) ⇔ (A3) for this special T follows from [19,
Prop.2.2,3.2]. Theorem 4.3 of [19] characterizes the existence of a proper
input T -observer and constructs one if it exists. The proof and algorithm
are quite distinct from our existence and parametrization Theorems 3.7
and 3.12. The proper pseudo state T -observers of Section 4 are applicable
to the general plants of [19] and [9], see Remark 4.8.
Fuhrmann discusses consistent proper observers in [9, Prop.4.4]. In the
normal form (35) he chooses an IO structure for D1 ◦ y1 = 0 and from
that and D2 ◦ u = N1 ◦ y1 derives a transfer matrix whose properness is
su�cient for the existence of a proper input T -observer.

4 Pseudo state T-observers

In this section we treat the existence and construction of proper pseudo state
T -observers of Rosenbrock systems with the data from Example 2.9. We al-
ways assume that the two transfer matrices H1 = A−1B and H2 = D + CH1

are proper. The signi�cance of Rosenbrock systems and their observers is, for
instance, discussed in [23, Ch.5, Ch.7], [11, Ch.8] and [1, Ch.7, Part 2]. In
Remark 4.8 we relate our results to those of our predecessors.
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A T -observer Bobs of the pseudo state x is an IO system with input y and u
and output x̂ such that (x̂− x) is T -small, i.e., that x and x̂ are asymptotically
equal in the standard cases. With such an observer one can thus estimate
the pseudo state. Principally we discuss proper T -observers since these can be
realized by standard Kalman state equations. The situation is visualized in the
following picture:

- -

� �

-

?

r r

���� ����
A ◦ x = B ◦ u

D C

y ∈ Fp

ru ∈ Fm x ∈ Fn

lr
� �

�
x̂ ∈ Fn

Bobs
r

De�nition 4.1. For the given data from Example 2.9 and an IO behavior Bobs

of the form

Bobs :=


x̂y
u

 ∈ Fn+p+m; Pobs ◦ x̂ = Qobs ◦
(
y
u

) , Qobs = (Qy, Qu),

Pobs ∈ Dn×n,det(Pobs) 6= 0, Qy ∈ Dn×p, Qu ∈ Dn×m,

we de�ne the derived behaviors

B :=



x̂
x
y
u

 ∈ Fn+n+p+m;
A ◦ x = B ◦ u,

y = C ◦ x+D ◦ u,
Pobs ◦ x̂ = Qy ◦ y +Qu ◦ u

 ,

B3 :=


(
x̂− x
u

)
∈ Fn+m; ∃


x̂
x
y
u

 ∈ B


=

(
idn − idn 0 0
0 0 0 idm

)
◦ B, and

Berr :=

x̂− x ∈ Fn; ∃


x̂
x
y
u

 ∈ B


=
(
idn 0

)
◦ B3.

Then Bobs is called a T -observer of the pseudo state x if Berr is T -autonomous.
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Remark 4.2. The behavior B describes the entire system shown in the picture
above. Later we will see that B is an IO system with input u and output x̂,
x, and y and that B3 is an IO system with input u and output x̂ − x. In the
standard cases limt→∞(x̂(t)− x(t)) = 0 this suggests to call Bobs an asymptotic
observer.

Recall from De�nition and Corollary 2.18 that the Rosenbrock equations are
T -observable if and only if (AC ) has a left inverse with entries in DT .

Theorem 4.3. We consider the Rosenbrock system and derived data from above.
Let (X,Y ) ∈ Dn×nT × Sn×p be a left inverse of (AC ), i.e., XA+ Y C = idn. Let

Bobs :=


x̂y
u

 ∈ Fn+p+m; Pobs ◦ x̂ = Qobs ◦
(
y

u

) ,

Pobs ∈ Dn×n, det(Pobs) 6= 0

be the unique controllable realization of the transfer matrix (Y,XB − Y D) ∈
Sn×p × Dn×mT . Then Bobs is a proper, controllable and T -stable T -observer of
the given Rosenbrock system.

Proof. 1. Let (Pcont,−Qcont) ∈ Dn×(n+(n+p)) denote the matrix of the unique
controllable realization of the transfer matrix (X,Y ) ∈ Dn×nT ×Sn×p, i.e.,

D1×nPcont =
{
ξ ∈ D1×n; ξ(X,Y ) ∈ Dn×(n+p)

}
, Pcont(X,Y ) = Qcont.

Since (X,Y ) is T -stable this IO realization is also T -stable according to
Theorem 2.15,(2b), hence det(Pcont) ∈ T . We infer

Pcont(Y,XB − Y D) ∈ Dn×(p+m). Since

D1×nPobs =
{
ξ ∈ D1×n; ξ(Y,XB − Y D) ∈ D1×(p+m)

}
according to Result 2.10 there is a matrix

P ∈ Dn×n with PPobs = Pcont, hence

det(P ) det(Pobs) = det(Pcont) ∈ T and det(Pobs) ∈ T.

This signi�es that Bobs is T -stable.

2. We are going to show that

Berr ⊆ {w ∈ Fn; Pcont ◦ w = 0}

and hence that Berr is T -autonomous: Let

x̂− x ∈ Berr, y ∈ Fm, u ∈ Fp such that

(
x̂
x
y
u

)
∈ B.

Then by de�nition of B the following equations are satis�ed:

A ◦ x = B ◦ u,
y = C ◦ x+D ◦ u,

Pobs ◦ x̂ = PobsY ◦ y + Pobs(XB − Y D) ◦ u
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Multiplication of the last line with P and substitution of the �rst two lines
into the third one leads to

Pcont ◦ x̂ = PcontY C ◦ x+ PcontY D ◦ u+ PcontXA ◦ x− PcontY D ◦ u =

= Pcont(XA+ Y C) ◦ x = Pcont ◦ x since (X,Y )

(
A

C

)
= idn .

Notice here that Pcont = PPobs and

Pobs(XB − Y D) ∈ Dn×m, but PcontX ∈ Dn×n and PcontY ∈ Dn×p.

We infer

Pcont ◦ (x̂− x) = 0 for x̂− x ∈ Berr and Berr ⊆ {w ∈ Fn; Pcont ◦ w = 0}

as asserted.

3. We �nally show that the transfer matrix (Y,XB − Y D) of Bobs and thus
Bobs itself are proper. For Y this holds by assumption. Moreover

XA+ Y C = idn =⇒ H1 + Y D = idnH1 + Y D =

(XA+ Y C)A−1B + Y D = XB + Y
(
CA−1B +D

)
=

XB + Y H2 =⇒ XB − Y D = H1 − Y H2.

Since H1, H2, Y are proper so is XB − Y D.

Theorem 4.4 (T -observers of internally proper Rosenbrock equations, compare
[23, Thm.7.3.23], [9, Prop.3.3]). Assume that the Rosenbrock equations are
internally proper [20, Ch.4.5], i.e., not only H1 = A−1B and H2 = D + CH1,
but also A−1 and CA−1 are proper. This holds, for instance, for Kalman state
equations. Let

U

(
A

C

)
V =

(
E

0

)
, E = diag(e1, · · · , en), U ∈ Gln+p(S), V ∈ Gln(S),

be the Smith form of (AC ) with respect to S and L ∈ Sp×(n+p) the matrix of the
last p rows of U which is a universal left annihilator of (AC ). Then the following
statements are equivalent:

1. The Rosenbrock equations are T -observable, i.e., by De�nition and Corol-
lary 2.18, the matrix (AC ) has a left inverse with entries in DT .

2. The matrix (AC ) has a left inverse with entries in S.

3. e−1
n ∈ S.

If these equivalent conditions are satis�ed all left inverses of (AC ) with entries in
S are given as V (E−1, 0)U+ZL, Z ∈ Sn×p. Each such left inverse (X,Y ) gives
rise to a unique proper controllable T -observer with transfer matrix (Y,XB −
Y D) which is also T -stable.
For Kalman state equations and special T the equivalence 1.⇔ 2. is essentially
the same as [9, Prop.3.3, (a)⇔ (b)].
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Proof. The equivalence follows easily from Theorem 2.13.
Since (A−1, 0) ∈ F (s)n×(n+p)

pr
is a left inverse of (AC ) that theorem implies

e−1
n ∈ F (s)

pr
, hence e−1

n ∈ DT ⇐⇒ e−1
n ∈ S = F (s)

pr
∩ DT .

The equivalence and the construction of all inverses is now also a special case
of that theorem.

The next result is the converse of Theorem 4.3 for Rosenbrock equations as
in Example 2.9.

Theorem 4.5. 1. Assume that

Bobs =


x̂y
u

 ∈ Fn+p+m; Pobs ◦ x̂ = Qobs ◦
(
y

u

) ,

Pobs ∈ Dn×n, det(Pobs) 6= 0, Qobs = (Qy, Qu) ∈ Dn×(p+m),

is any controllable and proper T -observer of the pseudo state of the given Rosen-
brock system with transfer matrix

Hobs := (Hy, Hu) := P−1
obs(Qy, Qu) ∈ F (s)n×(p+m)

pr
.

Since the observer is controllable it is the unique controllable realization of its
transfer matrix.
Then Bobs is T -stable, especially Hobs = (Hy, Hu) ∈ Sn×(p+m), and there exists
a matrix X ∈ Dn×nT such that

XA+HyC = (X,Hy)

(
A

C

)
= idn and Hu = XB −HyD. (36)

In other words, with Y := Hy, the pair (X,Y ) satis�es the conditions of The-
orem 4.3 and Bobs is the unique controllable realization of (Y,XB − Y D) =
(Hy, Hu) = Hobs, i.e., Bobs is constructed from (X,Y ) as in Theorem 4.3.
2. Parametrization: According to item 1. the left inverses (X,Y ) ∈ Dn×nT ×Sn×p
of (AC ) parametrize the set of all controllable proper T -observers of the Rosen-
brock system. Two such inverses (Xi, Yi), i = 1, 2, give rise to the same observer
if and only if

Y1 = Y2 and (X1 −X2)B = 0.

Proof. 1. The transfer matrix H of B: We show that the behavior B from
De�nition 4.1 is an IO behavior and compute its transfer matrix:

B =



x̂
x
y
u

 ∈ Fn+n+p+m;
A ◦ x = B ◦ u,

y = C ◦ x+D ◦ u,
Pobs ◦ x̂ = Qy ◦ y +Qu ◦ u



=




x̂
x
y
u

 ∈ Fn+n+p+m;

Pobs 0 −Qy
0 A 0
0 −C idp


︸ ︷︷ ︸

=:P

◦

x̂x
y

 =

QuB
D


︸ ︷︷ ︸

=:Q

◦u


=

{(
w
u

)
∈ F (n+n+p)+m; P ◦ w = Q ◦ u

}
.
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Elementary transformations show that P is really invertible and lead to

H = P−1Q =

Hu +HyH2

H1

H2

 .

2. The transfer matrix H3 of B3:

B3 =

(
idn − idn 0 0
0 0 0 idm

)
◦ B

=

(
C3 0
0 idm

)
◦ B with C3 :=

(
idn − idn 0

)
=:

{(
e
u

)
∈ Fn+m; P3 ◦ e = Q3 ◦ u

}
.

Since the behavior B3 is derived from the Rosenbrock equations

P ◦ w = Q ◦ u, e = C3 ◦ w, (37)

as in Example 2.9 it is itself an IO behavior with P3 ∈ Dn×n, det(P3) 6= 0 and
transfer matrix

H3 = C3H = Hu +HyH2 −H1. (38)

Since Berr is T -autonomous it has the form

Berr =
(
idn 0

)
◦ B3 =: {e ∈ Fn; Perr ◦ e = 0} , Perr ∈ Dn×n, det(Perr) ∈ T.

In particular, a vector e will belong to Berr whenever ( eu ) ∈ B3 for some u ∈ Fm.
In other words, P3 ◦ e = Q3 ◦ u implies Perr ◦ e = 0. Rewriting this relation as

(P3,−Q3) ◦
(
e
u

)
= 0 =⇒ (Perr, 0) ◦

(
e
u

)
= 0,

we infer that there is an

X̃ ∈ Dn×n such that (Perr, 0) = X̃(P3,−Q3), i.e.,

Perr = X̃P3 and X̃Q3 = 0 =⇒
det(Perr) = det(X̃) det(P3) ∈ T =⇒ det(X̃) 6= 0 =⇒
Q3 = 0 =⇒ Hu +HyH2 −H1 =

(38)
H3 = P−1

3 Q3 = 0.

(39)

Since T is saturated we also get det(P3) ∈ T .
3. The exact equations of B3: Let (−K,L) ∈ Dn×((2n+p)+n) be a universal
left annihilator of

(
P
C3

)
, hence KP = LC3. According to Example 2.9 the

Rosenbrock equations

P ◦ w = Q ◦ u, e = C3 ◦ w, C3 := (idn,− idn, 0) imply

B3 =

{(
e
u

)
∈ Fn+m; L ◦ e = KQ ◦ u

}
, hence

P3 = L and 0 = Q3 = KQ.

31



Here we used Q3 = 0 from part 2. of the proof. With K = (K1,K2,K3) ∈
Dn×(n+n+p) and C3 = (idn,− idn, 0) the equation KP = LC3 yields

(
K1, K2, K3

)Pobs 0 −Qy
0 A 0
0 −C idp

 =
(
L, −L, 0

)
or, equivalently,

K1Pobs = L, −K2A+K3C = L and K3 = K1Qy.

With L = P3 and det(P3) ∈ T according to part 2. of the proof this gives

P3 = L = K1Pobs = −K2A+K1QyC. (40)

4. Equations (36): With P3 ∈ Gln(DT ) equation (40) furnishes

idn = −P−1
3 K2A+ P−1

3 K1QyC = (−P−1
3 K2)A+ (P−1

obsQy)C = XA+ Y C

with X := −P−1
3 K2 ∈ Dn×nT and Y := Hy := P−1

obsQy ∈ D
n×p
T .

Moreover

XA+ Y C = idn =⇒ H1 = A−1B = (XA+ Y C)A−1B =

XB + Y CH1 = XB − Y D + Y (D + CA−1B) = XB − Y D +HyH2 =⇒
XB − Y D = H1 −HyH2 =

(39)
Hu.

5. Since Bobs is controllable it is the unique controllable realization of its transfer
matrix (Hy, Hu) = (Y,XB−Y D) and therefore constructed from (X,Y ) accord-
ing to Theorem 4.3. This signi�es that the left inverses (X,Y ) ∈ Dn×nT × Sn×p
of (AC ) indeed parametrize the set of proper controllable T -observers of the
given Rosenbrock system. Also recall from Result 2.10 that two controllable
T -observers Bi coincide if and only if their transfer matrices (Yi, XiB − YiD)
do.

Corollary 4.6 (Non-proper and non-controllable T -observers).

1. Theorems 4.3 and 4.5 remain true if the properness of H1 = A−1B, H2 =
D+CH1 and Hobs = (Hy, Hu) is dropped. In this case the (X,Y ) are left

inverses of (AC ) in Dn×(n+p)
T and parametrize all controllable T -observers

of x.

2. Any, not necessarily controllable, T -observer B̃ of x is T -stable. Its con-
trollable part Bobs := B̃cont is also a T -observer and thus satis�es the
conditions of Theorem 4.5. With the notations of this theorem B̃ has the
form

B̃ =


x̃y
u

 ; PPobs ◦ x̃ = P (Qy, Qu) ◦
(
y

u

) , P ∈ Dn×n, det(P ) ∈ T.

(41)
In other words, the tripels (X,Y, P ) with

(X,Y ) ∈ Dn×(n+p)
T , XA+ Y C = idn, P ∈ Dn×n, det(P ) ∈ T,

parametrize all T -observers of x. If H1 = A−1B and H2 = D + CH1 are
proper the tripels with proper Y parametrize the proper T -observers.
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Proof. The proofs of Theorems 4.3 and 4.5 remain valid, in particular, B̃ is
T -stable. Any IO behavior and its controllable subbehavior are related by an
equation (41) with some matrix P ∈ Dn×n and det(P ) 6= 0. The T -stability of

B̃ implies det(P ) ∈ T .

Example 4.7. We consider any IO behavior

B1 :=

{(
x

u

)
∈ Fn+m; A ◦ x = B ◦ u

}
, A ∈ Dn×n, det(A) 6= 0, (42)

with transfer matrix H1 = A−1B. For application of Theorems 4.3 and 4.5 we
de�ne special Rosenbrock equations with trivial C and D, viz.

A ◦ x = B ◦ u, A ∈ Dn×n, B ∈ Dn×m, p := 0, C := ∅, D := ∅, (43)

and assume that these are T -observable, i.e., that A is (left) invertible in Dn×nT

or det(A) ∈ T . Let (P1,−Q1) denote the matrix of the unique controllable real-
ization of H1, hence B1,cont = {( xu ) ; P1 ◦ x = Q1 ◦ u} . Since (Y,XB − Y D) =
(∅, A−1B) = H1 Theorem 4.3 shows that B1,cont is the unique controllable T -
observer of x. All other such observers have the form

Bobs :=

{(
x̂

u

)
∈ Fn+m; PP1 ◦ x̂ = PQ1 ◦ u

}
, P ∈ Dn×n, det(P ) ∈ T.

These observers are proper if and only if B1 is proper.

For p > 0, C := 0 ∈ Dp×m and D := 0 all matrices (A−1, Y ), Y ∈ Dp×(n+p)
T ,

are left inverses of (AC ), but the observers are essentially the same as those for
p = 0 since the output y = 0 is super�uous for the estimation.

Remark 4.8 (Connection with [23], [21], [9] and [19]). We relate our results to
those of our predecessors and also discuss various remarks of colleagues after the
talk of the �rst author at the recent MTNS conference 2008 where some of our
results were presented. We do not yet comment unpublished work of Trumpf
and Willems of which the �rst author learned at the same conference.

1. Theorem 4.4 generalizes Theorem 7.3.23 in [23] with the following trans-
lation of our notation into that of [23]:

Wolovich P idn R 0 K H Q F Q−1K Q−1H
BO A B C D Qu Qy Pobs idn Hu Hy

.

In contrast to [23] we consider the case F = idn only, i.e., observers of
x and not of F ◦ x. In comparison to the simple derivation of Theorem
4.4 the proof of [23, 7.3.23] is rather involved and therefore omitted in [1,
p.611].

2. In [21, �5.6] asymptotic observers appear in context with two parameter
compensators. The IO systems are, however, given by their transfer matrix
and correspond to controllable IO behaviors according to Result 2.10. The
autonomous part of the behavior is not discussed.

3. In the special case of Kalman state systems

(s idn−F ) ◦ x = Gu, y = Hx+ Ju (44)
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the equivalence 1. ⇔ 2. of Theorem 4.4 is derived in [9, Prop.3.3, (a) ⇔
(b)], but di�erently. Notice the proof economy of our results due to the
use of an arbitrary multiplicatively closed set T and the simplicity of the
proof of Theorem 4.4.
It is not possible to reduce our theorems to the Kalman case. To see this
consider the general situation of our theorems. Then there are Kalman
equations (44) (compare (18)) such that(
H J
0 idm

)
◦ :

{(
x′

u

)
; s ◦ x′ = Fx′ +Gu

}
∼= B1 :=

{(
x

u

)
; A ◦ x = B ◦ u

}
is a behavior isomorphism. The corresponding Rosenbrock equations for
x′, u, y are

(s idn′ −F )◦x′ = Gu, y = C◦(Hx′+Ju)+D◦u = (CH)◦x′+(CJ+D)◦u.

The matrices CH and CJ + D are not constant, so these equations are
not of the type (44).

4. Valcher/Willems [19] and Fuhrmann [9] consider special sets T and be-
haviors

Bsys =

{(
w2

w1

)
∈ Fn+m; R2 ◦ w2 = R1 ◦ w1

}
(45)

with the estimated resp. measured components w2 resp. w1 and observers
or estimators

Best =

{(
ŵ2

w1

)
; Q ◦ ŵ2 = P ◦ w1

}
. (46)

In [19, Prop.3.2] and [9, Prop.4.2,(1)] they show that the existence of an
observer implies that R2 has full column rank n and that Bsys has a normal
form (compare (35))

Bsys =

{(
w2

w1

)
; D2 ◦ w2 = N1 ◦ w1, D1 ◦ w1 = 0

}
⊆

B1 :=

{(
w2

w1

)
∈ Fn+m; D2 ◦ w2 = N1 ◦ w1

}
, D2 ∈ Dn×n, det(D2) 6= 0,

(47)
which they use for their further considerations. The behavior

B1 =

{(
w2

w1

)
∈ Fn+m; D2 ◦ w2 = N1 ◦ w1

}
is an IO behavior as in Example 4.7 and has the T -observers derived there.
Their T -observers are consistent and described by equations [19, Thm.3.4],
[9, Thm.4.1]

Q ◦ ŵ2 = P ◦ w1 with (Q,−P ) = (Y,X)

(
D2 −N1

0 −D1

)
or

Y D2 ◦ ŵ2 = (Y N1 +XD1) ◦ w1, Y ∈ Dn×n, det(Y ) ∈ T.
(48)

For (w2
w1

) ∈ Bsys with D1 ◦ w1 = 0 this furnishes the observer equations
Y D2 ◦ ŵ2 = Y N1 ◦ w1 whereas the, possibly not consistent, T -observer
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equations of B1 according to Example 4.7 are PP1 ◦ ŵ2 = PQ1 ◦ w1

where (P1,−Q1) de�nes the controllable realization of D−1
2 N1 and where

P ∈ Dn×n with det(P ) ∈ T is arbitrary. This implies the existence of
Z ∈ Dn×n with (D2,−N1) = Z(P1,−Q1) and thus that Example 4.7
furnishes more e�ective observers than those considered in [19] and [9].
The component XD1 of P in (48) is practically une�ective and therefore
super�uous.

5. Conversely, the general Rosenbrock equations of this section can be written
in the form (45), viz.

Bsys :=

{(
A

C

)
◦ x =

(
0 B

idp −D

)
◦
(
y

u

)}
, w2 := x, w1 :=

(
y

u

)
where R2 = (AC ) and rank(R2) = rank(A) = n, and therefore the results
of [19] and [9] can be applied to our situation. However, transformation of
these equations into their normal form (47) changes the IO structures and
their associated transfer matrices which are the basis of our approach.

We �nally describe an algorithm for the computation of all (X,Y ) from
Theorem 4.3. By means of Theorem 2.13 we check whether (AC ) has a left

inverse in Dn×(n+p)
T and compute a special such left inverse (X0, Y 0) if there is

one. The goal is to then �nd all such left inverses (X1, Y 1) with Y 1 ∈ Sn×p.
The algorithm is similar to that of Theorem 3.12. Since (AC ) ∈ D(n+p)×n and
rank (AC ) = n we can compute a universal left annihilator of (AC ) of the form

L = (LX , LY ) ∈ Dp×(n+p), hence also D1×p
T L =

{
ξ ∈ D1×(n+p)

T ; ξ

(
A

C

)
= 0

}
.

(49)
According to Theorem 2.13 each left inverse of (AC ) with entries in DT has the
form

(X1, Y 1) = (X0, Y 0) + Z0(LX , LY ), Z0 ∈ Dn×pT ,

X1 = X0 + Z0LX ∈ Dn×nT , Y 1 = Y 0 + Z0LY ∈ Dn×pT .
(50)

We have to check when Y 1 is proper. For this purpose we compute the Smith
form of LY with respect to F [σ] = F [ 1

s−α ] and thus with respect to S:

ULY V =

(
E 0
0 0

)
, U, V ∈ Glp(S), E := diag(e1, · · · , er), r := rank(LY ), hence

Y 1V = Y + Z

(
E 0
0 0

)
with Y := Y 0V ∈ Dn×pT , Z := Z0U−1 ∈ Dn×pT or

(Y 1V )ij =

{
Yij + Zijej if 1 ≤ j ≤ r
Yij if r + 1 ≤ j ≤ p

, 1 ≤ i ≤ n.

(51)

Theorem 4.9 (Algorithm for Theorem 4.5). For the given Rosenbrock system

from Example 2.9 assume that (AC ) has a left inverse (X0, Y 0) ∈ Dn×(n+p)
T

which has been constructed via Theorem 2.13. Consider the derived data from
equations (49)-(51). Let

ej =
fj
gj
, fj , gj ∈ F [σ], gcd(fj , gj) = 1, j = 1, · · · , r,
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be the reduced representations of the ej as rational functions in F (σ) = F (s),
hence

DT ej + S = g−1
j (DT fj + Sgj) = g−1

j DT for j = 1, · · · , r (52)

as in Theorem 3.12.
Then (AC ) has a left inverse (X1, Y 1) ∈ Dn×nT ×Sn×p as needed in Theorem 4.3
if and only if

Yij ∈

{
DT g−1

j if 1 ≤ j ≤ r
S if r + 1 ≤ j ≤ p

, 1 ≤ i ≤ n. (53)

If these conditions are satis�ed and if

Yij = g−1
j (−Zijfj + sijgj) = −Zijej + sij , Zij ∈ DT , sij ∈ S, 1 ≤ j ≤ r, (54)

also choose arbitrary Zij ∈ DT for 1 ≤ i ≤ n, r + 1 ≤ j ≤ p, hence Z ∈ Dn×pT .
Then the matrix

(X1, Y 1) := (X0, Y 0) + ZUL ∈ Dn×nT × Sn×p (55)

is a left inverse of (AC ) as needed in Theorem 4.3, and all such inverses are
obtained by this construction.

Proof. With the data from above (X1, Y 1) is a left inverse of (AC ) with entries
in DT . Moreover the following equivalences hold:

Y 1 ∈ Sn×p ⇐⇒ Y 1V = Y 0V + Z0U−1

(
E 0
0 0

)
= Y + Z

(
E 0
0 0

)
∈ Sn×p

⇐⇒
(51)

{
Yij + Zijej ∈ S if 1 ≤ j ≤ r
Yij ∈ S if r + 1 ≤ j ≤ p

, 1 ≤ i ≤ n ⇐⇒

∃sij ∈ S with Yij =

{
−Zijej + sij ∈ DT ej + S if 1 ≤ j ≤ r
sij ∈ S if r + 1 ≤ j ≤ p

, 1 ≤ i ≤ n.

These equivalences �nally imply the asserted equivalence

∃(X1, Y 1) ∈ Dn×nT × Sn×p with (X1, Y 1)

(
A

C

)
= idn ⇐⇒

Yij ∈

{
DT ej + S if 1 ≤ j ≤ r
S if r + 1 ≤ j ≤ p

, 1 ≤ i ≤ n.

The remaining assertions follow by reading backwards the equations (49)-(54)

Example 4.10. As an example for the described algorithms we consider the
complex continuous case, the stable region Λ1 := {λ ∈ C; <(λ) < 0}, σ := 1

s+1
and the Rosenbrock system given by the following matrices:

A :=

(
1− s2 4 s2 + 6 s+ 2
−s3 − s2 2 s3 + 3 s2 + 3 s+ 2

)
, B :=

(
s+ 1 1
s s2 − 4

)
,

C :=
(
−s2 − s 2 s2 + 2 s

)
, and D :=

(
1 −s

)
.
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Computation of the transfer matrices H1 = A−1B and H2 = D + CH1 shows
that they are proper as required. As a next step we determine whether the
matrix (AC ) has a left inverse in DT : The Smith form of this matrix (with
respect to DT ) is s+ 1 0

0 2 + 3 s+ s2

0 0

 ,

the inverse of the greatest elementary divisor 2 + 3 s + s2 = (s + 1)(s + 2) is
contained in DT . Hence, by Theorem 2.13, the matrix does indeed permit left
inverse matrices with entries in DT . Applying part (2) of that theorem yields
that any such left inverse (X1, Y 1) is of the form

(X1, Y 1) = (X0, Y 0) + Z0(LX , LY ) (56)

for some Z0 ∈ Dn×pT where (X0, Y 0) is one particular left inverse and (LX , LY )
a universal left annihilator of (AC ). In our case we get that

X0 =

(
1 − 2 (s2+3 s+1)

2+3 s+s2

0 1
2+3 s+s2

)
, Y 0 =

(
s2 (2 s+5)
2+3 s+s2

− s
2+3 s+s2

)
,

LX =
(
s −2 s

)
, and LY =

(
2 s2 − s+ 1

)
.

Here the matrix LY ∈ D1×1 is equal to its Smith form (E 0
0 0 ) = ULY V (i.e.,

U = V = 1 ∈ D1×1). Consequently, E = diag(e1, . . . , erank(LY )) = e1 = LY ,
Y = Y 0 and Z = Z0 in the notation of (51). Considering e1 as a rational
function in σ = 1

s+1 yields

e1 = 2

(
1− σ
σ

)2

− 1− σ
σ

+ 1 =
4σ2 − 5σ + 2

σ2
=:

f1

g1
.

By Theorem 4.9 the matrix (AC ) has a left inverse (X1, Y 1) ∈ D2×2
T × S2×1 if

and only if

Y11 =
s2 (2 s+ 5)

2 + 3 s+ s2
∈ DT (s+ 1)2 = DT g−1

1 and

Y21 = − s

2 + 3 s+ s2
∈ DT (s+ 1)2 = DT g−1

1 .

This condition is obviously ful�lled. Now we have to �nd representations

Yi1 = −Zi1e1 + si1 = g−1
1 (−Zi1f1 + si1g1) ∈ g−1

1 (DT f1 + Sg1) = g−1
1 DT .

One possible choice computed with Algorithm 3.13 is

Z =

(
− s2 (2 s+5) (2 s+7)

4 (s+1)3 (2+3 s+s2)
s (2 s+7)

4 (s+1)3 (2+3 s+s2)

)
.

By Corollary 3.14 any other possible choice of Z could be obtained by adding
ci(s+ 1)0g1 = ci(s+ 1)−2, ci ∈ S arbitrary, to Zi1 for i = 1, 2.
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By means of the constructed matrix Z we can now compute a left inverse
(X1, Y 1) ∈ D2×2

T × S2×1 of (AC ) by (56) (note that Z = Z0 in our case). With
our data we get

X1 =


21 s3 + 64 s2 + 36 s+ 8

4 (s+ 1)3 (2 + 3 s+ s2)
−17 s3 + 52 s2 + 24 s+ 4

2 (s+ 1)3 (2 + 3 s+ s2)
s2 (2 s+ 7)

4 (s+ 1)3 (2 + 3 s+ s2)
− s2 − 6 s− 2

2 (s+ 1)3 (2 + 3 s+ s2)

 ,

Y 1 =


s2 (2 s+ 5) (17 s− 3)

4 (s+ 1)3 (2 + 3 s+ s2)

− s (17 s− 3)

4 (s+ 1)3 (2 + 3 s+ s2)

 .

Checking the properties of these matrices shows that they are really contained
in D2×2

T resp. S2×1 and that (X1, Y 1) (AC ) = id2 is indeed ful�lled.
At last we compute the transfer matrix Hobs := (Y 1, X1B − Y 1D) and

its controllable realization Bobs =
{(

x̂
y
u

)
∈ F2+1+2; Pobs ◦ x̂ = (Qy, Qu) ◦ ( yu )

}
(using Result 2.10) and get that

Pobs =

− 17
4 (s+ 1) − 17

4 (s+ 1) s (2 s+ 5)

0 4
17 (s5 + 6 s4 + 14 s3 + 16 s2 + 9 s+ 2)

 ,

Qy =

(
0

1
17 (−17 s2 + 3 s)

)
, and

Qu =

 − 17
4 (s2 + s+ 1) 17

4 (s2 − s− 5)

1
17 (2 s4 + 7 s3 + 36 s2 + s) 1

17 (−2 s4 − 3 s3 + 22 s2 − 48 s− 16)

 .

Checking properness of Hobs, T -stability of Bobs and T -autonomy of Berr (after
computing Berr) yields that Bobs really is a proper T -stable T -observer of the
pseudo state of the given Rosenbrock system.
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