
University of Innsbruck
Department of Mathematics
Numerical Analysis Group

PhD Thesis

Splitting methods for Vlasov–Poisson
and Vlasov–Maxwell equations

Lukas Einkemmer

Advisor: Dr. Alexander Ostermann

Submitted to the Faculty of Mathematics, Computer Science
and Physics of the University of Innsbruck

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (PhD).

January 17, 2014

1

Contents

1 Introduction 3

2 The Vlasov equation 4
2.1 The Vlasov equation in relation to simplified models 6
2.2 Dimensionless form . 7

3 State of the art 8
3.1 Particle approach . 9
3.2 Grid based discretization in phase space 9
3.3 Splitting methods . 11
3.4 Full discretization . 13

4 Results & Publications 14

5 Future research 16

References 17

A Convergence analysis of Strang splitting for Vlasov-type
equations 21

B Convergence analysis of a discontinuous Galerkin/Strang
splitting approximation for the Vlasov–Poisson equations 39

C Exponential integrators on graphic processing units 62

D HPC research overview (book chapter) 70

2

1 Introduction

A plasma is a highly ionized gas. That is, it describes a state of matter where
the electrons dissociate from the much heavier ions. Usually the ionization
is the result of a gas that has been heated to a sufficiently high temperature.
This is the case for fusion plasmas, including those that exist in the center
of the sun, as well as for artificially created fusion plasmas which are, for
example, used in magnetic confinement fusion devices (Tokamaks, for ex-
ample) or in inertial confinement fusion. However, astrophysical plasmas,
for example, can exist at low temperatures, since in such configurations the
plasma density is low. Therefore, re-absorption of electrons by ionized atoms
is relatively unlikely. Also in certain quantum systems (such as in models
of metal conductors) the electrons can be modeled as being dissociated from
the corresponding ions. From the preceding discussion it is evident that an
accurate description of plasma phenomena is of importance to understand
an enormous range of physical phenomena.

Due to the nature of a plasma, as an ensemble of charged particles, electro-
magnetic effects in many instances dominate the plasma dynamics. There-
fore, it is vital to include an appropriate description, not only of external
fields, but also of the fields that are self-consistently generated by the plasma
particles under consideration. The most fundamental classical model for a
plasma (to a good approximation) is therefore the Vlasov equation; it de-
scribes the evolution of a particle density function subject to a given force.
If coupled to an appropriate model of the electromagnetic field (such as the
the Poisson equation or Maxwell’s equations), the so called Vlasov–Poisson
and Vlasov–Maxwell equations result. In some physical situations, simpli-
fied models can be derived from the Vlasov–Poisson or the Vlasov–Maxwell
equations.

A large body of research on the properties of different plasma systems has
been accumulated, since its experimental discovery by William Crookes in
1879. In recent years, supplementing both theoretical analysis as well as
experimental results, numerical simulations have become increasingly impor-
tant in investigating plasma phenomena. Such simulations provide insight
into the non-linear character of plasma instabilities, for example, which are
difficult to analyze theoretically; furthermore, they provide better access to
the entire phase space than is usually possible in experiments. However,
due to the difficulty associated with simulating the Vlasov equation, even
on modern day computer hardware, many investigations have relied on sim-
plified models or were restricted to a small portion of the physical domain.
Nevertheless, the simulations conducted have greatly contributed to the un-

3

derstanding of the behavior of physical plasmas.

In addition to the computer science improvements that are necessary to sim-
ulate larger plasma systems in more detail, it is also vital to develop more
efficient numerical algorithms. In order to fulfill that goal, an understand-
ing of the currently used algorithms as well as their limitations is essential.
Therefore, it is the goal of this thesis to provide an analysis of the well known
Strang splitting scheme for the Vlasov equation. Furthermore, we suggest
further lines of investigation that, at the time of writing, are used to design
more efficient algorithms for a wider variety of partial differential equations
(see section 5).

To conclude this discussion let us note that both the Vlasov–Poisson and
the Vlasov–Maxwell equations exhibit a range of interesting and numerically
challenging time-dependent phenomena. To just give two examples let us
mention filamentation, i.e. the appearance of smaller and smaller scales in
phase space, as well a wide variety of physical instabilities, where even a
small perturbation of an equilibrium density can result in an interesting
evolution. An example of the latter is the so called Landau damping that
results in an exponential decay of the electric energy (without an obvious
dampening mechanism), if a small perturbation is applied (see e.g. [38] and
[27]). However, this is not as clear if larger perturbations are considered (the
nonlinear case) as relatively long time numerical simulations do seem to show
the appearance of a solution approximately periodic in time (see e.g. [9]).

As part of the research focal point scientific computing at the University
of Innsbruck, a book on the various research projects in high performance
computing (HPC) has been published. The chapter [16] includes a short and
less technical introduction to the challenges faced by numerically solving the
Vlasov equation. A copy of the before mentioned book chapter is attached
to this thesis.

2 The Vlasov equation

The most fundamental theoretical description of a (collisionless) plasma is
derived from the kinetic properties of the constituent particles. The result is
the so called Vlasov equation as given by (see e.g. [1])

∂tf(t,x,v) + v · ∇xf(t,x,v) + F · ∇vf(t,x,v) = 0,

where x denotes the position and v the velocity. The function f describes a
particle-probability distribution in the 3 + 3 dimensional phase space. Since

4

a plasma interacts with a magnetic field in a non-trivial manner, the Vlasov
equation needs to be coupled to the electromagnetic field. Depending on the
application either the full Vlasov–Maxwell equations (see e.g. [25] or [2])

∂tf(t,x,v) + v · ∇xf(t,x,v) +
e

m
(E + v ×B) · ∇vf(t,x,v) = 0

∂tB = −∇×E, ε0µ0∂tE = ∇×B − µ0eZ

ˆ
vf(t,x,v) dv

∇ ·E =
eZ

ε0

(
n0 −

ˆ
f(t,x,v) dv

)
, ∇ ·B = 0

(2.1)

or the Vlasov–Poisson equations (see e.g. [10], [22], or [21])

∂tf(t,x,v) + v · ∇xf(t,x,v) +
e

m
E · ∇vf(t,x,v) = 0

E = −∇Φ, −∆Φ =
eZ

ε0

(
n0 −

ˆ
f(t,x,v) dv

) (2.2)

are appropriate. By writing down this model we have made two major as-
sumptions, namely that the plasma is collisionless and that relativistic effects
are negligible.

Let us first consider the assumption that the plasma is considered to be
collisionless. If that is not the case, a collision term has to be added to the
Vlasov equation. The result is usually called the Boltzmann equation. In
many applications, however, this is not a serious restriction even if collisional
effects are present. Many aspects of relatively dense plasmas, such as those
present in magnetic confinement fusion devices, can be analyzed using the
Vlasov equation. However, there are certain plasma phenomena that can
only be explained if a collision term is added to the model described here.

The second assumption is that relativistic effects are negligible. This basi-
cally restrict the electron velocities (the ions usually move much slower due
to their large mass) to speeds significantly below the speed of light. Relativis-
tic extensions to the Vlasov–Maxwell equations are necessary, for example,
to investigate certain aspects of inertial confinement fusion (see, for exam-
ple, [33]).

Furthermore, it should be noted that the equations as stated here do repre-
sent the evolution for a single species of particles only. One often considers
two (or more) distinct species of particles. However, since the interaction be-
tween different species of particles is exclusively due to the electromagnetic
field, this extension only requires an obvious modification of the source and
charge term in the Maxwell and Poisson equations, respectively. Such an
extension can be found, e.g., in [2] or [25].

5

The difficulties in obtaining a numerical solution of the before mentioned
equations are summarized in the following three statements:

• Due to the six dimensional phase space the amount of memory required
to store the interpolation data is proportional to n6, where n is the
number of grid points per dimension.

• The Vlasov equation is stiff (i.e. the time step size for explicit schemes
is limited by the CFL condition); This is explained in some detail in [1],
for example.

• The coupling of the Vlasov equation to the Maxwell/Poisson equations
makes the system highly non-linear (see e.g. [21]).

From the standpoint of performance the solution of the Maxwell and Poisson
equations, respectively, is not a major concern. For given charge and currents
this is a problem in a three dimensional space only. A number of efficient
algorithms are available to solve such systems.

2.1 The Vlasov equation in relation to simplified mod-
els

Due to the difficulties involved in integrating the full Vlasov–Maxwell or
Vlasov–Poisson system, a number of simplified equations have been proposed.
We will, in what follows, discuss the two most common.

The first approach assumes an equilibrium distribution in velocity space.
This leads to a fluid model, called magnetohydrodynamics (MHD), that is
described by a system of equations in three dimensional phase space. Such
methods are, for example, well suited to address the large scale stability
issues inside a Tokamak (see e.g. [35]). This method has also been success-
fully applied to model astrophysical plasma phenomena such as coronal mass
ejections (see e.g. [36]).

A less severe simplification consists in using the gyrokinetic equations which
reduce the phase space of the Vlasov equation to 3 + 2 dimensions (i.e. three
dimension in space and two in velocity) by averaging over the gyro motion.
The assumption made in the gyrokinetic equations is that of low frequency
as compared to the cyclotron frequency (see e.g. [19]). It should also be
noted that the structure of the gyrokinetic equation is quite similar to the
full Vlasov equation. Gyrokinetic models have been employed routinely to
study plasma instabilities inside Tokamaks (see e.g. [17] or [35]).

6

Nevertheless, many phenomena in plasma physics (see e.g. [31]) require the
solution of the full Vlasov–Maxwell or Vlasov–Poisson equations. Another
example is given in [2], where the full Maxwell equations are applied to model
the interaction of a laser pulse with a plasma. Also the Weibel instability is
investigated in [24] for the 2+1 dimensional Vlasov–Maxwell equations. The
direct simulation (that is the use of the six dimensional Vlasov equation or
the five dimensional gyrokinetic equations) in a Tokamak geometry has been
attempted as well (see e.g. [34] or [8]); however, additional simplifications
have to be made in this case. In many instances, the Vlasov equation can
be considered in a lower dimensional setting (1+1 dimension for the Vlasov–
Poisson equation and 1+2 dimensions for the Vlasov–Maxwell equations, for
example). This is also of interest from a purely mathematical standpoint as
somewhat less tedious proofs can often be provided in that case, while still
capturing the essential properties of the system.

2.2 Dimensionless form

The Vlasov–Poisson equations (2.2) and the Vlasov–Maxwell equations (2.1)
are usually rendered into a dimensionless form before numerical simulations
are conducted (see e.g. [25]).

For the Vlasov–Poisson equation, using n0 as a characteristic density, we
introduce as characteristic frequency (or timescale) the so called plasma fre-
quency

ω2
pe =

n0 (eZ)2

ε0m
,

where eZ is the charge and m the mass of the particles under consideration.
In addition, a characteristic length scale has to be chosen. The Debye length
is a convenient choice and is given by

λ2D =
ε0mv

2
th

n0(eZ)2
,

where vth is the thermal speed of the particles under consideration. The
thermal speed is a function of the temperature only and thus all plasma
parameters can be computed from measurements of density and temperature.
As the electric field has units of kg m

s2C
, the characteristic strength of the electric

field is then given by

E0 =
mλDω

2
pe

eZ
.

7

By measuring the particle density function f in units of n0, time in units of
ω−1pe , length in units of λD, speed in units of vth, and the electric field in units
of E0, we finally arrive at the dimensionless Vlasov–Poisson equations

∂tf(t,x,v) + v · ∇f(t,x,v) + E · ∇vf(t,x,v) = 0

E = −∇Φ, −∆Φ = 1−
ˆ
f(t,x,v) dv.

(2.3)

Note that this implies that for the Vlasov–Poisson equation no dimensionless
parameter remains.

For the Vlasov–Maxwell equation a characteristic strength of the magnetic
field is needed. Since the unit of B is kg

sC
we define

B0 =
mωpe

eZ
.

The dimensionless Vlasov–Maxwell equation is then given by

∂tf(t,x,v) +
v0t0
x0

v · ∇f(t,x,v) + (E + v ×B) · ∇vf(t,x,v) = 0

∂tB = −∇×E, ε0µ0∂tE =
c2

v2th

(
∇×B −

ˆ
vf(t,x,v) dv

)

∇ ·E = 1−
ˆ
f(t,x,v) dv, ∇ ·B = 0

(2.4)

and it includes a single dimensionless parameter vth/c, i.e. the thermal ve-
locity expressed in units of the speed of light.

3 State of the art

The numerical integration of the Vlasov–Poisson and Vlasov–Maxwell equa-
tions has received considerable attention from both physicists and mathe-
maticians. It is the purpose of this section to describe some of the literature
relevant to our work.

Methods that are used for the integration of the Vlasov equation can be
roughly divided into two classes – particle methods and grid based meth-
ods. The class of particle methods as well as some drawbacks are discussed
briefly in section 3.1. This section also serves as a motivation for the intro-
duction of grid based methods, which are discussed in section 3.2. Finally,
in section 3.3 we describe the (Strang) splitting approach for integrating the
Vlasov equation in time.

8

3.1 Particle approach

The most common approach regarding the integration of the Vlasov as well
as the gyrokinetic equations is to employ a so called particle method. In
this class of methods, the phase space is left to be continuous and a (large)
number of particles with various starting points are advanced in time. This is
possible due to structure of the equations, which implies that a single particle
evolves along a trajectory given by an ordinary differential equation. This
is not surprising as the Vlasov equation is the continuum model that results
from considering a very large number of particles that follow the trajectories
mandated by Newton’s second law of motion. Nevertheless, the Maxwell
equations (which are formulated as fields) are solved by standard methods
(which involves the discretization of the electric and magnetic field on some
spatial grid).

A number of such methods have been developed, among which the probably
most widely used is the so called particle-in-cell (PIC) method. Such particle
methods have been extensively used for various applications (see e.g. [17]).
The PIC scheme gives reasonable results, even for a relatively small number of
particles, in cases where the tail of the particle-distribution is not of interest
(for the physical phenomenon under consideration). If this is not the case,
the method suffers from numerical noise that only decreases as 1/

√
n, where

n denotes the number of particles (see e.g. [22] or [18]). This is essentially a
sampling error, i.e. a consequence of the fact that as the particles are evolved
in time, they tend to cluster in parts of the computational domain where the
density is high.

3.2 Grid based discretization in phase space

Motivated by the considerations in the previous section, a number of schemes
employing a grid based discretization in phase space have been proposed.
These methods are completely free from numerical noise (see e.g. [18]). How-
ever, due to the finite grid size these methods do not faithfully resolve fil-
amentation (i.e. the appearance of smaller and smaller structures in phase
space). However, they usually give more accurate results at the expense of
increased computational cost. For an overview of the relative merits of PIC
and grid based methods and the dependence of the respective computational
cost on the dimension of the problem considered see [3].

The method most closely resembling the particle methods introduced above
is the so called semi-Lagrangian approach. Here, one computes the func-
tion f at every grid point by following the characteristic curves (i.e. particle

9

trajectories) backward in time. Obviously, for some given time step the be-
ginning of the characteristic curve does not exactly match a grid point. Thus,
a high order interpolation method is necessary to compute the value needed.
Semi-Lagrangian methods are, for example, described in [18].

Another class are finite volume methods (sometimes also called flux balance
methods). In this case distribution averages on some volume elements are
advanced in time by considering the fluxes that enter or leave such a volume.
An obvious advantage of such methods is that they are perfectly conservative.

In [18] a number of semi-Lagrangian and finite volume methods are bench-
marked for execution speed. It is also found that the PFC (positive and
flux conservative) method performs, with respect to accuracy, comparable
to semi-Lagrangian schemes, while ENO (essentially nonoscillatory) schemes
are too dissipative to be considered a viable alternative.

More recently a number of discontinuous Galerkin methods have been applied
to numerically solve the Vlasov–Poisson system of equations. Such schemes
employ an approximation that is discontinuous across the cell boundaries.
Discontinuous Galerkin methods have been considered for some time for ad-
vection dominated problems in computational fluid dynamics (see e.g. [11]).

In [21] the discontinuous flow upwind Galerkin (DFUG) method as well as the
discontinuous flow upwind Galerkin nonsymmetric interior penalty Galerkin
(DFUG-NIPG) method are introduced. This work is continued in [22], where
the upwind penalty Galerkin method (UPG) is proposed as well as bench-
marked against a number of analytical results. It is found that discontinuous
Galerkin methods give good agreement with the analytic solution even for
most non-linear phenomena.

To the best of our knowledge, in almost all of the literature that considers
discontinuous Galerkin methods to discretize the Vlasov equation a Runge–
Kutta scheme is used to advance the discretized system in time. This, how-
ever, is unfortunate as the step size is usually severely limited by the CFL
condition.

Methods that combine the discontinuous Galerkin scheme in space with an
alternative time integration algorithm have also been proposed. For example,
in [25], a second order splitting method is suggested and implemented for a
number of interpolation methods. It was found in the before mentioned paper
that the scheme constructed using a discontinuous Galerkin approximation
is extremely competitive against spline as well as Hermite interpolation.

It should be duly noted that the discontinuous Galerkin method is unique
among the finite element methods in that it is able to handle complicated

10

geometries with relative ease as there is no requirement of continuity at
the boundaries. In addition, the interpolation is local so that only data
points from a single cell are employed (see e.g. [25]). This usually results in
good performance, if such methods are implemented on parallel computing
architectures.

3.3 Splitting methods

A splitting scheme for the Vlasov–Poisson equations was first proposed by [10]
in 1976. In [25] the method was extended to the Vlasov–Maxwell equations.
In both cases the Strang splitting algorithm (see e.g. [23]) is used to advance
the solution of the Vlasov equation in time.

In the above mentioned methods the electromagnetic field is kept constant
while computing a time step of the Vlasov equation. This is vital since
assuming time independence in the force F , the Vlasov equation can be
simply split in the following two parts

∂tf = −v · ∇xf,

∂tg = −F · ∇vg.
(3.1)

These two equations (3.1) can be solved analytically. Their solutions are
given by

f(t,x,v) = f(0,x− vt,v), (3.2a)

g(t,x,v) = g(0,x,v − F t). (3.2b)

Note, however, for a given discretization in phase space a direct application
of (3.2) is not feasible. The discrete data that define the solution are then
interpolated, translated according to (3.2), and finally projected back to the
discrete space. It should be noted that this method can be interpreted as a
special case of the semi-Lagrangian type of methods (as described and ana-
lyzed e.g. in [4]) in that the trajectories, say starting from Gauss–Legendre
quadrature points, can be solved exactly. However, compared to a finite dif-
ference approximation, in the case of discontinuous Galerkin methods this
is usually interpreted as a projection, which can be calculated analytically.
That is, the solution is translated according to equations (3.2) and then pro-
jected back to the approximation space in order to obtain the coefficients of
the discontinuous Galerkin approximation.

The situation is more involved in the fully magnetized case (where F depends
on v). In [25] a further splitting of equation (3.2b) is proposed that takes

11

advantage of the cross product structure of the Lorentz force term. This is
possible as

v ×B =



v2B3 − v3B2

v3B1 − v1B3

v1B2 − v2B1




and thus

(v ×B) · ∇v = (v2B3 − v3B2) ∂v1 + (v3B1 − v1B3) ∂v2 + (v1B2 − v2B1) ∂v3 .

Since the coefficient of ∂vi does not depend on vi itself, it can be easily
deduced that the above operators can be split into three advections terms
(where, as before, we assume that B is held constant in time).

Using the idea that for a second order scheme the electric and magnetic fields
should be computed up to order one at the half step, a similar scheme has
been proposed in [32]. However, compared to [25] care is taken such that the
global mass is conserved and numerical simulations show that the error in
energy is tolerable in some situations.

In general, it is difficult to tell if the methods proposed for the Vlasov–
Maxwell equations are indeed of second order. In [25] and [32] neither a
detailed mathematical analysis is conducted nor are (numerically computed)
order plots available.

The scheme proposed in [32] is implemented using a finite difference approx-
imation in space. A number of different interpolation schemes are compared
in [25]. It turns out that interpolation based on the discontinuous Galerkin
method is competitive compared to spline and Hermite interpolation. Even
though the discontinuous Galerkin scheme employed in [25] is quite different
to the one introduced in [21], most of the desirable features remain. Most
notably, to interpolate a value of f only the data inside at most two cells are
needed.

However, even though the splitting methods described in the literature are
routinely employed to study plasma phenomena (see e.g. [24]), a convergence
analysis is only available in special cases. The magnetostatic case is consid-
ered in [6]. To the best knowledge of the author no convergence analysis is
available that includes the fully electromagnetic Vlasov–Maxwell equations.
However, a number of geometrical properties (such as the numerical damping
rate) are investigated in [25] for the fully magnetized case.

Quite a few convergence results are available for semi-Lagrangian methods
that employ Strang splitting in time and a finite difference approximation in
space. For example, in [4], [5] and [29] convergence is shown in the case of the

12

1+1 dimensional Vlasov–Poisson equations. Furthermore, the convergence of
a special case of the one-dimensional Vlasov–Maxwell equation in the laser-
plasma interaction context is investigated in [7]. Note, however, that the
analysis found in these papers is not applicable to the methods described
in [25] and [32].

Recently, fourth order splitting methods based on the scheme proposed in [10]
(i.e. in the context of the Vlasov–Poisson equation) have also been investi-
gated (see [12] and [30]). Such methods are drawn from the theory of sym-
plectic integrators (see e.g. [37] and [28]). This approach, however, can not
be generalized to the Vlasov–Maxwell equations.

In many situations a quite general method is available to construct higher
order methods from the second order Strang splitting scheme (see [20, Chap.
II.3]). This so called composition methods do, however, require, that the
constructed Strang splitting method is of second order and symmetric. To
conclude this section, let us note that the schemes proposed for the Vlasov–
Maxwell equations (as described in [25] and [32]) do not satisfy the latter
condition. However, symmetry does hold for the canonical Strang splitting
scheme in case of the Vlasov–Poisson equations.

3.4 Full discretization

Even though semi-Lagrangian methods do inherently mix the errors that
occur in the space and time discretization of the problem under considera-
tion, in many instances an analysis of a semi-discretized problem (usually
assuming a discretization in time but not in space) can give insight into
the behavior of the particular numerical scheme that is studied. In most
of the mathematical literature the fully discretized problem is analyzed (see
e.g. [4], [5], and [29]). However, the semi-discretized problem (discretized in
time) usually has to be employed as a stepping stone in the corresponding
proofs. This argument is then supplemented by error estimates that result
from the spatial discretization. Since the splitting steps can be represented as
translations, this procedure can often be applied and results in error bounds
of the form

O
(
τ 2 + hp+1 +

hp+1

τ

)
.

The first term gives the second order time error of the Strang splitting al-
gorithm, the second term consists of the space discretization error (if an
approximation of degree p is used). Most interesting, however, is the third
term which gives an error proportional to the number of steps taken. This

13

is reasonable, in a worst case estimate, as the projections that have to be
performed in each time step commit an error that is proportional to the error
of the space discretization.

4 Results & Publications

For the numerical analysis conducted as well as for the design of new nu-
merical algorithms we found it beneficial to consider an abstraction that
includes, as a special case, both the Vlasov–Poisson as well as the Vlasov–
Maxwell equations. To that end we use the following initial valuable problem
(in the following discussion any equation that can be written in that form
will be refereed to as a Vlasov-type equation)

{
f ′(t) = (A+B)f(t)

f(0) = f0,

where A is an (unbounded) linear operator and B is a nonlinear operator
that can be written as Bf = B(f)f . That is, the nonlinear operator reduces
to a linear operator, if we consider B(f0)f for some fixed f0. In the Vlasov
equation these two operators correspond to the linear advection

∂tf = −v · ∇xf = Af,

and the non-linear acceleration

∂tf = −F (f) · ∇vf = Bf,

respectively. In this case we use

B(f0)f = −F (f0) · ∇vf.

It is always assumed tacitly that there is some algorithm available to effi-
ciently compute a solution to the differential equations corresponding to the
operators A and B, respectively. This is obviously satisfied for the Vlasov–
Poisson and Vlasov–Maxwell equations as described in the previous section.

Let us note, however, that the class of problems that can be considered in
this framework is much larger than just the kinetic equations considered in
this thesis. For example, splitting methods for the KdV equation

∂tu+ ∂3xu+ u∂xu = 0

14

as well as for the Brusselator system

∂tu = α∆u+ (uv − β)u+ δ,

∂tv = α∆v − u2v + γu,

can be described in the abstract framework of a Vlasov-type equation. The
computation of an exact solution to the separate split-steps in such equations
is, however, often quite different from the procedure that is applied for the
Vlasov–Poisson and Vlasov–Maxwell equations (that has been described in
the previous section).

This abstraction is advantageous as methods designed for the generic Vlasov-
type equations can be applied to a wider class of problems and new numer-
ical schemes can be tested on this simpler examples before implementing
them for the full Vlasov–Maxwell equations. It should, however, be noted
here that a number of simplifying assumptions can be made for the Vlasov–
Poisson equations. Therefore, many methods from the literature tailored
to the Vlasov–Poisson equations can not easily be generalized to a generic
Vlasov-type equation or even the Vlasov–Maxwell equations.

In the first paper we consider a Vlasov-type equation in the purely abstract
framework, i.e. where only the time variable is discretized and the space
and velocity degrees of freedom are left continuous. In this case conditions
can be derived under which the Strang splitting algorithm for a Vlasov-type
equation yields an approximation of second order. Although the detailed
statement of these conditions is somewhat technical, most of them can be
summarized as an assumption on the regularity of the solution. In addition,
the conditions, as an application, are verified to hold for the Vlasov–Poisson
equation and numerical experiments have been conducted to confirm the
theoretical behavior. This paper [14] has been accepted by the SIAM Journal
on Numerical Analysis (SINUM) and a copy is attached to this thesis.

As discussed in the previous section, to combine the Strang splitting algo-
rithm with a discontinuous Galerkin approximation potentially yields a effi-
cient numerical scheme. This is the content of our second paper. In this case
the discontinuous Galerkin/Strang splitting approximation is analyzed and
in combination with the results from the first paper we were able to establish
similar convergence results as are available, for example, for finite difference
approximations. In addition, a number of numerical experiments are used
to investigate the behavior of that scheme for a number of well known test
problems. It is found that the theoretically predicted order in time as well as
in space can be observed. Furthermore, the Molenkamp–Crowley test prob-
lem has been employed to confirm that the scheme does not suffer from the

15

instabilities described in [26]. Also the (purely numerical) recurrence phe-
nomena has been investigated in case of higher order discontinuous Galerkin
approximations in space (both for the Vlasov–Poisson equations as well as
for a simple advection equation). This paper [13] has been submitted to the
SIAM Journal on Numerical analysis (SINUM) and a copy is attached to this
thesis.

In order to conduct the simulations in the two papers described a numer-
ical program has been written in C++. It employs modern programming
techniques, such as templates, to obtain a code base that is compact, easily
extensible, and can still be considered to provide an efficient implementation.
A parallelization using OpenMP is available that scales well at least up to a
workstation with 16 cores (i.e. a modern dual socket workstation).

The third paper considers the implementation of exponential integrators on
graphic processing units (a so called massively parallel architecture). There it
is shown that for certain problems, stencil methods (i.e. matrix-free matrix-
vector products) can be parallelized to up to 4 GPUs. This is vital in the
context of Vlasov solvers as it is clear that because of the memory constraints,
both due to the high dimensional phase space as well as due to the limited
amount of memory available on GPUs, the storage of any additional data
(besides the input and result of the computation) will most likely lead to a
numerical method that is infeasible. The procedure developed in the paper
yields a significant speedup as compared to a dual socket CPU workstation.
This paper [15] has been accepted as a full paper for the Proceedings of the
2013 International Conference on High Performance Computing & Simula-
tion (HPCS 2013).

5 Future research

The Strang splitting scheme has been the main focus in both analyzing con-
vergence as well as in actual implementations. For the Vlasov–Poisson equa-
tions high order methods have been constructed (see e.g [12]). However, these
methods do rely on assumptions that do not hold true for the Vlasov–Maxwell
equations and more generic Vlasov-type equations. As a consequence, such
methods can not be generalized to higher order. Most of the literature on
the Vlasov–Maxwell equations consists of second order splitting methods that
can not be extended to higher order by composition. This is due to the fact
that the Strang splitting scheme, contrary to the case of the Vlasov–Poisson
equations, is no longer symmetric and thus the triple jump scheme is only of
order three.

16

To remedy this situation, at least two approaches seem promising. First,
staying in the abstract framework of Vlasov-type equations, a symmetric
scheme can be constructed by composing a Lie step with its adjoint method.
This scheme, unfortunately, is implicit and therefore a nonlinear equation
has to be solved in each step. Computationally this can be implemented,
for example, as a fixed point iteration yielding a scheme that is almost sym-
metric and therefore amendable to composition. The second option is to
consider splitting the Vlasov–Maxwell equations into three parts. Such an
approach can, for example, be motivated by the Hamiltonian structure of
the Vlasov–Maxwell equations. Higher order methods are then constructed
by composition.

Furthermore, it is of interest to provide an efficient parallel implementation
of such a scheme as many problems of interest in physics take place in high
dimension and/or require high resolution and thus can only be solved on
modern supercomputers. In this case it is conjectured that the local nature of
the discontinuous Galerkin approximation provides a competitive advantage
as compared to finite difference schemes, for example.

In addition, many numerical analysis questions remain to be answered. For
example, is it possible to incorporate conservation of energy (in addition to
conservation of mass) in such schemes and is it possible to show results for
the long time behavior of the Strang splitting scheme. This is a question that,
in practical applications, has to addressed by an appropriate combination of
a splitting method with some suitable space discretization scheme.

References

[1] E.A. Belli. Studies of numerical algorithms for gyrokinetics and the ef-
fects of shaping on plasma turbulence. PhD thesis, Princeton University,
2006.

[2] C. Benedetti, P. Londrillo, L. Rossi, and G. Turchetti. Numerical in-
vestigation of Maxwell-Vlasov equations – Part I: Basic physics and
algorithms. Commun. Nonlinear Sci. Numer. Simul., 13(1):204–208,
2008.

[3] P. Bertrand. Vlasov code applications. In Proceedings of ISSS, volume 7,
pages 26–31, 2005.

17

[4] N. Besse. Convergence of a semi-Lagrangian scheme for the one-
dimensional Vlasov-Poisson system. SIAM J. Numer. Anal., 42(1):350–
382, 2005.

[5] N. Besse. Convergence of a high-order semi-Lagrangian scheme with
propagation of gradients for the one-dimensional Vlasov-Poisson system.
SIAM J. Numer. Anal., 46(2):639–670, 2008.

[6] N. Besse and M. Mehrenberger. Convergence of classes of high-order
semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comp.,
77:93–123, 2008.

[7] M. Bostan and N. Crouseilles. Convergence of a semi-Lagrangian scheme
for the reduced Vlasov-Maxwell system for laser-plasma interaction. Nu-
mer. Math., 112:169–195, 2009.

[8] A. Bottino, B. Scott, S. Brunner, B. McMillan, T.M. Tran, T. Vernay,
L. Villard, S. Jolliet, R. Hatzky, and A. Peeters. Global nonlinear elec-
tromagnetic simulations of Tokamak turbulence. IEEE Transactions on
Plasma Science, 38:2129–2135, 2010.

[9] M. Brunetti, F. Califano, and F. Pegoraro. Asymptotic evolution of
nonlinear Landau damping. Phys. Rev. E, 62(3):4109, 2000.

[10] C.Z. Cheng and G. Knorr. The integration of the Vlasov equation in
configuration space. J. Comput. Phys., 22(3):330–351, 1976.

[11] B. Cockburn and C. W. Shu. Runge–Kutta discontinuous Galerkin
methods for convection-dominated problems. J. Sci. Comput.,
16(3):173–261, 2001.

[12] N. Crouseilles, E. Faou, and M. Mehrenberger. High order Runge-
Kutta-Nyström splitting methods for the Vlasov-Poisson equation.
http://hal.inria.fr/inria-00633934/PDF/cfm.pdf.

[13] L. Einkemmer and A. Ostermann. Convergence analysis of a discontin-
uous Galerkin/Strang splitting approximation for the Vlasov–Poisson
equations. arXiv preprint arXiv:1211.2353, 2012.

[14] L. Einkemmer and A. Ostermann. Convergence analysis of Strang split-
ting for Vlasov-type equations. To appear in SIAM J. Numer. Anal.,
2013.

18

[15] L. Einkemmer and A. Ostermann. Exponential Integrators on Graphic
Processing units. High Performance Computing and Simulation
(HPCS), 2013 International Conference on, pages 490–496, 2013.

[16] L. Einkemmer and A. Ostermann. Splitting methods for the Vlasov–
Poisson & Vlasov–Maxwell equations. In M. Barden and A. Ostermann,
editors, Scientific Computing @ uibk. Innsbruck University Press, Inns-
bruck, 2013.

[17] M.R. Fahey and J. Candy. GYRO: A 5-d gyrokinetic-Maxwell solver.
In Proceedings of the ACM/IEEE SC2004 Conference, page 26. IEEE,
2008.

[18] F. Filbet and E. Sonnendrücker. Comparison of Eulerian Vlasov solvers.
Computer Physics Communications, 150(3):247–266, 2003.

[19] E.A. Frieman and L. Chen. Nonlinear gyrokinetic equations for low-
frequency electromagnetic waves in general plasma equilibria. Physics
of Fluids, 25:502–508, 1982.

[20] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integra-
tion: Structure-Preserving Algorithms for Ordinary Differential Equa-
tions. Springer-Verlag, Berlin Heidelberg, 2006.

[21] R.E. Heath. Analysis of the discontinuous Galerkin Method Applied to
Collisionless Plasma Physics. PhD thesis, The University of Texas at
Austin, 2007.

[22] R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler. A discontinu-
ous Galerkin method for the Vlasov-Poisson system. J. Comput. Phys.,
2011.

[23] T. Jahnke and C. Lubich. Error bounds for exponential operator split-
tings. BIT Numer. Math., 40:735–744, 2000.

[24] F. Pegoraro L. Palodhi, F. Califano. Nonlinear kinetic development
of the Weibel instability and the generation of electrostatic coherent
structures. Plasma Phys. Contr. F., 51(12):125006, 2009.

[25] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek. A numerical
scheme for the integration of the Vlasov-Maxwell system of equations.
J. Comput. Phys., 179:495–538, 2002.

19

[26] K.W. Morton, A. Priestley, and E. Süli. Stability of the Lagrange-
Galerkin method with non-exact integration. Modél. Math. Anal.
Numér., 22(4):625–653, 1988.

[27] C. Mouhot and C. Villani. On Landau damping. Acta math., 207(1):29–
201, 2011.

[28] E. Pohn, M. Shoucri, and G. Kamelander. Eulerian Vlasov codes. Com-
put. Phys. Commun., 166(2):81–93, 2005.

[29] T. Respaud and E. Sonnendrücker. Analysis of a new class of forward
semi-Lagrangian schemes for the 1D Vlasov Poisson equations. Numer.
Math., 118:329–366, 2011.

[30] J.A. Rossmanith and D.C. Seal. A positivity-preserving high-order semi-
Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equa-
tions. J. Comput. Phys., 230(16):6203–6232, 2011.

[31] H. Schamel. Electron holes, ion holes and double layers: electro-
static phase space structures in theory and experiment. Phys. Rep.,
140(3):161–191, 1986.

[32] N. J. Sircombe and T.D. Arber. VALIS: A split-conservative scheme for
the relativistic 2D Vlasov-Maxwell system. J. Comput. Phys., 228:4773–
4788, 2009.

[33] A. Suzuki and T. Shigeyama. A conservative scheme for the relativistic
Vlasov-Maxwell system. J. Comput. Phys., 229:1643–1660, 2010.

[34] V.A. Svidzinski and D.G. Swanson. Possibility of a direct solution of
Vlasov–Maxwell equations in Tokamaks in the ion cyclotron range of
frequencies. Phys. Plasmas, 8(2), 2000.

[35] W.M. Tang and V.S. Chan. Advances and challenges in computational
plasma science. Plasma Phys. Control. Fusion, 47:R1–R34, 2005.

[36] M. Tokman and P.M. Bellan. Three-dimensional model of the structure
and evolution of coronal mass ejections. Astrophysical J., 567(2):1202,
2002.

[37] H. Yoshida. Construction of higher order symplectic integrators. Phys.
Lett. A, 150(5-7):262–268, 1990.

[38] T. Zhou, Y. Guo, and C.W. Shu. Numerical study on Landau damping.
Phys. D., 157(4):322–333, 2001.

20

A Convergence analysis of Strang splitting

for Vlasov-type equations

Journal SIAM Journal on Numerical Analysis
Authors Lukas Einkemmer, Alexander Ostermann
submitted 10.07.2012
accepted 11.10.2013

21

CONVERGENCE ANALYSIS OF STRANG SPLITTING FOR
VLASOV-TYPE EQUATIONS

LUKAS EINKEMMER∗ AND ALEXANDER OSTERMANN∗

Abstract. A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type
equations in the setting of abstract evolution equations is provided. It is shown that, under suitable
assumptions, the convergence is of second order in the time step τ . As an example, it is verified that
the Vlasov–Poisson equations in 1+1 dimensions fit into the framework of this analysis. Further,
numerical experiments for the latter case are presented.

Key words. Strang splitting, abstract evolution equations, convergence analysis, Vlasov–
Poisson equations, Vlasov-type equations

AMS subject classifications. 65M12, 82D10, 65L05

1. Introduction. The most fundamental theoretical description of a (collision-
less) plasma comes from the kinetic equation. This so called Vlasov equation is given
by (see e.g. [1])

∂tf(t,x,v) + v · ∇xf(t,x,v) + F · ∇vf(t,x,v) = 0,

where x denotes the position and v the velocity. The function f describes a particle-
probability distribution in the 3+3 dimensional phase space. Since a plasma interacts
with the electromagnetic field in a non-trivial manner, the Vlasov equation needs to
be coupled to the electromagnetic field through the force term F . A one-dimensional
example is given in section 4 below.

Depending on the application, either the full Vlasov–Maxwell equations or a sim-
plified model is appropriate. Such models include, for example, the Vlasov–Poisson
and the gyrokinetic equations.

Due to the high dimensionality of the equations the most common numerical ap-
proach are so called particle methods. In this class of methods, the phase space is
left to be continuous and a (large) number of particles with various starting points
are advanced in time. This is possible due to the structure of the equations, which
implies that a single particle evolves along a trajectory given by an ordinary differ-
ential equation. A number of such methods have been developed, most notably the
particle-in-cell (PIC) method. Such methods have been extensively used for various
applications (see e.g. [7]). The PIC scheme gives reasonable results in case where the
tail of the distribution is negligible. If this is not the case the method suffers from
numerical noise that only decreases as 1/

√
n, where n denotes the number of particles

(see e.g. [12] or [8]). Motivated by these considerations, a number of schemes employ-
ing discretization in phase space have been proposed. A comparison of various such
methods can be found in [8].

Using a time splitting scheme for the Vlasov–Poisson equations was first proposed
by [5] in 1976. In [16] the method was extended to the Vlasov–Maxwell equations. In
both cases, second-order Strang splitting (see e.g. [14]) is used to advance the solution
of the Vlasov equation in time.

∗Department of Mathematics, University of Innsbruck, Technikerstraße 13, Innsbruck, Austria
(lukas.einkemmer@uibk.ac.at, alexander.ostermann@uibk.ac.at). The first author was supported
by a scholarship of the Vizerektorat für Forschung, University of Innsbruck, and by the Austrian
Science Fund (FWF), project id: P25346.

1

2 L. EINKEMMER AND A. OSTERMANN

Quite a few convergence results are available for semi-Lagrangian methods that
employ Strang splitting. For example, in [2], [3] and [17] convergence is shown in the
case of the 1+1 dimensional Vlasov–Poisson equations. Both [2] and [3] assume the
same analytical framework, regarding the regularity of the solution, that we employ in
section 4. However, the convergence proofs presented in these papers are based on the
method of characteristics and are valid only if certain assumptions are made, which
hold for the Vlasov–Poisson equations in combination with the specific scheme under
consideration in those papers. This is in contrast to our analysis, as we, for example,
do not limit ourselves to a specific form of the auxiliary method (the technical details of
this will be apparent in section 2.1). The resulting convergence results for the Vlasov–
Poisson equations, however, are similar to what we derive in section 4. Furthermore,
the convergence of a special case of the one-dimensional Vlasov–Maxwell equation in
the laser-plasma interaction context is investigated in [4].

In this paper, we will consider a class of Vlasov-type equations as abstract evo-
lution equations (i.e., without discretization in space). In this context we will derive
sufficient conditions such that the Strang splitting algorithm is convergent of order 2.
We will then verify these conditions for the example of the Vlasov–Poisson equations
in 1+1 dimensions and present some numerical results.

2. Setting. We will investigate the following (abstract) initial value problem

{
f ′(t) = (A+B)f(t)

f(0) = f0.
(2.1)

We assume that A is an (unbounded) linear operator and that the non-linearity B
has the form Bf = B(f)f , where B(f) is an (unbounded) linear operator. We will
consider this abstract initial value problem on a finite time interval [0, T].

Problem (2.1) comprises the Vlasov–Poisson and the Vlasov–Maxwell equations
for A = −v · ∇x and appropriately chosen B as special cases. It is also general
enough to include the gyrokinetic equations (as stated, for example, in [10]). The
Vlasov–Poisson equations are considered in more detail in section 4.

2.1. The Strang splitting algorithm. Let fk ≈ f(tk) denote the numerical
approximation to the solution of (2.1) at time tk = kτ with step size τ . We assume
that the differential equations f ′ = Af and g′ = Bk+1/2g, where Bk+1/2 is a suitable

approximation to the operator B
(
f(tk + τ

2)
)
, can be solved efficiently. In this paper

we always make the choice Bk+1/2 = B(fk+1/2), where

fk+1/2 = Ψ(τ2 , fk) (2.2)

is a first-order approximation to the solution of (2.1) at time t = tk + τ
2 . Note that

fk+1/2 typically depends on fk only. In the case of the Vlasov–Poisson equations, an
appropriate choice is

fk+1/2 = e
τ
2B(fk)e

τ
2Afk

or even fk+1/2 = e
τ
2Afk, as will be explained in the first paragraph of section 5.

The idea of Strang splitting is to advance the numerical solution by the recursion
fk+1 = Skfk, where the (nonlinear) splitting operator Sk is given by

Sk = e
τ
2AeτBk+1/2e

τ
2A. (2.3)

CONVERGENCE ANALYSIS OF STRANG SPLITTING 3

The precise conditions on fk+1/2 for proving convergence are given in section 3 below.
Resolving this recursion, we can compute an approximation to the exact solution at
time T by

fn =

(
n−1∏

k=0

Sk

)
f0 = Sn−1 · · ·S0f0, (2.4)

where n is an integer chosen together with the step size τ such that T = nτ .

2.2. Preliminaries. For the convenience of the reader we collect some well
known results that are used quite extensively in section 3.

To bound the remainder term Rk(f) of a Taylor expansion

f(τ) = f(0) + τf ′(0) + . . .+
τk−1

(k − 1)!
f (k−1)(0) + τkRk(f),

we will use the integral form

Rk(f) =
1

(k − 1)!

∫ 1

0

f (k)(τs)(1− s)k−1 ds,

where k ≥ 1. Note that it is implicitly understood that Rk is a function of τ as well.
However, since we will work mostly with a fixed τ , it is convenient to drop it in the
notation of Rk. For convenience we also define

R0(f) = f(τ).

For (unbounded) linear operators it is more convenient to work with the ϕ func-
tions instead of the remainder term given above.

Definition 2.1 (ϕ functions). Suppose that the linear operator E generates a
C0 semigroup. Then we define the bounded operators

ϕ0(τE) = eτE ,

ϕk(τE) =

∫ 1

0

e(1−θ)τE
θk−1

(k − 1)!
dθ for k ≥ 1.

(2.5)

Since we are merely interested in bounds of such functions, we will never di-
rectly employ the definition given. Instead we will work exclusively with the following
recurrence relation.

Lemma 2.2. The ϕ functions satisfy the recurrence relation

ϕk(τE) =
1

k!
+ τEϕk+1(τE), k ≥ 0 (2.6)

in X; in particular (for ` ∈ N) the representation

eτE =
`−1∑

k=0

τk

k!
Ek + τ `E`ϕ`(τE).

holds in the domain of E`−1.
Proof. The first relation follows from integration by parts applied to (2.5). The

second one results from using ϕ0 = e(·) and applying the first relation repeatedly.

4 L. EINKEMMER AND A. OSTERMANN

The ϕ functions are used to expand the exponential of some linear operator. In
the sense of the previous lemma, these functions play the same role for an exponential
of a linear operator as does the remainder term in Taylor’s theorem.

Suppose that the differential equation g′ = G(g) has (for a given initial value)
a unique solution. In this case we denote the solution at time t with initial value
g(t0) = g0 with the help of the evolution operator, i.e. g(t) = EG(t− t0, g0).

The Gröbner–Alekseev formula (also called the nonlinear variation-of-constants
formula) will be employed quite heavily.

Theorem 2.3 (Gröbner–Alekseev formula). Suppose that there exists a unique
f satisfying

{
f ′(t) = G(f(t)) +R(f(t))

f(0) = f0

and that g′ = G(g) has (for a given initial value) a unique solution. Then it holds
that

f(t) = EG(t, f0) +

∫ t

0

∂2EG (t− s, f(s))R (f(s)) ds.

Proof. For linear (and possibly unbounded) G, this formula is proved in [13] by
the fundamental theorem of calculus. Here, we prove the extension to nonlinear G.
Let us assume that u(t) is a solution of u′(t) = G (u(t)). By differentiating

EG (t− s, u(s))) = u(t)

with respect to s we get

−∂1EG (t− s, u(s)) + ∂2EG (t− s, u(s))G (u(s)) = 0.

The initial value of u is now chosen such that u(s) = f(s) which implies

−∂1EG (t− s, f(s)) + ∂2EG (t− s, f(s))G (f(s)) = 0.

Altogether we have for ψ(s) = EG(t−s, f(s)) (by the fundamental theorem of calculus)

f(t)− EG(t, f0) =

∫ t

0

ψ′(s) ds

=

∫ t

0

(
−∂1EG(t− s, f(s)) + ∂2EG(t− s, f(s))f ′(s)

)
ds

=

∫ t

0

∂2EG (t− s, f(s))R (f(s)) ds,

as desired.
Since anticommutator relations appear quite naturally in some expansions, we

will employ the notation

{E1, E2} = E1E2 + E2E1,

for linear operators E1 and E2 (on a suitable domain).
In what follows C will denote a generic constant that may have different values

at different occurrences.

CONVERGENCE ANALYSIS OF STRANG SPLITTING 5

3. Convergence analysis in the abstract setting. The problem of splitting
an evolution equation into two parts, governed by linear and possibly unbounded
operators, has already been investigated in some detail. In [11] it is shown that
splitting methods with a given classical order retain this order in the stiff case (under
suitable regularity assumptions).

An alternative analysis for Strang splitting in the linear case is given in [14]. The
approach presented there is more involved, however, it demands less regularity on the
solution. The purpose of this section is to extend this analysis to the abstract initial
value problem given by (2.1).

3.1. Convergence. Our convergence proof will be carried out in an abstract
Banach space X with norm ‖ · ‖X . It relies on the classical concepts of consistency
and stability. We begin by stating a suitable notion of consistency for our splitting
operator. For this purpose, let

B̃k+1/2 = B
(
f(tk + τ

2)
)

denote the non-linearity, evaluated at the exact solution at time tk + τ
2 . With the

help of this operator, we consider the modified scheme

S̃k = e
τ
2AeτB̃k+1/2e

τ
2A.

We are now in the position to define consistency for our numerical method.
Definition 3.1 (Consistency of order p). The Strang splitting algorithm (2.3)

is consistent of order p if

‖f(tk + τ)− S̃kf(tk)‖X ≤ Cτp+1. (3.1)

The constant C depends on the considered problem but is independent of τ and k for
0 ≤ tk = kτ ≤ T .

Note that for algorithm (2.3), the order of consistency is not necessarily p = 2.
The actual order depends on the properties of the involved operators, and order
reduction can occur even in the linear case, see [14].

To estimate the global error, i.e. fk+1 − f(tk+1), we employ the error recursion

fk+1 − f(tk+1) = Sk
(
fk − f(tk)

)
+ (Sk − S̃k)f(tk) + S̃kf(tk)− f(tk+1). (3.2)

The first two terms on the right-hand side of (3.2) are controlled by the linear and
non-linear stability properties of the method, whereas the last difference is controlled
by the consistency bound. For our abstract convergence result, we have to assume
the stability bound

‖Sk‖X←X ≤ 1 + Cτ (3.3)

and the Lipschitz condition

‖Sk − S̃k
∥∥
X←X≤ Cτ‖fk+1/2 − f(tk + τ

2)
∥∥
X

(3.4)

with a constant C that is uniform in τ and k for 0 ≤ tk = kτ ≤ T . These bounds will
be verified in section 4.4 for the particular case of the Vlasov–Poisson equations.

We are now in the position to bound the global error.
Theorem 3.2 (Convergence). Suppose that the Strang splitting scheme (2.3)

is consistent of order p and satisfies the bounds (3.3) and (3.4). Further assume

6 L. EINKEMMER AND A. OSTERMANN

that the auxiliary method (2.2) is consistent of order p − 1 and (locally) Lipschitz
continuous with respect to its second argument. Then the Strang splitting scheme (2.3)
is convergent of order p, i.e.

‖fk − f(tk)‖X ≤ Cτp (3.5)

with a constant C that is independent of τ and k for 0 ≤ tk = kτ ≤ T .
Proof. The proof is quite standard. We apply the triangle inequality to the error

recursion (3.2) and insert the bounds (3.3), (3.4), and the consistency bound (3.1).
By our assumptions on method (2.2), we further obtain

‖fk+1/2 − f(tk + τ
2)‖X = ‖Ψ(τ2 , fk)−Ψ(τ2 , f(tk)) + Ψ(τ2 , f(tk))− f(tk + τ

2)‖X
≤ C‖fk − f(tk)‖X + Cτp.

This finally results in the recursion

‖fk+1 − f(tk+1)‖X ≤ (1 + Cτ)‖fk − f(tk)‖X + Cτp+1

which is easily solved. Employing f0 = f(0) we obtain the desired bound.

3.2. Consistency. It is the purpose of this section to formulate assumptions
under which the consistency bound (3.1) holds for the abstract initial value problem
(2.1). To make the derivations less tedious we will adhere to the notation laid out in
the following remark.

Remark 3.3. In this section we will denote the solution of (2.1) at a fixed time
tk by f0. The notation f(s) is then understood to mean f(tk + s). The function
f0 is a (possible) initial value for a single time step (i.e., a single application of the
splitting operator Sk). It is not, in general, the initial value of the solution to the
abstract initial value problem as in the previous sections. If we assert that a bound
holds uniformly in tk, it is implied that it holds for all f0 in the sense defined here
(remember that tk ∈ [0, T]). Since tk is fixed we will use the notation B̃ and S̃ instead

of B̃k+1/2 and S̃k, respectively.
Let us start with expanding the exact solution by using the Gröbner–Alekseev for-

mula (this has been proposed in the context of the nonlinear Schrödinger equation in
[15]). We consider the linear operator A as a perturbation of the differential equation
given by the non-linear operator B. This choice is essential for the treatment given
here, since it allows us to apply the expansion sequentially without any additional
difficulties.

Lemma 3.4 (Expansion of the exact solution). The exact solution of (2.1) has
the formal expansion

f(τ) = EB(τ, f0) +

∫ τ

0

∂2EB(τ − s, f(s))AEB(s, f0) ds

+

∫ τ

0

∫ s

0

∂2EB(τ − s, f(s))A∂2EB(s− σ, f(σ))AEB(σ, f0) dσds

+

∫ τ

0

∫ σ1

0

∫ σ2

0

(
2∏

k=0

∂2EB(σk − σk+1, f(σk+1))A

)
f(σ3) dσ3dσ2dσ1,

where σ0 = τ .
Proof. Apply the Gröbner–Alekseev formula three times to equation (2.1).

CONVERGENCE ANALYSIS OF STRANG SPLITTING 7

Next we expand the splitting operator S̃ in a form that is suitable for comparison
with the exact solution.

Lemma 3.5 (Expansion of the splitting operator). The splitting operator S̃ has
the formal expansion

S̃f0 = eτB̃f0 +
τ

2

{
A, eτB̃

}
f0 +

τ2

8

{
A,
{
A, eτB̃

}}
f0 +R3f0,

where

R3 =
τ3

16

∫ 1

0

(1− θ)2
{
A,
{
A,
{
A, e

τθ
2 AeτB̃e

τθ
2 A
}}}

dθ.

Proof. Let us define the function g(s) = e
1
2 sAeτB̃e

1
2 sA. The first three derivatives

of g are given by

g′(s) =
1

2
{A, g(s)} ,

g′′(s) =
1

4
{A, {A, g(s)}} ,

g(3)(s) =
1

8
{A, {A, {A, g(s)}}} .

From the observation that S̃ = g(τ) and by Taylor’s theorem we obtain the result.

Let us now give the conditions which, if satisfied, imply that the Strang splitting
scheme, in our abstract setting, is consistent of order two.

Theorem 3.6 (Consistency). Suppose that the estimates

∥∥∥ϕδi11 (B̃)
(
B(EB(τ2 , f0))− B̃

)
Rδi01 (EB(·, f0))

∥∥∥
X
≤ Cτ, i ∈ {0, 1} (3.6)

sup
0≤s≤τ

∥∥∥∥
d2

ds2
esB̃
(
B(EB(s, f0))− B̃

)
EB(s, f0)

∥∥∥∥
X

≤ C, (3.7)

∥∥∥
[
B
(
EB(τ2 , f0)

)
− B̃ + τ

2B
′(Af0)

]
f0

∥∥∥
X
≤ Cτ2, (3.8)

and

sup
0≤s≤τ

∥∥∥Aie(τ−s)B̃(B − B̃)EB(s, f0)
∥∥∥
X
≤ Cτ2−i, i ∈ {1, 2} (3.9)

∥∥∥(B(f0)− B̃)Af0

∥∥∥
X
≤ Cτ, (3.10)

∥∥∥Aδi2B̃1+δi0ϕ1+δi0(τB̃)A1+δi1f0

∥∥∥
X
≤ C, i ∈ {0, 1, 2} (3.11)

∥∥Aδi2R1+δi0(∂2EB(·, f0))A1+δi1f0
∥∥
X
≤ C, i ∈ {0, 1, 2} (3.12)

hold uniformly in t, where δij denotes the Kronecker delta. In addition, suppose that

8 L. EINKEMMER AND A. OSTERMANN

the estimates

sup
0≤s≤τ

∥∥∥∥
d2

ds2

(
∂2EB(τ − s, f(s))AEB(s, f0)

)∥∥∥∥
X

≤ C, (3.13)

sup
0≤σ≤s≤τ

∥∥∥∥
∂

∂s

(
∂2EB(τ − s, f(s))A∂2EB(s− σ, f(σ))AEB(σ, f0)

)∥∥∥∥
X

≤ C, (3.14)

sup
0≤σ≤s≤τ

∥∥∥∥
∂

∂σ

(
∂2EB(τ − s, f(s))A∂2EB(s− σ, f(σ))AEB(σ, f0)

)∥∥∥∥
X

≤ C, (3.15)

∥∥∥∥
(2∏

k=0

∂2EB(σk − σk+1, f(σk+1))A

)
f(σ3)

∥∥∥∥
X

≤ C, (3.16)

sup
0≤s≤τ

∥∥{A,
{
A,
{
A, e

s
2AeτBe

s
2A
}}}

f0
∥∥
X
≤ C, (3.17)

hold uniformly in t for 0 ≤ σ3 ≤ σ2 ≤ σ1 ≤ σ0 = τ .
Then the Strang splitting (2.3) is consistent of order 2.
Proof. We have to compare terms of order 0, 1, and 2 in Lemma 3.4 and Lemma 3.5

and show that the remaining terms of order 3 can be bounded as well.
Terms of order 0. We have to bound the difference

eτB̃f0 − EB(τ, f0). (3.18)

For this purpose we denote EB(s, f0) by u(s) and make use of the fact that u satisfies
the differential equation

u′ = B̃u+ (B − B̃)u

with initial value f0. Employing the variation-of-constants formula we get

u(τ) = eτB̃f0 +

∫ τ

0

e(τ−s)B̃(B − B̃)EB(s, f0) ds.

Now let us employ the midpoint rule; this yields

u(τ)− eτB̃f0 = τe
τ
2 B̃
(
B(u(τ2))−B(f(τ2))

)
u(τ2) + d

= τ
(
B(u(τ2))−B(f(τ2))

)
f0 + τ2

2 ϕ1(B̃)
(
B(EB(τ2))− B̃

)

+ τ2

2

(
B(EB(τ2))− B̃

)
R1 (EB(·, f0)) + d.

The second term is bounded by assumption (3.6) and the remainder term by assump-
tion (3.7). We postpone the discussion of the first term until we have considered the
terms of order 1.

Terms of order 1. For

g(s) = e(τ−s)B̃AesB̃f0, k(s) = ∂2EB(τ − s, f(s))AEB(s, f0)

we get (by use of the trapezoidal rule)

τ

2

(
g(0) + g(τ)

)
−
∫ τ

0

k(s) ds

=
τ

2

(
g(0)− k(0) + g(τ)− k(τ)

)
− τ3

2

∫ 1

0

θ(1− θ)k′′(θτ) dθ.

CONVERGENCE ANALYSIS OF STRANG SPLITTING 9

First, let us compare g(τ) and k(τ)

g(τ)− k(τ) = A
(
eτB̃f0 − EB(τ, f0)

)
,

which is the same term that we encountered in (3.18), except that we have an addi-
tional A to the left of the expression. We thus can apply assumption (3.9) with i = 1.
Second, we have to compare g(0) and k(0)

g(0)− k(0) =
(
eτB̃ − ∂2EB(τ, f0)

)
Af0.

Expanding both terms

eτB̃ = I + τB̃ + τ2B̃2ϕ2(τB̃)

EB(τ, f0) = f0 + τBf0 + τ2R2(EB(·, f0)),

we get

g(0)− k(0) = −τB′(Af0)f0 − τ
(
B(f0)− B̃

)
Af0

+ τ2
(
B̃2ϕ2(τB̃)−R2(∂2EB(·, f0))

)
Af0.

The first term is bounded by assumption (3.8) and the second term by assumption
(3.10). The third term is bounded by assumption (3.11) with i = 0 and the fourth
term by assumption (3.12) with i = 0.

Finally, we have to estimate the remainder term of the quadrature rule which is
bounded by assumption (3.13).

Terms of order 2. For the functions

g(s, σ) = e(τ−s)B̃Ae(s−σ)B̃AeσB̃f0

k(s, σ) = ∂2EB(τ − s, f(s))A∂2EB(s− σ, f(σ))AEB(σ, f0)

we employ a quadrature rule (as in [14])

τ2

8

(
g(0, 0) + 2g(τ, 0) + g(τ, τ)

)
−
∫ τ

0

∫ s

0

k(s, σ) dσds

=
τ2

8

(
g(0, 0) + 2g(τ, 0) + g(τ, τ)− k(0, 0)− 2k(τ, 0)− k(τ, τ)

)
+ d,

where d is the remainder term. Consequently, we have to bound

g(τ, τ)− k(τ, τ) = A2
(
eτB̃f0 − EB(τ, f0)

)
,

g(0, 0)− k(0, 0) =
(
eτB̃ − ∂2EB(τ, f0)

)
A2f0

= τ
(
B̃ϕ1(τB̃)−R1(∂2EB(·, f0))

)
A2f0,

g(τ, 0)− k(τ, 0) = A
(

eτB̃ − ∂2EB(τ, f0)
)
Af0

= τA
(
B̃ϕ1(τB̃)−R1(∂2EB(·, f0))

)
Af0.

10 L. EINKEMMER AND A. OSTERMANN

The first term can again be bounded by using assumption (3.9), now with i = 2. In
addition, we can bound the second and third term using assumption (3.11) with i = 1
and i = 2 and assumption (3.12) with i = 1 and i = 2, respectively. Finally, the
remainder term depends on the first partial derivatives of k(s, σ) and can be bounded
by (3.14) and (3.15).

Terms of order 3. In order to bound the remainder terms in the expansion of the
exact solution as well as the approximate solution, we need assumption (3.16) and
(3.17) respectively.

4. Convergence analysis for the Vlasov–Poisson equations. We will con-
sider the Vlasov–Poisson equations in 1+1 dimensions, i.e.





∂tf(t, x, v) = −v∂xf(t, x, v)− E(f(t, ·, ·), x)∂vf(t, x, v)

∂xE(f(t, ·, ·), x) =

∫

R
f(t, x, v) dv − 1

f(0, x, v) = f0(x, v)

(4.1)

with periodic boundary conditions in space. For a function g = g(x, v) the abstract
differential operators A and B of the previous sections have thus the form

Ag(x, v) = −v∂xg(x, v), Bg(x, v) = −E(g, x)∂vg(x, v).

The domain of interest is given by (t, x, v) ∈ [0, T]× [0, L]× R. Thus, for all x ∈ R

f(t, x, v) = f(t, x+ L, v).

By equation (4.1) the electric field E is only determined up to a constant. This
constant is chosen such that E has zero integral mean (electrostatic condition).

4.1. Definitions and notation. The purpose of this section is to introduce the
notations and mathematical spaces necessary for giving existence, uniqueness, and
regularity results as well as to conduct the estimates necessary for showing consistency
and stability.

For the convergence proof we will use the Banach space L1([0, L]×R) exclusively.
This is reasonable as the solution f of (4.1) represents a probability density function.
As such the L1 norm is conserved for the exact (as well as the approximate) solution.
Nevertheless, all the estimations could be done as well, for example, in L∞([0, L]×R).

However, we need some regularity of the solution. This can be seen from the
assumptions of Theorem 3.6, where we have to apply a number of differential oper-
ators to the solution f(t). Thus, we introduce the following spaces of continuously
differentiable functions

Cmper,c =
{
g ∈ Cm(R2,R) ; ∀x, v : (g(x+ L, v) = g(x, v)) ∧ (supp g(x, ·) compact)

}
,

Cmper = {g ∈ Cm(R,R) ; ∀x : g(x+ L) = g(x)} .

Together with the norm of uniform convergence of all derivatives up to order m, i.e.

‖g‖Cmper,c
=

∑

0≤k+`≤m
‖∂kx∂`vg‖∞, ‖g‖Cmper

=
m∑

k=0

‖∂kxg‖∞,

the spaces Cmper,c and Cper are turned into Banach spaces.

CONVERGENCE ANALYSIS OF STRANG SPLITTING 11

We also have to consider spaces that involve time. To that end let us define

Cm(0, T ;Cm) =

{
f ∈ Cm([0, T], C0) ; (f(t) ∈ Cm) ∧ (sup

t∈[0,T]

‖f(t)‖Cm <∞)

}
,

where Cm is taken as either Cmper,c or Cmper. It should be noted that if it can be shown
that the solution f of the Vlasov–Poisson equations lies in the space Cm(0, T ;Cm),
we can bound all derivatives (in space) up to order m uniformly in t ∈ [0, T].

4.2. Existence, uniqueness, and regularity. In this section we recall the
existence, uniqueness, and regularity results of the Vlasov–Poisson equations in 1+1
dimensions. The theorem is stated with a slightly different notation in [3] and [2].

Theorem 4.1. Assume that f0 ∈ Cmper,c for some m ∈ N ∪ {0} is non-negative,
then f ∈ Cm(0, T ; Cmper,c) and E(f(t, ·, ·), x) as a function of (t, x) lies in Cm(0, T ; Cmper).
In addition, we can find a number Q(T) > 0 such that for all t ∈ [0, T] and x ∈ R it
holds that suppf(t, x, ·) ⊂ [−Q(T), Q(T)].

Proof. A proof can be found in [9].
We also need a regularity result for the electric field that does not directly result

from a solution of the Vlasov–Poisson equations, but from some generic function g
(e.g., computed from an application of a splitting operator to f0).

Corollary 4.2. For g ∈ Cmper,c it holds that E(g, ·) ∈ Cmper.
Proof. The result follows from the proof of Theorem 4.1. In addition, in the 1+1

dimensional case it can also be shown easily by starting from the exact representation
of the electromagnetic field that is given in (5.3) below.

With the arguments contained in the proof of Theorem 4.1, the regularity results
given can be extended to the differential equations generated by B and B̃. Thus,

Theorem 4.1 remains valid if EB(t, f0) or etB̃f0 is substituted for f(t).

4.3. Consistency. The most challenging task in proving the assumptions of
Theorem 3.6 is to control the derivative of EB with respect to the initial value. The
following lemma accomplishes that.

Lemma 4.3. The map

Cmper,c × C`per,c → Cmin(m−1,`)
per,c

(u0, g) 7→ ∂2EB(t, u0)g,

is well-defined, i.e. ∂2EB(t, u0)g lies in the codomain given for u0 ∈ Cmper,c and g ∈
C`per,c.

Proof. We consider u′(t) = Bu(t) with u(0) = u0. Motivated by the method of
characteristics we can write

∂tVu0
(t, x, v) = −E(u(t, ·, ·), x)

Vu0(0, x, v) = v

u(t, x, v) = u0(x, Vu0(t, x, v)),

where Vu0(t, x, v) is given implicitly as the unique solution of the equations stated
above. To show that Vu0 depends affinely on the initial value u0, let us integrate
u′(t) = Bu(t) with respect to the velocity; this gives at once

d

dt

∫ ∞

−∞
u(t) dv = −E(u(t, ·, ·), x)

∫ ∞

−∞
∂vu(t) dv

12 L. EINKEMMER AND A. OSTERMANN

which using integration by parts and the fact that u(t) has compact support (in
the velocity direction) shows that the time derivative on the left hand side vanishes.
Therefore,

E(u(t, ·, ·), x) = E(u0, x),

which implies that Vu0
depends affinely on the initial value u0.

Computing the Gâteaux derivative with respect to the direction g we get

∂hEB(t, u0 + hg)(x, v)|h=0 = (∂2u0) (x, Vu0
(t)(x, v)) (Vg(t)(x, v)− v)

+ g(x, Vu0
(t)(x, v)),

since V is affine with respect to the initial value. From this representation the result
follows.

The following two lemmas present time derivatives up to order two of Bf , B̃f
and EB(t, f0) which follow from a simple calculation. Let us start with the derivatives

of the operator B and B̃ applied to the exact solution f(t) = f(t, ·, ·).
Lemma 4.4. For f sufficiently often continuously differentiable, we have

∂tBf(t, x, v) = −E (f ′(t), x) ∂vf(t, x, v)− E(f(t), x)∂vtf(t, x, v)

∂2tBf(t, x, v) = −E (f ′′(t), x) ∂vf(t, x, v)

− 2E (f ′(t), x) ∂vtf(t, x, v)− E(f(t), x)∂vttf(t, x, v)

and

∂tB̃f(t, x, v) = −E
(
f ′(t+ τ

2), x
)
∂vf(t, x, v)− E(f(t+ τ

2), x)∂vtf(t, x, v)

∂2t B̃f(t, x, v) = −E
(
f ′′(t+ τ

2), x
)
∂vf(t, x, v)

− 2E
(
f ′(t+ τ

2), x
)
∂vtf(t, x, v)− E(f(t+ τ

2), x)∂vttf(t, x, v)

Proof. From the relations Bf(t, x, v) = −E(f(t), x)∂vf(t, x, v)) and B̃f(t, x, v) =
−E(f(t+ τ

2 , x)∂vf(t, x, v) the result follows by the product rule.
Further, we have to compute some derivatives of the evolution operator EB(t, f0)

with respect to time.
Lemma 4.5. For f sufficiently often continuously differentiable, we have

∂tEB(t, f0) = BEB(t, f0)

= −E(EB(t, f0), ·)∂vEB(t, f0)

∂2tEB(t, f0) = −E(EB(t, f0), ·)∂v(BEB(t, f0))− E(BEB(t, f0), ·)∂vEB(t, f0)

∂t(∂2EB(t, f0)) = −E(EB(t, f0), ·)∂v(∂2EB(t, f0))− E(∂2EB(t, f0), ·)∂vEB(t, f0)

∂2t (∂2EB(t, f0)) = −E(BEB(t, f0), ·)∂v(∂2EB(t, f0))

− E(EB(t, f0), ·)∂v(∂t(∂2EB(t, f0)))

− E(∂t(∂2EB(t, f0)), ·)∂vEB(t, f0)

− E(∂2EB(t, f0), ·)∂vBEB(t, f0).

Proof. From the relation Bf(t, x, v) = −E(f(t), x)∂vf(t, x, v)) the result follows
by a simple calculation.

CONVERGENCE ANALYSIS OF STRANG SPLITTING 13

It is also necessary to investigate the behavior of the ϕ functions introduced in
Definition 2.1.

Lemma 4.6. For the Vlasov–Poisson equations the functions ϕi(τE) with E ∈
{A, B̃} are maps from Cmper,c to Cmper,c for all τ ≥ 0 and i ∈ N.

Proof. For i = 0 we have

e−τv∂xf0(x, v) = f0(x− τv, v),

and

e−τE(f(
τ
2),x)∂vf0(x, v) = f0

(
x, v − τE(f(τ2), x)

)
.

This clearly doesn’t change the differentiability properties.
For the ϕ functions the desired result follows at once from the representation

given in (2.5).
Now we are able to show that all the assumptions of Theorem 3.6 are fulfilled and

that we thus have consistency of order 2. This is the content of the following theorem.
Theorem 4.7. Suppose that f0 ∈ C3per,c is non-negative. Then the Strang splitting

scheme (2.3) for the Vlasov–Poisson equations is consistent of order 2 in the norm of
L1([0, L]× R).

Proof. The proof proceeds by noting that the solution has compact support (for
a finite time interval), i.e., we can estimate v by some constant Q. On the other hand

it is clear that for f0 ∈ Cm+1
per,c we get Af0 ∈ Cmper,c and B̃f0 ∈ Cmper,c. The same is

true for B as can be seen by Corollary 4.2. Therefore, we can establish the bounds
(3.6), (3.7), and (3.8). Noting that, by Lemma 4.4, terms of the form Ri(∂2EB) are
mappings from Cm+i

per,c to Cmper,c and that, by Lemma 4.6, the ϕ functions are mappings
from Cmper,c to Cmper,c we can conclude that after applying all operators in assumptions
(3.9), (3.10), (3.11), and (3.12) we get a continuous function. By the regularity results
we can bound these functions uniformly in time. The same argument also shows the
validity of the bound in assumption (3.17).

Finally, with the help of Lemmas 4.3 and 4.5 together with the above observations
we can verify the bounds in assumptions (3.13), (3.14), (3.15), and (3.16).

4.4. Stability. We have to verify that the Strang splitting scheme (2.3) satisfies
the conditions (3.3) and (3.4). The stability bound (3.3) is obviously fulfilled since

∥∥e
τ
2AeτBk+1/2e

τ
2Af(t)

∥∥
1
≤ ‖f(t)‖1.

This follows from the proof of Lemma 4.6 as the above operators can be represented
as translations only (note that a translation does not change the L1 norm).

To verify (3.4), which can be seen as a substitute for non-linear stability, it remains
to be shown that

‖g
(
x, v − τE(fk+1/2, x)

)
− g
(
x, v − τE(f(tk + τ

2), x))
)
‖1 ≤ τ‖fk+1/2 − f(tk + τ

2)‖1

for g(x, v) = e
τ
2Af(tk, x, v) = f(tk, x− τ

2 v, v). This follows at once from the Lipschitz
continuity of e

τ
2Af and the explicit form of E in (5.3) below.

4.5. Convergence. We are now in the position to prove second-order conver-
gence of Strang splitting for the Vlasov–Poisson equations in L1. The same result
holds literally in L∞ (or any other Lp space).

Theorem 4.8. Suppose that f0 ∈ C3per,c is non-negative and that the auxiliary
method (2.2) is first-order consistent and (locally) Lipschitz continuous with respect

14 L. EINKEMMER AND A. OSTERMANN

to its second argument. Then Strang splitting for the Vlasov–Poisson equations is
second-order convergent in the norm of L1([0, L]× R).

Proof. The result follows from Theorem 4.7, the bounds given in section 4.4 and
Theorem 3.2.

Note that the two auxiliary methods (5.1) and (5.2) below are indeed first-order
consistent. If they are employed for the computation of fk+1/2, the resulting Strang
splitting is second-order convergent.

5. Numerical experiments. In this section we present some numerical exper-
iments. Even if we neglect space discretization for the moment, we still have to settle
the choice of fk+1/2 which has to be a first-order approximation to f(tk + τ

2). This
can be achieved by Taylor series expansion, interpolation of previously computed val-
ues, or by making an additional Lie–Trotter time step of length τ/2. Since we are
interested in time integration only, we choose the latter. This method is trivial to im-
plement (once the Strang splitting scheme is implemented) and doesn’t suffer from the
numerical differentiation problems of a Taylor expansion. Thus, one possible choice
would be to use

fk+1/2 = e
τ
2B(fk)e

τ
2Afk (5.1)

in our simulations. That this is indeed a first-order approximation follows in the same
way as our convergence proof for Strang splitting. We omit the details.

However, since the semigroup generated by B(fk) can be represented as a trans-
lation in velocity (see the proof of Lemma 4.6) and the electric field depends only on
the average of the density function with respect to velocity, i.e. it holds that

∫

R
e
τ
2B(fk)e

τ
2Afk dv =

∫

R
e
τ
2Afk dv,

it is possible to drop the first factor in (5.1) without affecting the resulting electric
field. Consequently, our choice is

fk+1/2 = e
τ
2Afk. (5.2)

Note that this is not a first-order approximation to f(k + τ
2); however, the electric

field, which is exclusively used in the subsequent steps of the algorithm, is equal to
the electric field computed with the help of the first-order scheme given in (5.1).

Since the computation of (5.2) is the first step in the Strang splitting algorithm,
this leads to a computationally efficient scheme. This scheme is also employed in [16],
for example. However, no argument why second-order accuracy is retained is given
there.

To compute the electric field we will use the following formula (see e.g. [3])

E(f(t, ·, ·), x) =

∫ L

0

K(x, y)

(∫

R
f(t, y, v)dv − 1

)
dy,

K(x, y) =

{
y
L − 1 0 ≤ x < y,
y
L y < x ≤ L.

(5.3)

For space discretization we will employ a discontinuous Galerkin method (based on
the description given in [16]). The approximation is of second-order with 80 cells in
both the space and velocity direction. In [16] the coefficients for discretizations up

CONVERGENCE ANALYSIS OF STRANG SPLITTING 15

to order 2 are given. However, it is not difficult to employ a computer program to
compute the coefficients for methods of arbitrary order.

Note that it is unnecessary to impose boundary conditions in the velocity di-
rection. This is due to the fact that for a function f0 with compact support in the
velocity direction the solution will continue to have compact support for all finite time
intervals [0, T] (see Theorem 4.1 above). Periodic boundary conditions in space will
be employed in all simulations conducted in this section.

5.1. Landau damping. The Vlasov–Poisson equations in 1+1 dimensions to-
gether with the initial value

f0(x, v) =
1√
2π

e−v
2/2 (1 + α cos(0.5x)) ,

is called Landau damping. For α = 0.01 the problem is called linear or weak Landau
damping and for α = 0.5 it is referred to as strong or non-linear Landau damping. As
can be seen, for example, in [8, 6] and [18] Landau damping is a popular test problem
for Vlasov codes. We solve this problem on the domain (t, x, v) ∈ [0, 1] × [0, 4π] ×
[−6, 6].

For comparison we display the error of the Strang splitting algorithm together
with the error for first-order Lie–Trotter splitting. Since we are mainly interested in
the time integration error and there is no analytical solution of the problem available,
we compare the error for different step sizes with a reference solution computed with
τ = 3.9 · 10−3. The correctness of our code was verified with an upwind scheme
on a fine grid with up to 2560 grid points in the x- and v-direction, respectively.
For this experiment, the time step size was determined by the CFL condition to be
approximately τ = 6 · 10−4. The error is computed in the discrete L1 norm at time
t = 1. The results given in Figure 5.1 are in line with the theoretical convergence
results derived in this paper.

6. Conclusion. In this paper sufficient conditions are given that guarantee con-
vergence of order 2 for the Strang splitting algorithm in the case of Vlasov-type
equations. It is also shown that the Vlasov–Poisson equations in 1+1 dimensions is
an example of a Vlasov-type equation, i.e., they fit into the framework of the analy-
sis conducted. For the simulation on a computer, however, a further approximation
has to be made (i.e., some sort of space discretization has to be introduced). This
approximation is not included in the analysis done here. Nevertheless, the numerical
experiments suggest that second-order convergence is retained in the fully discretized
case as well.

Acknowledgments. The authors thank the referees for providing numerous sug-
gestions that helped to improve the presentation of this paper.

REFERENCES

[1] E.A. Belli, Studies of numerical algorithms for gyrokinetics and the effects of shaping on
plasma turbulence, PhD thesis, Princeton University, 2006.

[2] N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson
system, SIAM J. Numer. Anal., 42 (2005), pp. 350–382.

[3] , Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for
the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal., 46 (2008), pp. 639–
670.

16 L. EINKEMMER AND A. OSTERMANN

 1e-05

 0.0001

 0.001

 0.25 0.5 1

e
rr

o
r

(d
is

c
re

te
 L

1
 n

o
rm

)

�

Strang splitting
Lie splitting

order 1
order 2

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.015625 0.03125 0.0625 0.125 0.25 0.5 1

e
rr

o
r

(d
is

c
re

te
 L

1
 n

o
rm

)

�

Strang splitting
Lie-Trotter splitting

order 1
order 2

Fig. 5.1. Error of the particle density function f(1, ·, ·) for Strang and Lie–Trotter splitting
respectively, where α = 0.01 (top) and α = 0.5 (bottom).

[4] M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced
Vlasov-Maxwell system for laser-plasma interaction, Numer. Math., 112 (2009), pp. 169–
195.

[5] C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.
Comput. Phys., 22 (1976), pp. 330–351.

[6] N. Crouseilles, E. Faou, and M. Mehrenberger, High order Runge-Kutta-Nyström splitting
methods for the Vlasov-Poisson equation.
http://hal.inria.fr/inria-00633934/PDF/cfm.pdf.

[7] M.R. Fahey and J. Candy, GYRO: A 5-d gyrokinetic-Maxwell solver, Proceedings of the
ACM/IEEE SC2004 Conference, (2008), p. 26.

[8] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics

CONVERGENCE ANALYSIS OF STRANG SPLITTING 17

Communications, 150 (2003), pp. 247–266.
[9] R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996.

[10] T.S. Hahm, L. Wang, and J. Madsen, Fully electromagnetic nonlinear gyrokinetic equations
for tokamak edge turbulence, Physics of Plasmas, 16 (2009), p. 022305.

[11] E. Hansen and A. Ostermann, Dimension splitting for evolution equations, Numer. Math.,
108 (2008), pp. 557–570.

[12] R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler, A discontinuous Galerkin method
for the Vlasov-Poisson system, J. Comput. Phys., 231 (2012), pp. 1140–1174.

[13] H. Holden, C. Lubich, and N.H. Risebro, Operator splitting for partial differential equations
with Burgers nonlinearity. To appear in Math. Comp.

[14] T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000),
pp. 735–744.

[15] C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger
equations, Math. Comput., 77 (2008), pp. 2141–2153.

[16] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek, A numerical scheme for
the integration of the Vlasov-Maxwell system of equations, J. Comput. Phys., 179 (2002),
pp. 495–538.

[17] T. Respaud and E. Sonnendrücker, Analysis of a new class of forward semi-Lagrangian
schemes for the 1D Vlasov Poisson equations, Numer. Math., 118 (2011), pp. 329–366.

[18] J.A. Rossmanith and D.C. Seal, A positivity-preserving high-order semi-Lagrangian discon-
tinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230 (2011),
pp. 6203–6232.

B Convergence analysis of a discontinuous

Galerkin/Strang splitting approximation for

the Vlasov–Poisson equations

Journal SIAM Journal on Numerical Analysis
Authors Lukas Einkemmer, Alexander Ostermann
submitted 12.11.2012

39

CONVERGENCE ANALYSIS OF A DISCONTINUOUS
GALERKIN/STRANG SPLITTING APPROXIMATION FOR THE

VLASOV–POISSON EQUATIONS

LUKAS EINKEMMER∗ AND ALEXANDER OSTERMANN∗

Abstract. A rigorous convergence analysis of the Strang splitting algorithm with a discontinuous
Galerkin approximation in space for the Vlasov–Poisson equations is provided. It is shown that under
suitable assumptions the error is of order O

(
τ2 + hq + hq/τ

)
, where τ is the size of a time step, h is

the cell size, and q the order of the discontinuous Galerkin approximation. In order to investigate the
recurrence phenomena for approximations of higher order as well as to compare the algorithm with
numerical results already available in the literature a number of numerical simulations are performed.

Key words. Strang splitting, discontinuous Galerkin approximation, convergence analysis,
Vlasov–Poisson equations, recurrence

AMS subject classifications. 65M12, 82D10, 65L05, 65M60

1. Introduction. In astro- and plasma physics the behavior of a collisionless
plasma is modeled by the Vlasov equation (see e.g. [2])

∂tf(t,x,v) + v · ∇xf(t,x,v) + F · ∇vf(t,x,v) = 0, (1.1)

a kinetic model that in certain applications is also called the collisionless Boltzmann
equation. It is posed in a 3+3 dimensional phase space, where x denotes the position
and v the velocity. The density function f is the sought-after particle distribution, and
the (force) term F describes the interaction of the plasma with the electromagnetic
field.

In this paper we will study the convergence properties of a full discretization of
the so called Vlasov–Poisson equations, where the force term

F = −∇xφ

is the gradient of the self-consistent electric potential φ. This simplified model is used
in various applications, e.g. in the context of Landau damping.

For the numerical solution of (1.1), various methods have been considered in the
literature, for example particle methods and in particular the particle-in-cell method,
see [12, 13, 16]. Another prevalent approach consists in employing splitting methods,
first proposed in the context of the Vlasov–Poisson equations by [8] and later extended
to the full Vlasov–Maxwell equations in [19]. Both papers use second-order Strang
splitting. In the seminal paper [17], the convergence properties of Strang-splitting for
evolution equations were analyzed with the help of the variation-of-constants formula.
This approach was recently extended to Vlasov-type equations in [11]. In [3, 4, 24, 7]
semi-Lagrangian methods are combined with Strang splitting. Convergence is shown
in the case of the 1+1 dimensional Vlasov–Poisson equations, and in [6] for a spe-
cial case of the one-dimensional Vlasov–Maxwell equation. In these papers usually
Hermite or spline interpolation is employed.

∗Department of Mathematics, University of Innsbruck, Technikerstraße 13, Innsbruck, Austria
(lukas.einkemmer@uibk.ac.at, alexander.ostermann@uibk.ac.at). The first author was supported
by a scholarship of the Vizerektorat für Forschung, University of Innsbruck, and by the Austrian
Science Fund (FWF), project id: P25346.

1

2 L. EINKEMMER AND A. OSTERMANN

On the other hand, discontinuous Galerkin approximations in space have been
studied for the Vlasov–Poisson equations as well. In [15] and [16] the weak version of
the Vlasov–Poisson equations is discretized by a discontinuous Galerkin scheme and
integrated in time by Runge–Kutta methods. The convergence of such methods has
also been studied (see e.g. [27]). In [25] a higher order semi-Lagrangian method in
time is combined with a discontinuous Galerkin approximation in space. However, no
convergence analysis is given. A direct Strang splitting scheme with a discontinuous
Galerkin approximation is implemented in [19]. Since only a single value per cell is
advanced in time this leads to a Van Leer scheme. The advantage of that method is
that there is no memory overhead as compared to a finite difference implementation
(note that the method under consideration in this paper stores the coefficients of the
Legendre polynomials up to order ` which leads to an increased memory consumption,
but is expected to result in a scheme that is less dissipative, see e.g. [20]). In the before
mentioned paper a numerical study of the Van Leer scheme is conducted.

Our goal in this paper is to provide the missing convergence analysis for a high
order discontinuous Galerkin approximation in space which is combined with the
(direct) Strang splitting scheme. Since such an approximation does not result in a
function that is continuous across cell boundaries, the methods which are employed
to show convergence for Hermite or spline interpolation are not applicable. In this
paper, we will show, using the abstract (time) convergence result in [11], that this
scheme converges with order O

(
τ2 + hq + hq/τ

)
. Our main result is stated in Theo-

rem 2.9 below. In addition, we will discuss some numerical aspects of the discontinuous
Galerkin discretization in section 3.

2. Vlasov–Poisson equations in 1+1 dimensions. In this section we per-
form the convergence analysis of Strang splitting in time with a discontinuous Galerkin
approximation in space for the Vlasov–Poisson equations in 1+1 dimensions. To that
end we first describe the setting as well as give the necessary regularity results (sections
2.1 to 2.3). We then describe the time (section 2.4) and space discretization (sections
2.5 and 2.6). In section 2.7 we will extend a commonly employed approximation re-
sult from C`+1 functions to piecewise polynomials with a small jump discontinuity.
This extension is crucial to show consistency (which is done in section 2.8). Finally,
convergence is established in section 2.9.

2.1. Setting. We will consider the Vlasov–Poisson equations in 1+1 dimensions,
i.e.





∂tf(t, x, v) = −v∂xf(t, x, v)− E(f(t, ·, ·), x)∂vf(t, x, v)

∂xE(f(t, ·, ·), x) =

∫

R
f(t, x, v) dv − 1

f(0, x, v) = f0(x, v)

(2.1)

with periodic boundary conditions in space. The domain of interest is given by
(t, x, v) ∈ [0, T]× [0, L]× R. The periodic boundary conditions imply

∀x ∈ R : f(t, x, v) = f(t, x+ L, v).

It is physically reasonable to assume at least an algebraic decay of f0 in the velocity
direction. Thus, we can approximate (to arbitrary precision) f0 by an initial value
with compact support. As will be apparent in the next section it is unnecessary to
impose boundary conditions in the velocity direction for initial values with compact

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 3

support. This is due to the fact that for such an initial value the solution will continue
to have compact support for all finite time intervals [0, T] (see Theorem 2.1).

For most of this presentation it will be more convenient to work with the following
abstract initial value problem

{
∂tf(t) = (A+B)f(t)

f(0) = f0,
(2.2)

where we assume that A is an (unbounded) linear operator. In addition, we assume
that B can be written in the form Bf = B(f)f , where B(f) is an (unbounded) linear
operator. For the Vlasov–Poisson equations in 1+1 dimensions the obvious choice is
Af = −v∂xf and Bf = −E(f(t, ·, ·), x)∂vf .

In 1 + 1 dimensions an explicit representation of the electric field is given by the
following formula

E(f(t, ·, ·), x) =

∫ L

0

K(x, y)

(∫

R
f(t, y, v)dv − 1

)
dy,

K(x, y) =

{
y
L 0 < y < x,
y
L − 1 x < y < L,

(2.3)

where we have assumed that E is chosen to have zero integral mean (electrostatic
condition) and the plasma is globally neutral, i.e.

∫ L

0

(∫

R
f(t, y, v) dv − 1

)
dy = 0.

From the latter condition, we can deduce that E(0) = E(L), i.e. the electric field is
periodic in space (see, e.g. [5]). This representation allows us to get a simple estimate
of the electric field in terms of the particle density f .

2.2. Definitions and notation. The purpose of this section is to introduce the
notations and mathematical spaces necessary for giving existence, uniqueness, and
regularity results as well as to conduct the estimates necessary for showing consistency
and convergence.

We will use ‖ · ‖ to denote the infinity norm and ‖ · ‖p to denote the Lp norm
on [0, L]× R. For estimating the errors in space and velocity we will use the Banach
space L∞([0, L]×[−vmax, vmax]). Note that consistency bounds in the physically more
reasonable L1 norm are a direct consequence of the bounds we derive in the infinity
norm. The situation is more involved in the case of stability (this is discussed in
section 2.9).

For our convergence analysis we need some regularity of the solution. To that
end, we introduce the following spaces of continuously differentiable functions

Cmper,c :=
{
g ∈ Cm(R2,R), ∀x, v : (g(x+ L, v) = g(x, v)) ∧ (supp g(x, ·) compact)

}
,

Cmper := {g ∈ Cm(R,R), ∀x : g(x+ L) = g(x)} .
Equipped with the norm of uniform convergence of all derivatives up to order m, Cmper,c
and Cper are Banach spaces.

We also have to consider spaces that involve time. To that end let us define for
any subspace Z ⊂ Cm(Rd,R) the space

Cm(0, T ;Z) :=

{
g ∈ Cm([0, T], C0), (g(t) ∈ Z) ∧ (sup

t∈[0,T]

‖g(t)‖Z <∞)

}
.

4 L. EINKEMMER AND A. OSTERMANN

Below, we will either take the choice Z = Cmper,c or Z = Cmper. It should be noted that
functions in Cm(0, T ;Z) possess spatial derivatives up to order m that are uniformly
bounded in t ∈ [0, T].

2.3. Existence, uniqueness, and regularity. In this section we recall the
existence, uniqueness, and regularity results for the Vlasov–Poisson equations in 1+1
dimensions. The following theorem is stated with a slightly different notation in [4]
and [3].

Theorem 2.1. Assume that f0 ∈ Cmper,c is non-negative, then f ∈ Cm(0, T ; Cmper,c)
and E(f(t, ·, ·), x) as a function of (t, x) lies in Cm(0, T ; Cmper). In addition, we can
find a number Q(T) such that for all t ∈ [0, T] and x ∈ R it holds that supp f(t, x, ·) ⊂
[−Q(T), Q(T)].

Proof. A proof can be found in [14, Chap. 4].
We also need a regularity result for the electric field that does not directly result

from a solution of the Vlasov–Poisson equations, but from some generic function f
(e.g., an f computed from an application of a splitting operator to f0).

Corollary 2.2. For f ∈ Cmper,c it holds that E(f, ·) ∈ Cmper.
Proof. The result follows from the proof of Theorem 2.1. In addition, in the

1+1 dimensional case it can also be followed from the exact representation of the
electromagnetic field that is given in equation (2.3).

It should also be noted that due to the proof of Theorem 2.1, the regularity results
given can be extended to the differential equations generated by B and B(g) (for any
sufficiently regular g). Thus, Theorem 2.1 remains valid if EB(t, f0) or etB(g)f0 is
substituted for f(t), where EB(t, f0) denotes the solution of the differential equation
∂tg(t) = Bg(t) at time t with initial value g(0) = f0.

2.4. Time discretization. We use Strang splitting for the time discretization
of (2.2). This results in the scheme

fk+1 = Skfk, (2.4a)

where fk is the numerical approximation to f(t) at time t = kτ with step size τ . The
splitting operator Sk is the composition of three abstract operators

Sk = S(A)S
(B)
k S(A), (2.4b)

where

S(A) = e
τ
2A, S

(B)
k = eτB(fk+1/2) (2.4c)

with fk+1/2 = e
τ
2B(fk)e

τ
2Afk. The choice of fk+1/2 is such as to retain second order

in the non-linear case while still only advection problems have to be solved in the
numerical approximation (for more details see e.g. [11]). Note that since e

τ
2B(fk) can

be represented by a translation in the velocity direction only (which has no effect on
the computation of the electric field) we can use here

fk+1/2 = S(A)fk. (2.4d)

This is convenient as the computation of S(A)fk incurs no performance overhead in
the actual computation.

To conclude this section, let us emphasize that we interpret the evolutions S(A)

and S(B) as shifts (i.e., we consider the differential equations generated by A and B
in the weak sense).

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 5

2.5. Space discretization. We proceed in two steps. First, we introduce a
cutoff in the velocity direction, i.e. we fix vmax and consider the problem on the
domain [0, L] × [−vmax, vmax]. Note that for an initial value with compact support
with respect to velocity and a sufficiently large vmax this is still exact.

Second, we introduce a discontinuous Galerkin approximation in both the space
and velocity direction. For simplicity, we consider a uniform rectangular grid. In this
case, the cell boundaries are given by the following relations

xi = ihx, 0 ≤ i ≤ Nx,
vj = jhv − vmax, 0 ≤ j ≤ Nv.

Within each cell, i.e. a square Rij = [ihx, (i+ 1)hx]× [jhv − vmax, (j + 1)hv − vmax],
0 ≤ i < Nx, 0 ≤ j < Nv, we perform an orthogonal projection with respect to the
basis of Legendre polynomials of degree at most ` in x and v. To be more precise,
suppose that g ∈ L2 ([0, L]× [−vmax, vmax]); then the operator P is defined such
that Pg restricted to Rij for all i, j is the (unique) polynomial that results from
the projection of g onto the (` + 1)(` + 1) dimensional subspace generated by the
(appropriately translated and scaled) Legendre polynomials up to degree `. It is well
known that this projection operator is given by

Pg|Rij =
∑̀

k=0

∑̀

m=0

bijkmP
(1)
k (x)P (2)

m (v) (2.5a)

with coefficients

bijkm =
(2k + 1)(2m+ 1)

hxhv

∫

Rij

P (1)
m (x)P

(2)
k (v)g(x, v) d(x, v). (2.5b)

The translated and scaled Legendre polynomials are here defined as

P
(1)
l (ξ) = pl

(
2(ξ − xi)

hx
− 1

)
, P

(2)
l (ξ) = pl

(
2(ξ − vj)

hv
− 1

)
,

where pl denote the Legendre polynomials with the standard normalization, i.e.

∫ 1

−1
pl(y)pj(y)dy =

2

2l + 1
δlj .

It should be emphasized that the projection in a single cell is independent from
the projection in any other cell. As this is not true for Hermite or spline interpolation
it gives the discontinuous Galerkin scheme a computational advantage (see [19] and
section 2.6).

Now we have to introduce an approximation to the abstract splitting operator
(2.4b) that takes the space discretization into account. We use the decomposition

S̃k = S̃(A)S̃
(B)
k S̃(A), (2.6a)

where

S̃(A) = PS(A), S̃
(B)
k = P eτB(f̃k+1/2) (2.6b)

with

f̃k+1/2 = S̃(A)f̃k. (2.6c)

6 L. EINKEMMER AND A. OSTERMANN

The fully discrete scheme then reads

f̃k+1 = S̃kf̃k, f̃0 = Pf0. (2.6d)

Note that f̃k represents the full approximation in time and space at time tk.

2.6. Translation and projection. The principle algorithm has already been
laid out in sections 2.4 and 2.5. However, the description given so far is certainly not
sufficient as the straightforward implementation (first computing an exact solution
and then projection onto a finite dimensional subspace) is clearly not a viable option.
Thus, the purpose of this section is to describe in more detail the computation of

S̃(A)f(x, v) = P e
τ
2Af(x, v) = Pf

(
x− τ

2
v, v
)

and

S̃
(B)
k f(x, v) = P eτB(f̃k+1/2)f(x, v) = Pf

(
x, v − τE(f̃k+1/2, x)

)
.

Without loss of generality let us consider a translation of the form f (x− τg(v), v).
In addition, we fix the cell of interest as [0, h]× [0, h]. Now we are primarily interested
in an interval of length h and thus define Pl(x) = pl(

2x
h − 1). Then we have

∫ h

0

Pl(x)Pj(x)dx =
h

2l + 1
δlj .

We have to first translate and then project a function that can be expanded as

f(x, v) =
M∑

m=0

N∑

n=0

bmnPm(x)Pn(v)

onto the finite dimensional approximation space. Our goal is to compute the coeffi-
cients of f(x− τg(v), v). These are given by

alj =
(2l + 1)(2j + 1)

h2

∫ h

0

∫ h

0

Pl(x)Pj(v)f(x− τg(v), v) dxdv

=
(2l + 1)(2j + 1)

h

∑

m,n

bmn

∫ h

0

Pj(v)Pn(v)

(
1

h

∫ h

0

Pl(x)Pm(x− τg(v)) dx

)
dv

=
(2l + 1)(2j + 1)

h

∑

m,n

bmn

∫ h

0

Pj(v)Pn(v)Hlm(g(v)τ/h) dv, (2.7)

where

Hlm(δ) =
1

h

∫ h

0

Pl(x)Pm(x− δh) dx, δ =
g(v)τ

h
.

For a fixed v the function Hlm can be evaluated explicitly. This is done, up to
order 3, in [19]. We will instead use a Mathematica program which can generate a
representation of Hlm (up to arbitrary order) in C code that can then be embedded in
the C++ implementation. Note that it is sufficient to only evaluate Hlm for 0 < δ < 1
as the negative values of δ follow by a symmetry argument and integer multiplies

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 7

correspond to a shift of the cells only. Also, the computation of Hlm(δ) for −1 < δ < 1
shows that only two terms from the sum in (2.7) do not vanish. That is, we need only
the data from the same cell as well as a single neighboring cell (either the right or
left neighbor) to compute an application of a splitting operator. This follows easily
from the fact that the support of the Legendre basis functions are within a single cell
only. More details are given in [19]. It remains to evaluate the remaining integral in
equation (2.7). Since g(v) is at most a polynomial of degree ` (in a single cell) we have
to integrate a polynomial of degree at most `2. We use a Gauss–Legendre quadrature
rule of appropriate order.

Note that in order to guarantee the stability of our scheme it is of vital importance
that we can compute the exact result of the integral in equation (2.7). If only an
approximation is used instabilities can occur (see section 3.4 and [21]).

To conclude this section, let us note that alternative strategies have been intro-
duced in the literature (see, e.g. [23, 10]).

2.7. Polynomial approximation of functions with a small jump discon-
tinuity. In this section our goal is to prove a bound concerning the approximation
of piecewise polynomials of degree ` with a single jump discontinuity. For notational
simplicity we will be concerned with a function of a single variable only; the general
case is a simple tensor product of the situation described in this section. Thus, the
operator P is here understood as the orthogonal projection with respect to the one-
dimensional Legendre polynomials of degree less or equal to `. The starting point of
our investigation is the result in Theorem 2.3, which is applicable only if we can as-
sume that g is `+1 times continuously differentiable. This assumption is not satisfied
for the discontinuous Galerkin approximation considered in this paper. However, we
will use the result as a stepping stone to prove a similar bound for the approximation
of functions with a small jump discontinuity.

Theorem 2.3. Suppose that g ∈ C`+1([0, h]). Then

∥∥∥g(k) − (Pg)(k)
∥∥∥ ≤ Ch`−k+1‖g(`+1)‖

for all k ∈ {0 . . . , `}.
Proof. In [22, p. 59] it is shown that Pg − g changes sign ` + 1 times. From

this, it follows that (Pg)(k) − g(k) changes sign ` + 1 − k times. Therefore, (Pg)(k)

is an interpolation polynomial of g(k) of degree ` + 1 − k. Using the standard error
representation for polynomial interpolation we get the desired result.

For numerical methods that rely on a smooth approximation of the solution (for
example, using Hermite or spline interpolation as in [5]) sufficient regularity in the
initial condition implies the bound given in Theorem 2.3 for any approximation that
has to be made in the course of the algorithm.

This assumption, however, is violated if we consider a discontinuous Galerkin ap-
proximation as, even if the initial condition is sufficiently smooth, the approximation
will include a jump discontinuity at the cell boundary. Thus, we are interested in a
bound that still gives us an equivalent result to that stated in Theorem 2.3 in the
case of a function with a small jump discontinuity. The following theorem is thus the
central result of this section. For simplicity, we consider a single cell only.

Theorem 2.4. Suppose that g : [0, h] → R is piecewise polynomial of degree
` with a single discontinuity at x0 ∈ [0, h]. In addition, we assume that the jump
heights ε(k) = g(k)(x0+) − g(k)(x0−) satisfy |ε(k)| ≤ ch`−k+1 for all k ∈ {0, . . . , `}.

8 L. EINKEMMER AND A. OSTERMANN

Then,
∥∥∥g(k) − (Pg)(k)

∥∥∥ ≤ Ch`−k+1,

for all k ∈ {0, . . . , `}. Note that the constant C only depends on c, `, and the constant
in Theorem 2.3.

Proof. Let us assume that x0 ∈ (0, h) (otherwise the result is immediate). We
smooth the piecewise constant function g(`) in the following way

p(`)(x) =
ε(`)

h
x+ g(`)(0). (2.8)

Now, upon integration we get

p(x) =
ε(`)

h

x`+1

(`+ 1)!
+
∑̀

k=0

akx
k,

where we choose the coefficients in such a way that the Taylor polynomial of g ex-

panded at 0 matches the first ` terms of g, i.e. ak = g(k)(0)
k! . This gives us the following

representation

p(x) =
ε(`)

h

x`+1

(`+ 1)!
+
∑̀

k=0

g(k)(0)

k!
xk.

Now let us consider the integral (for x > x0)

∫ x

0

p(m)(y)− g(m)(y) dy = p(m−1)(x)− g(m−1)(x)− p(m−1)(0) + g(m−1)(0)

+ g(m−1)(x0+)− g(m−1)(x0−)

= p(m−1)(x)− g(m−1)(x) + ε(m−1),

where the last identity follows from the choice we made above. Now we know that
(for s`−1 > x0)

∫ s`−1

0

p(`)(s`)− g(`)(s`) ds` = p(`−1)(s`−1)− g(`−1)(s`−1) + ε(`−1)

and further (for s`−2 > x0)

∫ s`−2

0

p(`−1)(s`−1)− g(`−1)(s`−1) + ε(`−1) ds`−1 = p(`−2)(s`−2)− g(`−2)(s`−2)

+ ε(`−2) + ε(`−1)s`−2.

By an induction argument we can then estimate the approximation error as

|p(x)− g(x)| ≤
∣∣∣∣
∫ x

0

∫ s1

0

. . .

∫ s`−1

0

p(`)(s`)− g(`)(s`) ds` . . . ds2ds1

∣∣∣∣+
`−1∑

k=0

|ε(k)|hk

≤
∫ x

0

∫ s1

0

. . .

∫ s`−1

0

∣∣∣p(`)(s`)− g(`)(s`)
∣∣∣ ds` . . . ds2ds1 + c`h`+1

≤ Ch`+1.

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 9

In addition we easily follow from equation (2.8) that

‖p(`+1)‖ ≤ |ε
(`)|
h
≤ c.

Now let us estimate the approximation error

‖Pg − g‖ = ‖Pg − Pp+ Pp− p+ p− g‖
≤ ‖P (g − p)‖+ ‖Pp− p‖+ ‖p− g‖
≤ Ch`+1,

where in the last line we have used Theorem 2.3 and the well known fact that the
projection operator P is a bounded operator in the infinity norm. The latter can be
seen, for example, by estimating (2.5).

To get the corresponding result for the kth derivative we follow largely the same
argument. The last estimate is then given by

∥∥∥(Pg)(k) − g(k)
∥∥∥ ≤

∥∥∥(P (g − p))(k)
∥∥∥+

∥∥∥p(k) − g(k)
∥∥∥+

∥∥∥(Pp)(k) − p(k)
∥∥∥

≤ Ch−k ‖P (g − p)‖+ Ch`−k+1 + Ch`−k+1
∥∥∥p(`+1)

∥∥∥
≤ Ch`−k+1,

where the estimate for the first term follows by the well-known Markov inequality (see
e.g. [26]).

Let us discuss the principle of applying Theorem 2.4. First the operator P is
applied to f(jτ), i.e. a point on the exact solution, and we can assume the necessary
regularity to apply Theorem 2.3. Consequently, we get a jump discontinuity of heights
at most

|ε(k)| ≤ 2
∥∥∥f (k)(jτ)− Pf (k)(jτ)

∥∥∥ ≤ Ch`−k+1
∥∥∥f (`+1)(jτ)

∥∥∥ ≤ Ch`−k+1, 0 ≤ k ≤ `.

Now the projected function is translated by a splitting operator (the example g(x) =
(Pf(jτ))(x− vτ) is illustrated in Figure 2.1) and projected back on the finite dimen-
sional subspace. The resulting error up to the `th derivative is then given by (see
Theorem 2.4)

∥∥∥g(k) − (Pg)(k)
∥∥∥ ≤ Ch`−k+1.

From this we can also follow that the new jump heights ε
(k)
1 are at most

|ε(k)1 | ≤ 2‖(Pg)(k) − g(k)‖ ≤ Ch`−k+1, 0 ≤ k ≤ `.

Since we only have to repeat this procedure a finite number of times (i.e. for a
single step of the Strang splitting algorithm) and the assumptions of Theorem 2.4 are
satisfied uniformly for all f(t), we can find a uniform constant C such that the desired
estimate holds.

Strictly speaking this argument is only valid for a constant advection (i.e. where
v is fixed). However, we can always decompose the projection operator as P = PvPx;
that is, into a projection in the x-direction (that depends on the parameter v) and
a subsequent projection in the v-direction. Due to the special form of the advection

10 L. EINKEMMER AND A. OSTERMANN

cell 1 cell 2 cell 1 cell 2

Fig. 2.1. Projected smooth function with a jump discontinuity at the cell boundary (left) and
translation with a discontinuity inside the cell (right). Only two cells in the x direction are shown.

(see section 2.6), we have to consider a function that, restricted to a single cell, is
discontinuous on a set which can be parametrized by a sufficiently often differentiable
curve. Since, for any fixed v, the results in this section can be applied, we are left
with a sufficiently often differentiable function (in both x and v). Therefore, the
projection in the v-direction poses no difficulty (and can be conducted, for example,
by Gauss–Legendre quadrature, as discussed in section 2.6).

2.8. Consistency. It is the purpose of this section to formulate assumptions
under which we can show a consistency bound for the initial value problem given in
equation (2.1). For notational simplicity, we will denote in this section the solution
of (2.1) at a fixed time tk = kτ by f0. The function f̃0 defined as Pf0 is a (possible)
initial value for a single time step (i.e., a single application of the splitting operator
Sk or S̃k). Since we consider consistency we are interested in the non-linear operator
S that is given by

S(·) = S(A)eτB(S(A)(·))S(A)(·),

and the corresponding spatially discretized operator

S̃(·) = S̃(A)P eτB(S̃(A)(·))S̃(A)(·).

Let us first give a simple consequence of the variation-of-constants formula.
Lemma 2.5. Suppose that f0 is absolutely continuous and that f1/2, f̃1/2 are

integrable. Then

S(B(f1/2))f0 − S(B(f̃1/2))f0 =

∫ τ

0

e(τ−σ)B(f̃1/2)
(
B(f1/2)−B(f̃1/2)

)
eσB(f1/2)f0 dσ.

Proof. Let g(τ) = S(B(f1/2))f0. Then

g′ = B(f1/2)g = B(f̃1/2)g +
(
B(f1/2)−B(f̃1/2)

)
g,

which can be rewritten by the variation-of-constants formulas as

S(B(f1/2))f0 = S(B(f̃1/2))f0 +

∫ τ

0

e(τ−σ)B(f̃1/2)
(
B(f1/2)−B(f̃1/2)

)
g(σ) dσ,

from which the desired result follows immediately.

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 11

The next two lemmas will be the crucial step to prove consistency. First, we con-
sider the error made by the (exact) splitting operators due to the space discretization.
Note that the assumptions are exactly the same as those needed for the development
in section 2.7 to hold.

Lemma 2.6. Suppose that f0 ∈ C`+1
per,c. Then

‖Sf0 − Sf̃0‖ ≤ C
(
τh`+1 + h`+1

)
,

where C depends on ‖f0‖C`+1
per,c

(but not on τ and h).

Proof. Let us define f̂1/2 = S(A)f̃0. Then, we can write

‖Sf0 − Sf̃0‖ =
∥∥∥S(A)S(B(f1/2))S(A)f0 − S(A)S(B(f̂1/2))S(A)f̃0

∥∥∥

≤
∥∥∥S(A)

(
S(B(f1/2)) − S(B(f̂1/2))

)
S(A)f0

∥∥∥+
∥∥∥S(A)S(B(f̂1/2))S(A)(f0 − f̃0)

∥∥∥

≤
∥∥∥S(A)

(
S(B(f1/2)) − S(B(f̂1/2))

)
S(A)f0

∥∥∥+ ‖f0 − f̃0‖.

By using Lemma 2.5 and the definition of B we get
∥∥∥S(A)

(
S(B(f1/2)) − S(B(f̂1/2))

)
S(A)f0

∥∥∥

=

∥∥∥∥
∫ τ

0

S(A)e(τ−σ)B(f̂1/2)
(
B(f1/2)−B(f̂1/2)

)
eσB(f1/2)S(A)f0 dσ

∥∥∥∥

≤ τ‖E(f1/2)− E(f̂1/2)‖ max
σ∈[0,τ]

∥∥∥∂v
(

eσB(f1/2)S(A)f0

)∥∥∥ .

Finally, since E is given by equation (2.3) it follows that

‖E(f1/2)− E(f̂1/2)‖ ≤ C‖f1/2 − f̂1/2‖ ≤ C‖f0 − f̃0‖ ≤ Ch`+1,

which concludes the proof.
Second, we consider the error made due to the approximation of the (exact)

splitting operators. Note that the assumptions are exactly the same as those needed
for the development in section 2.7.

Lemma 2.7. Suppose that f0 ∈ C`+1
per,c. Then

‖Sf̃0 − S̃f̃0‖ ≤ C
(
τh`+1 + h`+1

)
,

where C depends on ‖f0‖C`+1
per,c

(but not on τ and h).

Proof. Let f̂1/2 = S(A)f̃0 and f̃1/2 = S̃(A)f̃0. Then, we can write

Sf̃0 − S̃f̃0 = S(A)S(B(f̂1/2))S(A)f̃0 − S̃(A)S̃(B(f̃1/2))S̃(A)f̃0

=
(
S(A) − S̃(A)

)
S(B(f̂1/2))S(A)f̃0 (2.9a)

+ S̃(A)
(
S(B(f̂1/2)) − S̃(B(f̃1/2))

)
S(A)f̃0 (2.9b)

+ S̃(A)S̃(B(f̃1/2))
(
S(A) − S̃(A)

)
f̃0. (2.9c)

Now we estimate the three terms in (2.9) independently. For (2.9a) we get
∥∥∥
(
S(A) − S̃(A)

)
S(B(f̂1/2))S(A)f̃0

∥∥∥

=
∥∥∥(P − 1)

(
S(A)S(B(f̂1/2))S(A)f̃0

)∥∥∥

≤
∥∥∥(P − 1)

(
S(A)S(B(f̂1/2))S(A)(P − 1)f0

)∥∥∥+
∥∥∥(P − 1)

(
S(A)S(B(f̂1/2))S(A)f0

)∥∥∥ .

12 L. EINKEMMER AND A. OSTERMANN

Now for the first term in this expression we can employ classical results (Theorem 2.3)
as f0 is sufficiently often differentiable. This yields

∥∥∥(P − 1)
(
S(A)S(B(f̂1/2))S(A)(P − 1)f0

)∥∥∥ ≤ Ch`+1.

To bound (2.9b), we write

(P − 1)
(
S(A)S(B(f̂1/2))S(A)f0

)
= (P − 1)

(
S(A)S(B(f1/2))S(A)f0

)

+ (P − 1)
(
S(A)

(
S(B(f̂1/2)) − S(B(f1/2))

)
S(A)f0

)
,

where the first part can be bounded by a classical result. For the second part, we get
(by employing Lemma 2.5)

∥∥∥(P − 1)
(
S(A)

(
S(B(f̂1/2)) − S(B(f1/2))

)
S(A)f0

)∥∥∥

≤ Cτ‖E(f̂1/2)− E(f1/2)‖ max
σ∈[0,τ]

∥∥∥∂v
(

eσB(f1/2)S(A)f0

)∥∥∥ ,

where the derivative is bounded as it is applied to a differentiable function.
With the help of Theorem 2.4, the term (2.9c) can be bounded by

∥∥∥S̃(A)S̃(B(f̃1/2))
(
S(A) − S̃(A)

)
f̃0

∥∥∥ ≤ C
∥∥∥
(
S(A) − S̃(A)

)
f̃0

∥∥∥

= C
∥∥∥(1− P)S(A)f̃0

∥∥∥
≤ Ch`+1.

To estimate (2.9b) we write

S̃(A)
(
S(B(f̂1/2)) − S̃(B(f̃1/2))

)
S(A)f̃0 = S̃(A)

(
S(B(f̂1/2)) − S̃(B(f̃1/2))

)
S(A)(P − 1)f0

+ S̃(A)
(
S(B(f̂1/2)) − S̃(B(f̃1/2))

)
S(A)f0.

The first part can be estimated by classical results. For the second part, we have
∥∥∥S̃(A)

(
S(B(f̂1/2)) − S̃(B(f̃1/2))

)
S(A)f0

∥∥∥

≤
∥∥∥S̃(A)

(
S(B(f̂1/2)) − S(B(f1/2))

)
S(A)f0

∥∥∥

+
∥∥∥S̃(A)

(
S̃(B(f1/2)) − S̃(B(f̃1/2))

)
S(A)f0

∥∥∥

+
∥∥∥S̃(A)(P − 1)S(B(f1/2))S(A)f0

∥∥∥

≤ Cτ‖E(f̂1/2)− E(f1/2)‖ max
σ∈[0,τ]

∥∥∥∂v
(

eσB(f1/2)S(A)f0

)∥∥∥

+ Cτ‖E(f̃1/2)− E(f1/2)‖ max
σ∈[0,τ]

∥∥∥∂v
(

eσB(f1/2)S(A)f0

)∥∥∥+ Ch`+1,

which is again a consequence of Lemma 2.5.
As in the last lemma E is given by equation (2.3) and thus it follows that

‖E(f̂1/2)− E(f1/2)‖ ≤ C‖f̂1/2 − f1/2‖ = C‖S(A)(P − 1)f0‖ ≤ Ch`+1

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 13

and

‖E(f̃1/2)− E(f1/2)‖ ≤ C‖f̃1/2 − f1/2‖ ≤ C(‖(P − 1)S(A)f̃0‖+ ‖(P − 1)f0‖) ≤ Ch`+1,

which concludes the proof.

Theorem 2.8 (Consistency). Suppose that f0 ∈ Cmax{`+1,3}
per,c . Then

‖Pf(h)− S̃f̃0‖ ≤ C
(
τ3 + τh`+1 + h`+1

)
,

where C depends on ‖f0‖Cmax{`+1,3}
per,c

(but not on τ and h).

Proof. We write

‖Pf(h)− S̃f̃0‖ = ‖Pf(h)− PSf0 + PSf0 − Sf0 + Sf0 − Sf̃0 + Sf̃0 − S̃f̃0‖
≤ ‖P (f(h)− Sf0) ‖+ ‖PSf0 − Sf0‖+ ‖Sf0 − Sf̃0‖+ ‖Sf̃0 − S̃f̃0‖
≤ Cτ3 + Ch`+1 + ‖Sf0 − Sf̃0‖+ ‖Sf̃0 − S̃f̃0‖,

where the first term was bounded by Theorem 4.9 in [11]. The two remaining terms
can be bounded by Lemmas 2.6 and 2.7 to give the desired estimate.

2.9. Convergence. To show consistency it was most convenient to bound all
terms in the infinity norm. Bounds in the L1 or L2 norms then follow since we consider
a compact domain in space and velocity. However, for stability (and thus convergence)
we need to bound the operator norm of the projection operator P by 1. Since such
a bound is readily available in the L2 norm (as an orthogonal projection is always
non-expansive in the corresponding norm) we will use it to show convergence. Note
that this is not a peculiarity of our discontinuous Galerkin scheme. For example, in
[5] stability for two schemes based respectively on spline and Lagrange interpolation
is shown in the L2 norm only.

Theorem 2.9 (Convergence). For the numerical solution of (2.1) we employ
the scheme (2.6). Suppose that the initial value f0 ∈ Cmax{`+1,3} is non-negative and
compactly supported in velocity. Then, the global error satisfies the bound

sup
0≤n≤N

∥∥∥∥∥

(
n−1∏

k=0

S̃k

)
f̃0 − f(nτ)

∥∥∥∥∥
2

≤ C
(
τ2 +

h`+1

τ
+ h`+1

)
,

where C depends on T but is independent of τ, h, n for 0 ≤ nτ ≤ Nτ = T .
Proof. From (2.6) we get

f̃n+1/2 = S̃(A)

(
n−1∏

m=0

S̃(A)P eτB(f̃m+1/2)S̃(A)

)
f̃0.

Now we can derive a recursion for the error in the L2 norm

en+1 = ‖f̃n+1 − f(nτ + τ)‖2
= ‖S̃(A)P eτB(f̃n+1/2)S̃(A)f̃n − f(nτ + τ)‖2
≤ ‖S̃(A)P eτB(f̃n+1/2)S̃(A)f̃n − S̃(A)P eτB(P e

τ
2
APf(nτ))S̃(A)f̃n‖2

+ ‖S̃(A)P eτB(P e
τ
2
APf(nτ))S̃(A)(f̃n − f(nτ))‖2

+ ‖S̃(A)P eτB(P e
τ
2
APf(nτ))S̃(A)(1− P)f(nτ)‖2

+ ‖S̃(A)P eτB(P e
τ
2
APf(nτ))S̃(A)Pf(nτ)− Pf(nτ + τ)‖2

+ ‖(P − 1)f(nτ + τ)‖2.

14 L. EINKEMMER AND A. OSTERMANN

Since f̃n is piecewise polynomial and thus absolutely continuous almost everywhere,
we can estimate the first term with the help of Lemma 2.5. The fourth term can be
estimated by using Theorem 2.8. This gives us

en+1 ≤ Cτ‖f̃n+1/2 − P e
τ
2APf(nτ)‖2 + ‖f̃n − f(nτ)‖2 + C

(
τ3 + τh`+1 + h`+1

)

≤ (1 + Cτ)ek + C
(
τ3 + τh`+1 + h`+1

)
.

Applying a discrete Gronwall lemma to the above recursion then gives

en+1 ≤ eCT e0 + C

(
τ2 + h`+1 +

h`+1

τ

)

≤ C
(
τ2 + h`+1 +

h`+1

τ

)
,

which is the desired bound as the constant C can be chosen uniformly in [0, T]. This
follows from the regularity result (Theorem 2.1) which gives us the desired bound
for Theorem 2.8 if f0 ∈ Cmax{`+1,3} is non-negative and compactly supported with
respect to velocity.

2.10. Extension to higher dimensions. In three dimensions the splitting
scheme is given by (for simplicity we consider a single time step only and thus drop
the corresponding indices)

S(A)f(x,v) = f
(
x− τ

2
v,v

)
, (2.10)

S(B)f(x,v) = f(v,x− τE(f1/2,x)). (2.11)

The expression in equation (2.10) can be easily decomposed into three translation in
a single dimension, i.e.

S(A) = e
τ
2Axe

τ
2Aye

τ
2Az

with Ax = −vx∂x, Ay = −vy∂y, and Az = −vz∂z.
The discussion is more subtle for the expression in equation (2.11). In this case

we can still use the decomposition given above; however, if we introduce a space
discretization we will have to project back not onto a 1 + 1 dimensional space but
onto 1 + 3 dimensional space. This is an important implementation detail; however,
the convergence proof is (except for notational difficulties) unaffected.

Most of the derivation in this paper is conducted within the framework of abstract
operators. Such results are equally applicable to the three dimensional case. Note
that in Lemmas 2.6 and 2.7 we have to consider a more general differentiation operator
(i.e. a directional derivative). However, since the existence and regularity results are
not restricted to the 1 + 1 dimensional case (see [14]), we expect that these results
remain valid as well.

It then remains to generalize the discussion given in [11] to multiple dimensions
in the case of the Vlasov–Poisson equation. The abstract results hold independently
of the dimension and the specific details of the operators A and B. However, the
remaining computations, which have to be conducted to show that the three dimen-
sional Vlasov–Poisson equations in fact fits into the framework given in [11], are at
the very least tedious in nature.

In summary, we expect the convergence result presented here to be valid also in
the three-dimensional case. A formal proof of this statement would be interesting in
its own. However, such an undertaking is beyond the scope of the current paper.

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 15

3. Numerical simulations. The purpose of this section is to perform a number
of numerical simulations in order to establish the validity of the implementation.
The recurrence phenomenon in the context of higher order implementations in space
is discussed in section 3.1. In section 3.2 the order of the method in the strong
Landau damping problem is investigated. We will also reproduce some medium time
integration results for linear Landau damping (section 3.3) and investigate the stability
for the Molenkamp–Crowley test problem (section 3.4).

The computer program used for the numerical simulations performed in this sec-
tion is implemented in C++. It employs heavily the concept of templates and operator
overloading to provide a compact implementation that is easily extendable to the
multi dimensional case. As a result, the core program consists of only about 800 lines
of source code (excluding unit tests but including all the logic needed to carry out the
simulations in this section) while still maintaining an implementation with adequate
performance to carry out a wide range of numerical experiments.

For all simulations conducted in this section, we employ periodic boundary con-
ditions in both the space- and the velocity-direction. The value for vmax is chosen, by
conducting numerical experiments, such that it does not intefer with the accuracy of
the simulations conducted.

3.1. Recurrence. It is well known that piecewise constant approximations in
velocity space lead to a recurrence phenomenon that is purely numerical in origin. This
behavior has been investigated, for example, in [8] and [18]. In [28] it is demonstrated
by a number of numerical experiments that in the weak Landau damping problem
this phenomenon is also purely a numerical artefact.

From an analytical point of view the recurrence phenomenon is most easily un-
derstood for an advection equation, i.e. a function f(t, x, v) satisfying the equation

∂tf = −v∂xf. (3.1)

For its numerical solution consider a piecewise constant approximation of f in ve-
locity space. This approximation results in slices in velocity space that correspond
to the average velocity in a particular cell. Let us further assume that the velocity
space [−vmax, vmax] consists of an odd number of cells and that the interval [0, 4π] is
employed in the space direction. Then the solution of (3.1) is a periodic function in
time and the period p is easily determined to be

hvp = 4π.

That this is only a numerical artefact is a simple consequence of the fact that p tends
to infinity as hv tends to 0. However, for the purpose of this section it is instructive
to compute the exact solution for the following initial value

f0(x, v) =
e−v

2/2

√
2π

(
1 + 0.01 cos(0.5x)

)
.

The solution of (3.1) is then given by

f(t, x, v) =
e−v

2/2

√
2π

(
1 + 0.01 cos(0.5x− 0.5vt)

)
.

This function, however, is not periodic in time (with a period being independent of
v). To represent this more clearly, we compute the electric energy

E(t) =

∫ 4π

0

E(t, x)2dx =
π

1250
e−0.25t

2

, (3.2)

16 L. EINKEMMER AND A. OSTERMANN

where the electric field E(t, x) is determined as before by

E(t, x) =

∫ L

0

K(x, y)

(∫

R
f(t, y, v)dv − 1

)
dy.

Note that the kernel K(x, y) is defined in equation (2.3). Thus, the electric energy is
exponentially decreasing for the exact solution (but periodic in time for the numerical
solution). One might naively expect that this phenomenon vanishes as soon as one
considers an approximation of degree at least 1 in the velocity direction. While it is
true that the solution is no longer periodic, as can be seen from Figure 3.1, errors
in the velocity approximation still result in a damped recurrence of the electric field.
Note that the size of this recurrence effect seems to be determined by the space
discretization error.

As mentioned before the recurrence phenomenon is also visible in the Landau
damping problem. This is shown in Figure 3.2.

3.2. Order. We can investigate both, the order of convergence in time (i.e. where
the space error is small enough over the range of step sizes τ we are interested in) and
the order of convergence in space (i.e. where the step size is chosen small enough such
that the time integration error is negligible). The order of the time integration has
already been investigated in [11]. Thus, we focus on the convergence order in space.

Let us consider the Vlasov–Poisson equations in 1+1 dimensions together with
the initial value

f0(x, v) =
1√
2π

e−v
2/2
(
1 + α cos(0.5x)

)
.

This problem is called Landau damping. For α = 0.01 the problem is called linear
or weak Landau damping and for α = 0.5 it is referred to as strong or non-linear
Landau damping. As can be seen, for example, in [9, 13] and [25] Landau damping is
a popular test problem for Vlasov codes.

In our numerical simulations, all errors are computed with respect to a reference
solution (such as to exclude unwanted effects from the time discretization). The
reference solution uses 512 cells with ` = 2 and a time step of τ = 0.1. The results
for strong Landau damping are given, up to order 3, in Figure 3.3. It can be seen
that the accuracy improves with the desired order as the cell size decreases. Thus,
the results are in good agreement with the theory developed in this paper.

3.3. Landau damping. The Landau damping problem has already been intro-
duced in the previous section. In this section we are not interested in the desired
order of the numerical algorithm but in the comparison with the exact solution of the
Vlasov–Poisson equations. However, since an exact solution of the full Vlasov–Poisson
equations is not known we will instead use a result that gives us the asymptotic decay
rate γ of the electric field in the case of weak Landau damping (see e.g. [1]). Thus,
we compare the decay of the energy stored in the electric field with the graph of
e−2γt, where γ ≈ 0.1533. A number of such simulations have already been conducted
(see e.g. [28]). However, due to the recurrence effect usually a large number of cells
have to be employed in order to get accurate results for medium to long time inter-
vals. For reference we note that [28] uses Nx = Nv = 1024 whereas [16] uses up to
Nx = 2000, Nv = 1600. The results of our simulation are shown in Figure 3.4 (the
number of cells is Nx = Nv = 256 and Nx = Nv = 128 for ` = 1, 2 and Nx = Nv = 64
for ` = 1, 2, 4). This experiment clearly shows that high-order approximations in
space and velocity pay off.

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 17

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

e
le

ct
ri

c
e
n
e
rg

y

t

Nv=32, l=0
Nv=64, l=0
Nv=32, l=2

exact solution

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

re
la

ti
v
e
 e

rr
o
r

o
f

f
(d

is
cr

e
te

 L
2

 n
o
rm

)

t

Nv=32, l=0
Nv=64, l=0
Nv=32, l=2

Fig. 3.1. Recurrence phenomenon for the advection equation (top). Note that while there is no
periodicity in the second-order approximation a recurrence-like effect from the finite cell size is still
visible. The (absolute) error as compared with the exact solution given in (3.2) in the discrete L2

norm (bottom) behaves as expected. In all simulations 32 cells and an approximation of order 2 (i.e.
` = 1) have been employed in the space direction. The number of cells and the order of discretization
in the velocity direction is indicated in the legend. In all computations τ = 0.05 is used.

3.4. Stability. In advection dominated problems instabilities can occur if the
numerical integration is not performed exactly. In [21] this is shown for the Molenkamp–
Crowley test problem, i.e.

{
∂tf(t, x, y) = 2π(y∂x − x∂y)f(t, x, y)

f(0, x, v) = f0(x, y),
(3.3)

18 L. EINKEMMER AND A. OSTERMANN

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

e
le

ct
ri

c
e
n
e
rg

y

t

Nv=32, l=0
Nv=64, l=0
Nv=32, l=2

analytic decay rate

Fig. 3.2. The recurrence phenomenon for Landau damping. Note that even though a higher
order of approximation in the velocity direction improves the solution a recurrence-like effect is still
visible. In all computations τ = 0.05 is used.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 32 64 128

e
rr

o
r

(d
is

cr
e
te

 L
2

 n
o
rm

)

N

l=0
l=1
l=2

order 1
order 2
order 3

Fig. 3.3. Error of the particle density function f(1, ·, ·) for non-linear Landau damping on
the domain [0, 4π] × [−6, 6] as a function of N , the number of cells in both the space and velocity
direction.

where

f0(x, y) =

{
cos2(2πr) r ≤ 1

4

0 else

with r2 = (x + 1
2)2 + y2. The solution travels along a circle with period 1. We will

solve the same problem using the algorithm presented in this paper and show that no

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 19

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

e
le

ct
ri

c
e
n
e
rg

y

t

Nv=64, l=1
Nv=64, l=2
Nv=64, l=4

analytic decay rate

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

e
le

ct
ri

c
e
n
e
rg

y

t

Nv=128, l=1
Nv=128, l=2

analytic decay rate

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

e
le

ct
ri

c
e
n
e
rg

y

t

Nv=256, l=1
Nv=256, l=2

analytic decay rate

Fig. 3.4. The decay of the electric field is shown for Nx = Nv = 256 (top), Nx = Nv = 128
(middle), and Nx = Nv = 64 (bottom). In all cases a relatively large time step of τ = 0.2 is
employed.

20 L. EINKEMMER AND A. OSTERMANN

instabilities occur if a quadrature rule of appropriate order is used. This results are
given in Figure 3.5. Note that this is exactly what is expected based on the theoretical
analysis done in section 2. However, it is not true that such stability results hold for
arbitrary schemes (see e.g. [21], where a finite element scheme of order 2 is shown to
be unstable for most quadrature rules).

4. Conclusion. In the present paper we have extended the convergence analysis
conducted in [11] to the fully discretized case using a discontinuous Galerkin approx-
imation in space. The results are only presented in case of the 1 + 1 dimensional
Vlasov–Poisson equation. However, we have given a short argument outlining the
reasons why we expect that the extension to multiple dimensions, although tedious,
is possible. In addition, we have presented a number of numerical simulations that
investigate the behavior of the proposed algorithm. These simulations suggest, in line
with similar results for other high order schemes, that the algorithm is advantageous
(in that fewer data points for the space discretization are required) as compared to
similar schemes which employ a piecewise constant approximation in space and veloc-
ity. In addition, the desirable features of the discontinuous Galerkin method, namely
the locality of the approximation, is preserved.

Acknowledgments. We thank the referees for giving constructive remarks that
helped us to improve the presentation of this paper.

REFERENCES

[1] T.D. Arber and R. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers, J.
Comput. Phys., 180 (2002), pp. 339–357.

[2] E.A. Belli, Studies of numerical algorithms for gyrokinetics and the effects of shaping on
plasma turbulence, PhD thesis, Princeton University, 2006.

[3] N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson
system, SIAM J. Numer. Anal., 42 (2005), pp. 350–382.

[4] , Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for
the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal., 46 (2008), pp. 639–
670.

[5] N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian
schemes for the Vlasov-Poisson system, Math. Comp., 77 (2008), pp. 93–123.

[6] M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced
Vlasov-Maxwell system for laser-plasma interaction, Numer. Math., 112 (2009), pp. 169–
195.

[7] F. Charles, B. Després, and M. Mehrenberger, Enhanced convergence estimates for semi-
Lagrangian schemes. Application to the Vlasov–Poisson equation, SIAM J. Numer. Anal.,
51 (2013), pp. 840–863.

[8] C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J.
Comput. Phys., 22 (1976), pp. 330–351.

[9] N. Crouseilles, E. Faou, and M. Mehrenberger, High order Runge–Kutta–Nyström split-
ting methods for the Vlasov–Poisson equation.
http://hal.inria.fr/inria-00633934/PDF/cfm.pdf.

[10] N. Crouseilles, M. Mehrenberger, and F. Vecil, Discontinuous Galerkin semi-Lagrangian
method for Vlasov–Poisson, in ESAIM Proc., CEMRACS 2010, vol. 32, 2011, pp. 211–230.

[11] L. Einkemmer and A. Ostermann, Convergence analysis of Strang splitting for Vlasov–type
equations. To appear in SIAM J. Numer. Anal., 2013.

[12] M.R. Fahey and J. Candy, GYRO: A 5-d gyrokinetic-Maxwell solver, Proceedings of the
ACM/IEEE SC2004 Conference, (2008), p. 26.

[13] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys.
Comm., 150 (2003), pp. 247–266.

[14] R.T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996.
[15] R.E. Heath, Analysis of the Discontinuous Galerkin Method Applied to Collisionless Plasma

Physics, PhD thesis, The University of Texas at Austin, 2007.

CONVERGENCE ANALYSIS STRANG SPLITTING & DISCONTINUOUS GALERKIN 21

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y

x

max: 1.0
min: -0.002

0.9
0.7

0.4

0.1

0

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y

x

max: 0.998
min: -0.01

0.9
0.7

0.4

0.1

0

Fig. 3.5. Stability for the Molenkamp–Crowley test problem. The initial value is displayed at
the top. The numerical solution after 60 revolutions with τ = 0.02, Nx = Nv = 40, and ` = 2 is
shown at the bottom. As expected no numerical instabilities are observed. The negative values in the
numerical solution are a consequence of the space discretization error and are propagated in space
by the numerical algorithm (see the complex contour line of 0 at the bottom). However, this fact
has no influence on the stability of the scheme.

22 L. EINKEMMER AND A. OSTERMANN

[16] R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler, A discontinuous Galerkin method
for the Vlasov-Poisson system, J. Comput. Phys., 231 (2011), pp. 1140–1174.

[17] T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000),
pp. 735–744.

[18] S.M.H. Jenab, I. Kourakis, and H. Abbasi, Fully kinetic simulation of ion acoustic and
dust-ion acoustic waves, Phys. Plasmas, 18 (2011), p. 073703.

[19] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek, A numerical scheme for
the integration of the Vlasov-Maxwell system of equations, J. Comput. Phys., 179 (2002),
pp. 495–538.

[20] M. Mehrenberger, C. Steiner, L. Marradi, N. Crouseilles, E. Sonnendrücker, and
B. Afeyan, Vlasov on GPU (VOG project), arXiv preprint, arXiv:1301.5892, (2013).

[21] K.W. Morton, A. Priestley, and E. Süli, Stability of the Lagrange-Galerkin method with
non-exact integration, Modél. Math. Anal. Numér., 22 (1988), pp. 625–653.

[22] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer, 2003.
[23] J.M. Qiu and C.W. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin for-

mulation: theoretical analysis and application to the Vlasov–Poisson system, J. Comput.
Phys., 230 (2011), pp. 8386–8409.

[24] T. Respaud and E. Sonnendrücker, Analysis of a new class of forward semi-Lagrangian
schemes for the 1D Vlasov Poisson equations, Numer. Math., 118 (2011), pp. 329–366.

[25] J.A. Rossmanith and D.C. Seal, A positivity-preserving high-order semi-Lagrangian discon-
tinuous Galerkin scheme for the Vlasov–Poisson equations, J. Comput. Phys., 230 (2011),
pp. 6203–6232.

[26] A. Shadrin, Twelve proofs of the Markov inequality, in Approximation Theory: A volume
dedicated to Borislav Bojanov, D.K. Dimitrov et al., eds., Marin Drinov Acad. Publ. House,
Sofia, 2004, pp. 233–298.

[27] H. Yang and F. Li, Error estimates of Runge–Kutta discontinuous Galerkin methods for the
Vlasov–Maxwell system, arXiv preprint, arXiv:1306.0636, (2013).

[28] T. Zhou, Y. Guo, and C.W. Shu, Numerical study on Landau damping, Phys. D, 157 (2001),
pp. 322–333.

C Exponential integrators on graphic process-

ing units

Journal Proceedings of the 2013 International Conference on
High Performance Computing & Simulation (HPCS 2013)

Authors Lukas Einkemmer, Alexander Ostermann
submitted 26.02.2013
accepted 23.04.2013

62

Exponential Integrators on Graphic Processing Units
Lukas Einkemmer, Alexander Ostermann

Department of Mathematics
University of Innsbruck

Innsbruck, Austria
lukas.einkemmer@uibk.ac.at, alexander.ostermann@uibk.ac.at

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—In this paper we revisit stencil methods on GPUs
in the context of exponential integrators. We further discuss
boundary conditions, in the same context, and show that simple
boundary conditions (for example, homogeneous Dirichlet or
homogeneous Neumann boundary conditions) do not affect the
performance if implemented directly into the CUDA kernel. In
addition, we show that stencil methods with position-dependent
coefficients can be implemented efficiently as well. As an appli-
cation, we discuss the implementation of exponential integrators
for different classes of problems in a single and multi GPU setup
(up to 4 GPUs). We further show that for stencil based methods
such parallelization can be done very efficiently, while for some
unstructured matrices the parallelization to multiple GPUs is
severely limited by the throughput of the PCIe bus.

Keywords—GPGPU, exponential integrators, time integration
of differential equations, stencil methods, multi GPU setup

I. INTRODUCTION

The emergence of graphic processing units as a massively
parallel computing architecture as well as their inclusion in
high performance computing systems have made them an
attractive platform for the parallelization of well established
computer codes.

Many problems that arise in science and engineering can be
modeled as differential equations. In most circumstances the
resulting equations are sufficiently complex such that they can
not be solved exactly. However, an approximation computed
by the means of a given numerical scheme can still serve as
a valuable tool for scientists and engineers. The collection of
techniques generally referred to as general-purpose computing
on graphics processing units (GPGPU) provide the means to
speed up such computations significantly (see e.g. [1] or [2]).

If a finite difference approximation in space is employed
(such methods are widely used in computational fluid dynam-
ics, for example), stencil methods provide an alternative to
storing the matrix in memory (see e.g. [3]). In many instances,
this is advantageous both from a memory consumption as well
as from a performance standpoint. The resulting system of
ordinary differential equations then has to be integrated in
time.

Much research has been devoted to the construction of effi-
cient time integration schemes as well as their implementation

(see e.g. [4] and [5]). The implementation of Runge–Kutta
methods, which are the most widely known time integration
schemes, on GPUs for ordinary differential equations can
result in a significant speedup (see [1]). However, a class of
problems has been identified, so called stiff problems, where
standard integration routines (such as the above mentioned
Runge–Kutta methods) are inefficient (see e.g. [6]).

Exponential integrators are one class of methods that avoid
the difficulties of Runge–Kutta method if applied to stiff
problems. For such schemes analytical functions (e.g. the
exponential function) of large matrices have to be computed.
Exponential integrators and some of their applications are
discussed in detail in [6]. In this paper we will consider
a polynomial interpolation scheme to compute the matrix
functions; this essentially reduces the problem of efficiently
implementing exponential integrators to sparse matrix-vector
multiplication as well as computing the nonlinearity of a
given differential equation. The computation of matrix-vector
multiplications, e.g. by using stencil methods, is usually the
most time intensive part of any exponential integrator; thus,
an efficient implementation of stencil methods is vital.

A. Research problems & Results

In the literature, see section II-B, stencil methods are
considered for trivial boundary conditions in the context of a
differential operator with constant coefficients (i.e. the Lapla-
cian). Such simplifying assumptions, however, are usually
not satisfied in a given application. It is not clear from
the literature how much stencil methods can be extended
beyond the situation described above while still maintaining
an efficient implementation. We propose a method based on
the integration of boundary conditions and position-dependent
coefficients directly into the CUDA kernel and show that such
methods can be applied widely without a significant impact
on performance.

In addition, it has been shown in [2] that stencil meth-
ods can be efficiently parallelized to at least 4 GPUs. Our
objective is to show that such results can be generalized to
implementations of exponential integrators for a large class of
nonlinearities.

The remainder of this paper is structured as follows. In sec-
tion II-A a introduction explaining the GPU architecture and

the corresponding programming model is given. In addition,
we discuss previous work which considers the implementation
of stencil methods on GPUs and elaborate on the necessary
steps to efficiently implement an exponential integrator (sec-
tions II-B and II-C, respectively). In section III we present our
results as summarized below.

• Stencil methods that include simple, but non-trivial,
boundary conditions, such as those required in many ap-
plications, can still be efficiently implemented on GPUs
(section III-A). For homogeneous boundary conditions
on the C2075 33.5 Gflops/s are observed.

• Position dependent coefficients (such as a position de-
pendent diffusion) can efficiently be implemented on the
GPU provided that the coefficients are not extremely
expensive to compute (section III-B). For a real world
example 16 Gflops/s are observed.

• A wide class of nonlinearities can be computed efficiently
on the GPU (section III-C).

• The parallelization of exponential integrators to multiple
GPUs can be conducted very efficiently for discretized
differential operators (perfect scaling to at least 4 GPUs)
and is mainly limited by the throughput of the PCIe
express bus for unstructured matrices (section III-D).

Finally, we conclude in section IV.

II. BACKGROUND & MOTIVATION

A. GPU architecture

A graphic processing unit (GPU) is a massively parallel
computing architecture. At the time of writing two frameworks
to program such systems, namely OpenCL and NVIDIA’s
CUDA, are in widespread use. In this section we will discuss
the hardware architecture as well as the programming model
of the GPU architecture using NVIDIA’s CUDA (all our
implementations are CUDA based). Note, however, that the
principles introduced here can, with some change in termi-
nology, just as well be applied to the OpenCL programming
model. For a more detailed treatment we refer the reader to
[7].

The hardware consists of so called SM (streaming multi-
processors) that are divided into cores. Each core is (as the
analogy suggests) an independent execution unit that shares
certain resources (for example shared memory) with other
cores, which reside on the same streaming multiprocessor.
For example, in case of the C2075, the hardware consists
in total of 448 cores that are distributed across 14 streaming
multiprocessors of 32 cores each.

For scheduling, however, the hardware uses the concept of
a warp. A warp is a group of 32 threads that are scheduled
to run on the same streaming multiprocessor (but possibly on
different cores of that SM). On devices of compute capability
2.0 and higher (e.g. the C2075) each SM consists of 32 cores
(matching each thread in a warp to a single core). However,
for the C1060, where 240 cores are distributed across 30 SM

of 8 core each, even threads in the same warp that take exactly
the same execution path are not necessarily scheduled to run
in parallel (on the instruction level).

To run a number of threads on a single SM has the advan-
tage that certain resources are shared among those threads;
the most notable being the so called shared memory. Shared
memory essentially acts as an L1 cache (performance wise)
but can be fully controlled by the programmer. Therefore, it is
often employed to avoid redundant global memory access as
well as to share certain intermediate computations between
cores. In addition, devices of compute capability 2.0 and
higher are equipped with a non-programmable cache.

The global memory is a RAM (random access memory) that
is shared by all SM on the entire GPU. For the C1060 and
C2075 GPUs used in this paper the size of the global memory
is 4 GB and 6 GB respectively (with memory bandwidth of
102.4 GB/s and 141.7 GB/s respectively), whereas the shared
memory is a mere 16 KB for the C1060 and about 50 KB for
the C2075. However, this memory is available per SM.

From the programmer some of these details are hidden by
the CUDA programming model (most notably the concept of
SM, cores, and warps). If a single program is executed on the
GPU we refer to this as a grid. The programmer is responsible
for subdividing this grid into a number of blocks, whereas each
block is further subdivided into threads. A thread in a single
block is executed on the same SM and therefore has access to
the same shared memory and cache.

GPUs are therefore ideally suited to problems which are
compute bound. However, also memory bound problems, such
as sparse matrix-vector multiplication, can significantly benefit
from GPUs. We will elaborate on this statement in the next
section.

B. Stencil methods and matrix-vector products on GPUs

The parallelization of sparse matrix-vector products to
GPUs has been studied in some detail. Much research effort in
improving the performance of sparse matrix-vector multipli-
cation on GPUs has focused on developing more efficient data
structures (see e.g. [8] or [9]). This is especially important on
GPUs as coalesced memory access is of paramount importance
if optimal performance is to be achieved. Data structures, such
as ELLRT, facilitate coalesced memory access but require
additional memory. This is somewhat problematic as on a
GPU system memory is limited to a greater extend than on
traditional clusters. To remedy this situation a more memory
efficient data structure has been proposed, for example, in [10].
Nevertheless, all such methods are extremely memory bound.

On the other hand, the parallelization of finite difference
computations (called stencil methods in this context) to GPUs
has been studied, for example, in [2] and [3]. Even though
such methods do not have to store the matrix in memory they
are still memory bound; for example, in [3] the flops per byte
ratio is computed to be 0.5 for a seven-point stencil (for double

precision computations) which is still far from the theoretical
rate of 3.5 that a C0275 can achieve. In [3] a performance of
36.5 Gflops/s has been demonstrated for a seven-point stencil
on a GTX280.

Both papers mentioned above do not consider boundary
conditions in any detail. However, in applications of science
and engineering where exponential integrators are applied at
least simple boundary conditions have to be imposed (see
e.g. [6]). In addition, in the literature stated above only
the discretization of the Laplacian is considered. However,
often position-dependent coefficients have to be employed (to
model a position-dependent diffusion as in [11], for example).
In this case it is not clear if stencil methods retain their
superior performance characteristics (as compared to schemes
that store the matrix in memory). We will show in sections
III-A and III-B that for many applications both of these
difficulties can be overcome and stencil methods on GPUs
can be implemented efficiently.

C. Exponential integrators

The step size for the time integration of stiff ordinary differ-
ential equations (or the semidiscretization of partial differential
equations) is usually limited by a stability condition. In order
to overcome this difficulty, implicit schemes are employed
that are usually stable for much larger step sizes; however,
such schemes have to solve a nonlinear system of equations
in each time step and are thus costly in terms of performance.
In many instances the stiffness of the differential equation is
located in the linear part only. In this instance, we can write
our differential equation as a semilinear problem

d

dt
u(t) +Au(t) = g(u(t)), (1)

where in many applications A is a matrix with large negative
eigenvalues and g is a nonlinear function of u(t); it is further
assumed that appropriate initial conditions are given. The
boundary conditions are incorporated into the matrix A. Since
the linear part can be solved exactly, a first-order method, the
exponential Euler method, is given by

un+1 = e−hAun + hϕ1 (−hA) g(un), (2)

where ϕ1 is an entire function. In [6] a review of such methods,
called exponential integrators, is given and various methods
of higher order are discussed. The main advantage, compared
to Runge–Kutta methods, is that an explicit method is given
for which the step size is only limited by the nonlinearity.
It has long been believed that the computation of the matrix
functions in (2) can not be carried out efficiently. However,
if a bound of the field of values of A is known a priori, for
example, polynomial interpolation is a viable option. In this
case the application of Horner’s scheme reduces the problem
to repeated matrix-vector products of the form

(αA+ βI)x, (3)

where A ∈ Kn×n is a sparse matrix, I is the identity matrix,
x ∈ Kn, and α, β ∈ K with K ∈ {R,C}. That such a product

can be parallelized to small clusters has been shown in [12]
(for an advection-diffusion equation that is discretized in space
by finite differences).

Finally, let us discuss the evaluation of the nonlinearity. In
many instances the nonlinearity can be computed pointwise. In
this case its evaluation is expected to be easily parallelizable to
GPUs. In section III-C this behavior is confirmed by numerical
experiments. If the nonlinearity does include differential oper-
ators, such as in Burgers’ equation, the evaluation is essentially
reduced to sparse-matrix vector multiplication, which we will
discuss in some detail in this paper (in the context of stencil
methods).

III. RESULTS

A. Stencil methods with boundary conditions

Let us focus our attention first on the standard seven-point
stencil resulting from a discretization of the Laplacian in three
dimensions, i.e.

(∆x)2 (Au)ix,iy,iz =− 6uix,iy,iz

+ uix+1,iy,iz + uix−1,iy,iz
+ uix,iy+1,iz + uix,iy−1,iz
+ uix,iy,iz+1 + uix,iy,iz−1,

where ∆x is the spacing of the grid points. The corresponding
matrix-vector product given in (3) can then be computed
without storing the matrix in memory. For each grid point we
have to perform at least 2 memory operations (a single read
and a single store) as well as 10 floating point operations (6
additions and 2 multiplication for the matrix-vector product as
well as single addition and multiplication for the second part
of (3)).

One could implement a stencil method that employs 8
memory transactions for every grid point. Following [3] we
call this the naive method. On the other hand we can try to
minimize memory access by storing values in shared memory
or the cache (note that the C1060 does not feature a cache
but the C2075 does). Since no significant 3D slice fits into the
relatively limited shared memory/cache of both the C1060 and
C2075, we take only a 2D slice and iterate over the remaining
index. Similar methods have been implemented, for example,
in [3] and [2]. We will call this the optimized method.

To implement boundary conditions we have two options.
First, a stencil method can be implemented that considers
only grid points that lie strictly in the interior of the domain.
Second, we can implement the boundary conditions directly
into the CUDA kernel. The approach has the advantage that all
computations can be done in a single kernel launch. However,
conditional statements have to be inserted into the kernel.
Since the kernel is memory bound, we do not expect a sig-
nificant performance decrease at least for boundary conditions
that do not involve the evaluation of complicated functions.

The results of our numerical experiments (for both the
naive and optimized method) are given in Table I. Before we
discuss the results let us note that on a dual socket Intel Xeon
E5355 system the aggressively hand optimized stencil method
implemented in [3] gives 2.5 Gflops/s.

In [3] a double precision performance of 36.5 Gflops/s is
reported for a GTX280 of compute capability 1.3. However,
the theoretical memory bandwidth of the GTX280 is 141.7
GB/s and thus, as we have a memory bound problem, it has
to be compared mainly to the C2075 (which has the same
memory bandwidth as the GTX280). Note that the C1060
(compute capability 1.1) has only a memory bandwidth of
102.4 GB/s. In our case we get 39 Gflops/s for no bound-
ary conditions and 33.5 Gflops/s for homogeneous Dirichlet
boundary conditions. Since we do not solve exactly the same
problem, a direct comparison is difficult. However, it is clear
that the implemented method is competitive especially since
we do not employ any tuning of the kernel parameters.

We found it interesting that for the C2075 (compute ca-
pability 2.0) there is only a maximum of 30% performance
decrease if the naive method is used instead of the optimized
method for none or homogeneous boundary conditions (both
in the single and double precision case). Thus, the cache
implemented on a C2075 works quite efficiently in this case.
However, we can get a significant increase in performance for
more complicated boundary conditions by using the optimized
method. In the single precision case the expected gain is offset,
in some instances, by the additional operations that have to be
performed in the kernel (see Table I).

Finally, we observe that the performance for homogeneous
Dirichlet boundary conditions is at most 10% worse than
the same computation which includes no boundary conditions
at all. This difference completely vanishes if one considers
the optimized implementation. This is no longer true if more
complicated boundary conditions are prescribed. For example,
if we set

f(x, y, z) = z(1− z)xy,

for (x, y, z) ∈ ∂([0, 1]3) or

f(x, y, z) = sin(πz) exp(−xy),

for (x, y, z) ∈ ∂([0, 1]3), the performance is decreased by a
factor of about 2 for the C2075 and by a factor of 5-7 for the
C1060. Thus, in this case it is clearly warranted to perform the
computation of the boundary conditions in a separate kernel
launch. Note, however, that the direct implementation is still
faster by a factor of 3 as compared to CUSPARSE and about
40 % better than the ELL format (see [13]). The memory
requirements are an even bigger factor in favor of stencil
methods; a grid of dimension 5123 would already require
10 GB in the storage friendly CSR format. Furthermore,
the implementation of such a kernel is straight forward and
requires no division of the domain into the interior and the
boundary.

B. Stencil methods with a position-dependent coefficient

Let us now discuss the addition of a position-dependent
diffusion coefficient, i.e. we implement the discretization of
D(x, y, z)∆u as a stencil method (this is the diffusive part of
∇·(D∇u)). Compared to the previous section we expect that
the direct implementation of the position-dependent diffusion
coefficient in the CUDA kernel, for a sufficiently complicated
D, results in an compute bound problem. For the particular
choice of D(x, y, z) = 1/

√
1 + x2 + y2, taken from [11], the

results are shown in Table II.

TABLE II
TIMING OF A SINGLE STENCIL BASED MATRIX-VECTOR COMPUTATION

FOR A POSITION DEPENDENT DIFFUSION COEFFICIENT GIVEN BY
D(x, y, z) = 1/

√
1 + x2 + y2 . ALL COMPUTATIONS ARE PERFORMED

WITH n = 2563 .

Double precision
Device Method Time

C1060
Stencil (naive) 37 ms (4.5 Gflops/s)

Stencil (optimized) 42 ms (4 Gflops/s)

C2075
Stencil (naive) 10.7 ms (15.5 Gflops/s)

Stencil (optimized) 10.5 ms (16 Gflops/s)

Single precision
Device Method Time

C1060
Stencil (naive) 37 ms (4.5 Gflops/s)

Stencil (optimized) 45 ms (3.5 Gflops/s)

C2075
Stencil (naive) 10.2 ms (16.5 Gflops/s)

Stencil (optimized) 10.3 ms (16 Gflops/s)

Thus, a performance of 16 Gflops/s can be achieved for
this particular position-dependent diffusion coefficient. This
is a significant increase in performance as compared to a
matrix-based implementation. In addition, the same concerns
regarding storage requirements, as raised above, still apply
equally to this problem. No significant difference between the
naive and optimized implementation can be observed; this is
due to the fact that this problem is now to a large extend
compute bound.

Finally, let us note that the results obtained in Tables I and
II are (almost) identical for the n = 5123 case. Thus, for the
sake of brevity, we choose to omit those results.

C. Evaluating the nonlinearity on a GPU

For an exponential integrator, usually the most time con-
suming part is evaluating the exponential and ϕ1 function.
Fortunately, if the field of values of A can be estimated a
priori, we can employ polynomial interpolation to reduce that
problem to matrix-vector multiplication; a viable possibility
is interpolation at Leja points (see [6]). Then, our problem
reduces to the evaluation of a series of matrix-vector products
of the form given in (3) and discussed in the previous
section and the evaluation of the nonlinearity for a number
of intermediate approximations. In this section we will be

TABLE I
TIMING OF A SINGLE STENCIL BASED MATRIX-VECTOR COMPUTATION FOR A NUMBER OF IMPLEMENTATIONS AND BOUNDARY CONDITIONS. THE

CORRESPONDING GFLOPS/S ARE SHOWN IN PARENTHESES. ALL COMPUTATIONS ARE PERFORMED WITH n = 2563 .

Device Boundary Method Double Single

C1060

None
Stencil (naive) 13.8 ms (12 Gflops/s) 8.2 ms (20.5 Gflops/s)

Stencil (optimized) 7.6 ms (22 Gflops/s) 8.0 ms (21 Gflops/s)

Homogeneous
Dirichlet

Stencil (naive) 13.4 ms (12.5 Gflops/s) 7.6 ms (22 Gflops/s)
Stencil (optimized) 8.8 ms (19 Gflops/s) 9.2 ms (18 Gflops/s)

z(1− z)xy Stencil (optimized) 36 ms (4.5 Gflops/s) 39 ms (4.5 Gflops/s)
sin(πz) exp(−xy) Stencil (optimized) 54 ms (3 Gflops/s) 56 ms (3 Gflops/s)

C2075

None
Stencil (naive) 5.5 ms (30.5 Gflops/s) 3.1 ms (54 Gflops/s)

Stencil (optimized) 4.3 ms (39 Gflops/s) 2.9 ms (58 Gflops/s)

Homogeneous
Dirichlet

Stencil (naive) 6 ms (28 Gflops/s) 3.5 ms (48 Gflops/s)
Stencil (optimized) 5 ms (33.5 Gflops/s) 3.9 ms (43 Gflops/s)

z(1− z)xy
Stencil (naive) 12.3 ms (13.5 Gflops/s) 6.9 ms (24 Gflops/s)

Stencil (optimized) 7 ms (24 Gflops/s) 6.0 ms (28 Gflops/s)

sin(πz) exp(−xy) Stencil (naive) 14.3 ms (11.5 Gflops/s) 13.8 ms (12 Gflops/s)
Stencil (optimized) 9.7 ms (17.5 Gflops/s) 6.8 ms (24.5 Gflops/s)

concerned with the efficient evaluation of the nonlinearity on
a GPU.

Since the nonlinearity is highly problem dependent, let us
– for the sake of concreteness – take a simple model problem,
namely the reaction-diffusion equation modeling combustion
in three dimensions (see [14, p. 439])

ut = ∆v + g(u) (4)

with nonlinearity

g(u) =
1

4
(2− u)e20(1−

1
u)

and appropriate boundary conditions as well as an initial
condition.

In addition to the discretization of the Laplacian which
can be conducted by stencil methods (as described in section
III-A) the parallelization of the nonlinearity can be conducted
pointwise on the GPU. That is (in a linear indexing scheme)
we have to compute

1

4
(2− ui)e20

(
1− 1

ui

)
, 0 ≤ i < n. (5)

This computation requires only two memory operations per
grid point (one read and one store); however, we have to
perform a single division and a single exponentiation. Since
those operations are expensive, the problem is expected to be
compute bound. The results of our numerical experiments are
shown in Table III.

As expected, the GPU has a significant advantage over our
CPU based system in this case. Fast math routines can be
employed if precision is not critical and the evaluation of
the nonlinearity contributes significantly to the runtime of the
program. Let us duly note that the speedups observed here
can not be extended to the entire exponential integrator as
the sparse-matrix vector multiplication is usually the limiting
factor.

TABLE III
TIMING OF A SINGLE COMPUTATION OF THE NONLINEARITY GIVEN IN (5).

RESULTS FOR BOTH FULL PRECISION COMPUTATIONS AS WELL AS THE
FAST MATH ROUTINES IMPLEMENTED IN THE GPU ARE LISTED. AS A
REFERENCE A COMPARISON TO A DUAL SOCKET INTEL XENON E5620

SETUP IS PROVIDED.

Double precision
Device Method n = 2563 n = 5123

2x Xenon E5620 OpenMP 480 ms 4 s

C1060
Full precision 14.6 ms 120 ms

Fast math 6.9 ms 55 ms

C2075
Full precision 4.2 ms 33 ms

Fast math 2.4 ms 20 ms

Single precision
Device Method n = 2563 n = 5123

2x Xenon E5620 OpenMP 515 ms 4 s

C1060
Full precision 15.4 ms 120 ms

Fast math 7.6 ms 61 ms

C2075
Full precision 2.6 ms 34 ms

Fast math 1.6 ms 19 ms

The nonlinearity of certain semi-linear PDEs resemble
more the performance characteristics of the stencil methods
discussed in sections III-A and III-B. For example, Burgers’
equation, where g(u) = (u·∇)u, falls into this category. Such
nonlinearities can be efficiently implemented by the methods
discussed in sections III-A and III-B.

If we combine sections III-A, III-B and III-C we have all
ingredients necessary to conduct an efficient implementation
of exponential integrators on a single GPU. The specific
performance characteristics depend on the form of the linear
as well as the nonlinear part of the differential equation under
consideration. In the next section we will turn our attention to
the parallelization of exponential integrators to multiple GPUs.

D. Multiple GPU implementation of exponential integrators

If we consider the problem introduced in (4) to be solved
with an exponential integrator, we have at least two possi-
bilities to distribute the workload to multiple GPUs. First,
one could compute the different matrix functions on different
GPUs. However, since even for higher order schemes we
only have to evaluate a small number of distinct matrix
functions, this approach is not very flexible and depends on
the method under consideration. However, if we are able to
implement a parallelization of the matrix-vector product and
the nonlinearity onto multiple GPUs, a much more flexible
approach would result.

Such an undertaking however is limited by the fact that in
the worst case we have to transfer

(m− 1)n (6)

floating point numbers over the relatively slow PCIe bus (m
is the number of GPUs whereas n is, as before, the problem
size). However, in the case of differential operators only a
halo region has to be updated after every iteration and thus
the actual memory transfer is a tiny fraction of the value
given by (6). Such a procedure was suggested in [12] for
use on a cluster, where parallelization is mainly limited by
the interconnection between different nodes. For performance
reasons on a GPU it is advantageous to first flatten the
halo regions in memory and copy it via a single call to
cudaMemcpy to the device. Then the vector is updated by
using that information in a fully parallelized way on the GPU.
As can be seen from the results given in Table IV, the problem
in (4) shows good scaling behavior (at least) up to 4 GPUs.

TABLE IV
PERFORMANCE COMPARISON FOR THE COMBUSTION MODEL DISCUSSED
IN SECTION III-C FOR A SINGLE TIME STEP USING 40 MATRIX-VECTOR

PRODUCTS (A TOLERANCE OF TOL = 10−4 WAS PRESCRIBED FOR A TIME
STEP OF SIZE 10−4). A FINITE DIFFERENCE DISCRETIZATION WITH

n = 2563 HAS BEEN USED.

Double precision

Device Method Number
units

Time

2x Xenon E5620 CSR/OpenMP 2 9.5 s

C1060 Stencil
hom. Dirichlet

1 1.5 s
4 320 ms

C2075 Stencil
hom. Dirichlet

1 1.2 s

Single precision

Device Method Number
units

Time

2x Xenon E5620 CSR/OpenMP 2 5.6 s

C1060 Stencil
hom. Dirichlet

1 1.2 s
4 540 ms

C2075 Stencil
hom. Dirichlet

1 210 ms

Let us now discuss a different example. In certain discrete
quantum systems, for example, the solution of (see, e.g., [15])

∂tψ = H(t)ψ

is to be determined, where ψ is a vector with complex entries
in a high dimensional vector space and H(t) a Hermitian
matrix. Such equations are efficiently solved by using Magnus
integrators. In this paper we will use the example of a two
spin system in a spin bath. In this case H(t) is independent
of time and thus we can, in principle, take arbitrarily large
time steps. The matrix H is generated beforehand and stored
in the generic CSR format; for 21 spins this yields a vector
with n = 221 complex entries and a matrix with approximately
83.9 · 106 non-zero complex entries (the storage requirement
is about 2 GB in the double precision and 1 GB in the single
precision case). This gives a sparsity of 2·10−5. Note, however,
that such quantum systems couple every degree of freedom
with every other degree of freedom. Thus, we are in the worst
case and have to transfer (m− 1)n floating point numbers
over the PCIe bus after each iteration.

The results of our numerical experiments are shown in Table
V. The implementation used is based on the code given in
[16]. However, we have found that for the problem under
consideration using a full warp for every row of our matrix
results in a performance reduction. Therefore, we use only
four threads per row which results, for the specific problem
under consideration, in a performance increase of approx-
imately 50%, as compared against the CUSPARSE library
(see [17]). Apart from this consideration the code has been
adapted to compute the problem stated in (3), which includes
an additional term as compared to the sparse matrix-vector
multiplication considered in [16]. Clearly the scaling behavior

TABLE V
PERFORMANCE COMPARISON FOR A SYSTEM WITH 21 SPINS.

INTEGRATION IS PERFORMED UP TO t = 10 WITH A TOLERANCE OF
TOL = 10−5 .

Double precision

Device Method Number
units

Time

2x Xenon E5620 CSR/OpenMP 2 46 s

C1060 CSR
1 23 s
2 15 s
4 15 s

C2075 CSR 1 7.7 s

Single precision

Device Method Number
units

Time

2x Xenon E5620 CSR/OpenMP 2 44 s

C1060 CSR
1 15 s
2 10 s
4 7.5 s

C2075 CSR 1 4 s

in this case is limited by the overhead of copying between the
different GPUs. For two GPUs a speedup of about 1.5 can be
observed. For any additional GPU no performance gain can
be observed. In total a speedup of 3 for double precision and
6 for single precision as compared to a dual socket Xenon
configuration is achieved on four C1060 graphic processing
units. This is only about 50% better than the speedup of 2
(double precision) and 3 (single precision) achieved with a
single C1060 GPU. It should be noted that a GPU centric
data format (as discussed in section II-B) could be employed
instead of the CSR format. However, also in this case the
overhead of copying between different GPUs would persist.

Thus, in this instance the speedups that are achievable in
both single and multi GPU configurations are a consequence
of an unstructured matrix that makes coalesced memory access
as well as parallelizability between different GPUs difficult.
The dramatically better performance of the C2075 as shown
in Table V is thus expected.

IV. CONCLUSION & OUTLOOK

We have shown that exponential integrators can be effi-
ciently implemented on graphic processing units. For many
problems, especially those resulting from the spatial discretiza-
tion of partial differential equations, this is true for both single
and multi GPU setups.

In addition, we have considered stencil based implemen-
tations that go beyond periodic boundary conditions and
constant diffusion coefficients. Such problems can not be
handled by implementations based on the fast Fourier trans-
form, for example. Moreover, section III-A shows that for
non-homogeneous boundary conditions the code handling the
interior as well as the boundary of the domain has to be
separated if optimal performance is to be achieved. However,
for homogeneous or piecewise constant boundary condition an
implementation directly into the CUDA kernel does not result
in any significant performance decrease.

The results presented in this paper show that exponential
integrators, for many realistic settings, can be efficiently
implemented on GPUs with significant speedups compared to
more traditional implementations. Therefore, GPU computing
provides a viable way to increase the efficiency of simulations
in which exponential integrators are employed. The imple-
mentation of exponential integrators on the current generation
of GPUs would conceivably result in a further performance
increase of our memory bound stencil implementation, as
compared to the C2075, as the Kepler architecture offers a
memory throughput of up to 250 GB/s. Furthermore, such
an implementation is expected to be relatively straightforward
as the cache implemented on the newer generations of GPUs
works quite well in the case of stencil methods.

REFERENCES

[1] L. Murray, “GPU acceleration of Runge-Kutta integrators,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 23, no. 1, pp. 94–101,
2012.

[2] P. Micikevicius, “3D Finite Difference Computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, Washington, DC, USA, 2009,
pp. 79–84.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, and J. Carter, “Stencil
computation optimization and auto-tuning on state-of-the-art multicore
architectures,” Journal of Parallel and Distributed Computing, vol. 69,
no. 9, pp. 762–777, 2009.

[4] E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I: Nonstiff Problems, 2nd ed. Springer-Verlag, Berlin, 1993.

[5] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, 2nd ed. Springer-Verlag,
Berlin, 1996.

[6] M. Hochbruck and A. Ostermann, “Exponential integrators,” Acta
Numer., vol. 19, pp. 209–286, 2010. [Online]. Available: http:
//www.journals.cambridge.org/abstract_S0962492910000048

[7] “CUDA C Programming Guide,” http://docs.nvidia.com/cuda/pdf/
CUDA_C_Programming_Guide.pdf (Last retrieved September 18,
2013).

[8] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis. New York, USA: ACM Press, 2009, p. 18. [Online].
Available: http://dl.acm.org/citation.cfm?doid=1654059.1654078

[9] M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector
multiplication on GPUs,” IBM Research Report, vol. RC24704, 2009.

[10] A. Dziekonski, A. Lamecki, and M. Mrozowski, “A memory efficient
and fast sparse matrix vector product on a GPU,” Progress in Electro-
magnetics Research, vol. 116, pp. 49–63, 2011.

[11] M. Vazquez, A. Berezhkovskii, and L. Dagdug, “Diffusion in linear
porous media with periodic entropy barriers: A tube formed by contact-
ing spheres,” J. Chem. Phys, vol. 129, no. 4, p. 046101, 2008.

[12] M. Caliari, M. Vianello, and L. Bergamaschi, “Interpolating discrete
advectionâĂŞ-diffusion propagators at Leja sequences,” J. Comput.
Appl. Math., vol. 172, no. 1, pp. 79–99, Nov. 2004. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0377042704000998

[13] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA NVR-2008-004, Tech. Rep., 2008.

[14] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations, 2nd ed. Springer-Verlag,
Berlin, Heidelberg, New York, 2007.

[15] H. De Raedt and K. Michielsen, “Computational methods for simulating
quantum computers,” arXiv preprint quant-ph/0406210, 2008.

[16] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on
CUDA,” NVIDIA Corporation, NVIDIA Technical Report NVR-2008-
004, Dec. 2008.

[17] “CUDA CUSPARSE Library,” http://docs.nvidia.com/cuda/pdf/CUDA_
CUSPARSE_Users_Guide.pdf (Last retrieved September 18, 2013).

D HPC research overview (book chapter)

Titel Splitting methods for the Vlasov–Poisson & Vlasov–Maxwell equations
In Scientific Computing @ uibk (Marco Barden, Alexander Ostermann)
Authors Lukas Einkemmer, Alexander Ostermann
Publisher Innsbruck University Press

70

3

9

Splitting methods for the Vlasov-Poisson
and Vlasov-Maxwell equations

Figure 3-1: The bump-on-tail instability leads to a travelling vortex in phase
space. The horizontal axis represents space and the vertical one velocity.

The Vlasov equation describes the evolution of an ensemble of par-
ticles, more properly speaking their density distribution, subject
to the laws of classical mechanics. If this equation is coupled to
the electromagnetic field, a highly non-linear system of equations
results, which is referred to as the Vlasov-Maxwell equations. In
the case that magnetic effects are negligible a simplified model, the
Vlasov-Poisson equations, can be used instead. These two equations
represent the most fundamental description of a collisionless (clas-
sical) plasma. Their efficient numerical solution is thus of paramount
importance in simulations ranging from controlled fusion to laser-
plasma interactions.

Mathematical formulation
The Vlasov-Maxwell or Vlasov-Poisson equations are formulated mathe-
matically as non-linear partial differential equations which are coupled
by the charge density (in the case of the Vlasov-Poisson equations) and
the current (in case of the Vlasov-Maxwell equations). However, con-
trary to fluid models, the phase space is up to six dimensional as the
position and the velocity of the particles have to be resolved. Even if
simplified models are considered, as is often possible in applications,
at least two dimensions in phase space (one space and one velocity
direction) have to be resolved for the Vlasov-Poisson equations. Since
there is no magnetism in a one dimensional system, we require at least
one dimension in position and two in velocity for the Vlasov-Maxwell
equations.

Lukas Einkemmer, Alexander Ostermann

10

3

Due to the high dimensional phase space and the limited amount of
memory available on previous generation computer systems, histori-
cally particle methods have been the methods of choice for integrating
the Vlasov equation. A particle method proceeds by advancing a large
number of particles, say one million, in phase space; to compute the
result of the simulation and to calculate the electromagnetic fields the
particle density is then reconstructed from this limited number of par-
ticles. In fact, in realistic plasma system used for controlled fusion,
for example, the number of particles is on the order of 1015 per cubic
centimeter. Nevertheless, simulations conducted with such particle
methods were able to provide much insight into many areas of plasma
physics. However, they also exhibit serious disadvantageous that ren-
der them ill-suited for many applications. For example, the tail of the
density distribution suffers from numerical noise that only decays as the
square root of the number of particles.

Computational difficulties
Since particle methods suffer from a number of shortcomings, interest
in grid based methods started, i.e. methods where a static grid in both
position and velocity is used as the computational domain, as soon as
sufficient computational resources became available.

However, the numerical solution of the Vlasov equation using grid based
methods does present significant challenges which limit their wide-
spread adoption:
�� The high dimensionality implies that, in the worst case, the amount
of memory needed to store the simulation scales as the sixth power
in the number of grid points. If a naive approximation scheme is used,
the desired accuracy is usually not achievable; not even on modern
supercomputers. To mitigate this situation a high order approximation
in space is essential to get sufficiently accurate results.

�� The Vlasov equation is, as the semidiscretization of a partial dif-
ferential equation, a stiff system and thus the step size of the
computationally advantageous explicit schemes (such as Runge-Kutta
methods) are limited by the CFL condition. Thus, it is important to
develop methods that are computationally attractive and allow us to
take larger steps in time (as compared to the CFL condition). Splitting
methods provide a promising approach in that direction.

�� Due to the coupling of the Vlasov equation to the Maxwell/Poisson
equation the system is non-linear. Even though this nonlinearity is
only quadratic, examples from ordinary differential equations, such as

Splitting methods for the Vlasov-Poisson and Vlasov-Maxwell
equations

11

the Lorenz system, show that such systems can exhibit very surprising
and interesting physical phenomena. This is true for the Vlasov-
Poisson and the Vlasov-Maxwell equations as well. In this case only a
small deviation from an equilibrium distribution can result in a rich
structure in phase space. For example, for an only slightly modulated
Gaussian initial distribution an exponential decay can be observed in
the electric energy (the famous Landau damping). In the non-linear
regime it is impossible to study this behavior in an analytical frame-
work by employing Fourier methods, for example; thus, numerical
simulations are the only way to obtain theoretical insight into such
systems.

Furthermore, the appearance of smaller and smaller scales in phase
space (a phenomenon called filamentation) further increases the dif-
ficulty in computing a reliable numerical solution. In addition, many
mathematical properties, such as energy conservation of the numeri-
cal methods employed, are not very well understood. A more thorough
understanding could contribute to the design of more efficient schemes
in the future.

In summary, numerical simulations of the Vlasov-Poisson and Vlasov-
Maxwell equations require, except for the simplest examples, the use
of substantial computational resources. Those difficulties have to be
alleviated by parallelizing algorithms to larger clusters, by exploiting
modern hardware systems such as GPUs, as well as by improving the
space and time discretization algorithms employed in such simulations.

Figure 3-2: Simulation of the filamentation of phase space as is studied, for
example, in the context of Landau damping. The horizontal axis represents
space and the vertical one velocity.

12

3

Funding
�� FWF P25346 “Splitting Verfahren für Vlasov-Poisson und Vlasov-Max-
well Gleichungen”

Affiliations
�� Research focal point Scientific Computing
�� Department of Mathematics

References
�� L. Einkemmer, A. Ostermann, An almost symmetric Strang splitting
scheme for the construction of high order composition methods, arX-
iv:1306.1169

�� L. Einkemmer, A. Ostermann, Convergence analysis of a discontinuous
Galerkin/Strang splitting approximation for the Vlasov-Poisson equa-
tions, arXiv:1211.2353

�� L. Einkemmer, A. Ostermann, Convergence analysis of Strang splitting
for Vlasov-type equations, arXiv:1207.2090

Contact
Dipl.Ing. Lukas Einkemmer	
Department of Mathematics	
Technikerstraße 19a	
A-6020 Innsbruck

Phone
+43 512 507 53802
Email
lukas.einkemmer@uibk.ac.at
Webpage
http://www.uibk.ac.at/mathematik

Splitting methods for the Vlasov-Poisson and Vlasov-Maxwell
equations

Results & Outlook
It has been demonstrated that a discontinuous Galerkin approximation
in space combined with high order splitting methods in time leads to
schemes which exhibit good results with respect to both accuracy and
efficiency. This can be mathematically verified and in fact high order
splitting schemes for the Vlasov-Poisson equations have been employed
successfully in the literature. However, due to the more complicated
structure of the Vlasov-Maxwell equations the second order Strang split-
ting scheme is used almost exclusively in the literature. Thus, one of
our goals is to construct high order methods that are applicable to the
Vlasov-Maxwell equations as well. In pursuing that goal it was shown
that the numerical techniques developed can be applied to equations
that have a similar mathematical structure but model such diverse
physical systems as charged particles, relativistic computations of plan-
etary motion, or the simulation of spatially varying chemical reactions.

	Introduction
	The Vlasov equation
	The Vlasov equation in relation to simplified models
	Dimensionless form

	State of the art
	Particle approach
	Grid based discretization in phase space
	Splitting methods
	Full discretization

	Results & Publications
	Future research
	References
	Convergence analysis of Strang splitting for Vlasov-type equations
	Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov–Poisson equations
	Exponential integrators on graphic processing units
	HPC research overview (book chapter)

