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Welcome

We wish you a warm welcome to Innsbruck, and we are looking forward to an interesting
9th NAI Workshop on Numerical Analysis of Evolution Equations.

The intention of the workshop is to provide a platform for exchanging new ideas
and results in the development of innovative integrators for evolution equations. The
workshop covers both, theoretical and practical aspects, and wants to bring together
numerical analysts working in the field as well as PhD students who intend to start
in this area. The present workshop continues a series of conferences that were held in
Innsbruck from 2004 to 2014.

We wish you a scientifically inspiring and enjoyable time in Innsbruck. If you have
any questions, please do not hesitate to contact us.

Alexander Ostermann, Alfredo Bellen, Katharina Schratz, Lukas Einkemmer, and
Peter Kandolf
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Accommodation

The workshop will take place in Vill at the Bildungsinstitut Grillhof. The address is

Tiroler Bildungsinstitut - Grillhof
Grillhofweg 100

6080 Vill, Austria
Phone: +43-512-38380
Fax: +43-512-383850
E-mail: office@grillhof.at

The workshop starts in the evening of November 08, 2016 with an informal dinner and
will end on November 11, 2016 after lunch.

The conference fee (350 Euro before 25th September, 400 Euro from 26th September)
includes the accommodation in a double room at Grillhof, full board (breakfast, lunch,
dinner, coffee breaks), and the excursion. The surcharge for single accommodation is 50
Euro.

Scientific Program

Contributions

All communications will be given in plenary sessions. Each contribution is scheduled for
25 minutes including a brief discussion.

The conference language is English.

Equipment

The seminary room is equipped with a data projector. A Windows computer with
Adobe Acrobat Reader will be provided as well as a presenter. Talks can be transferred
to the conference computer through USB sticks or CD/DVD. We recommend you not to
use your own laptop. However, if you need to use your own laptop, be sure it provides
a VGA or HDMI connection. In addition, the room is equipped with a blackboard and
an overhead projector.
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Schedule

Tuesday, 08 November 2016

17.00 – 19.00 Registration at Grillhof
19.00 Dinner

Wednesday, 09 November 2016

08.30 – 08.35 Opening
08.35 – 09.20 Mari Paz Calvo

Word series: some applications in numerical integration
09.20 – 09.45 David Cohen

Exponential integrators for nonlinear Schrödinger equations with
white noise dispersion

09.45 – 10.10 Chiara Piazzola
Solution of large-scale Lyapunov differential equations

10.10 – 10.35 Coffee break
10.35 – 11.00 Christian Stohrer

Finite element heterogeneous multiscale method for time-dependent
Maxwell’s equations

11.00 – 11.25 Hermann Mena
Splitting methods for stochastic partial differential equations

11.25 – 11.50 Martina Moccaldi
Adapted numerical integration of advection-reaction-diffusion
problems generating periodic wavefronts

11.50 – 12:15 Andreas Sturm
Locally implicit time integration for linear Maxwell’s equations

12.15 – 14.00 Lunch break
14.00 – 14.25 Markus Gasteiger

ADI preconditioners for the solution of the steady-state Vlasov
equation

14.25 – 14.50 Tobias Jahnke
Limit dynamics of the dispersion-managed nonlinear Schrödinger
equation

14.50 – 15.15 Marcel Mikl
Adiabatic midpoint rule for the dispersion-managed nonlinear
Schrödinger equation

15.15 – 15:40 Robert Altmann
Splitting methods for constrained diffusion-reaction systems

15.40 – 16.10 Coffee break
16.10 – 16.35 Simone Buchholz

Mind the gap - two approaches to highly oscillatory differential
equations

16.35 – 17.00 Raffaele D’Ambrosio
Stability issues for stochastic multistep methods
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17.00 – 17.25 Luben Vulkov
Numerical solution of degenerate ultraparabolic equations for pricing
of Asian options

17.25 – 17.50 Jonas Köhler
ADI splitting and the discontinuous Galerkin method

17.50 – 18.15 Gregor Staggl
An extension of the Savage–Hutter equations for the modeling of
gravity driven mass flows over arbitrary topography in one space
dimension

18.30 Dinner
20.00 Evening programme

Thursday, 10 November 2016

08.30 – 09.15 Martin J. Gander
Space-time parallel methods based on domain decomposition

09.15 – 09.40 Lukas Einkemmer
A comparison of boundary corrections for Strang splitting

09.40 – 10.05 Michaela Mehlin
Muli-level local time-stepping methods of Runge–Kutta type for wave
equations

10.05 – 10.30 Johannes Eilinghoff
Fractional error estimates of splitting schemes for the nonlinear
Schrödinger equation

10.30 – 10.55 Coffee break
10.55 – 11.20 Patrick Krämer

Numerical methods for an efficient integration of the Maxwell–Dirac
system

11.20 – 11.45 Antti Koskela
Krylov approximation of polynomially perturbed linear ODEs

11.45 – 12.10 Naomi Auer
Magnus integrators on graphic processing units

12.10 – 12.35 Robin Flohr
A splitting approach for freezing waves

12.35 – 12.50 Miglena N. Koleva
Two-grid method for solving non-linear models in mathematical
finance

12.50 – 14.00 Lunch break
14.00 – 18.30 Excursion to Rattenberg and Kristallglas Kisslinger

http: // www. kisslinger-kristall. com/

18.30 Conference Dinner, Bierstindl, Innsbruck
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Friday, 11 November 2016

08.30 – 08.55 David Hipp
Numerical analysis of wave equations with dynamic boundary
conditions

08.55 – 09.20 Martina Prugger
A Riemann solver free numerical method for two-dimensional
conservation laws

09.20 – 09.45 Othmar Koch
Error analysis of splitting methods for parabolic problems under
Dirichlet boundary conditions

09.45 – 10.10 Francesca Scarabel
Numerical bifurcation analysis of nonlinear delay equations through
pseudospectral discretization

10.10 – 10.35 Coffee break
10.35 – 11.00 Davide Liessi

Approximating the stability of linear periodic delay models by
pseudospectral methods

11.00 – 11.25 Stefano Maset
Conditioning and relative error propagation in linear autonomous
ordinary differential equations

11.25 – 11.50 Koondanibha Mitra
A linear domain decomposition method for unsaturated flow in porous
media

11.50 – 12.15 Peter Kandolf
The action of trigonometric and hyperbolic matrix functions

12.15 – 12.40 Winfried Auzinger
Similarity to contraction: the companion matrix case

12.40 – 12.45 Closing
12.50 Lunch
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Abstracts of Talks

In alphabetical order



Splitting Methods for Constrained Diffusion-Reaction
Systems

Robert Altmann ∗ (TU Berlin, Germany)

Alexander Ostermann (University of Innsbruck)

We consider nonlinear diffusion-reaction systems which have an additional constraint
such as having a prescribed integral mean. With the help of Lie and Strang splitting we
would like to treat the nonlinearity separately. This means that the time integration is
reduced to the solution of a linear constrained system and a nonlinear ODE.
However, Strang splitting suffers from order reduction which limits its efficiency. This is
caused by the fact that the nonlinear subsystem produces inconsistent initial values for
the constrained subsystem. In this talk we show that the incorporation of an additional
correction term resolves this problem without increasing the computational costs.
The results of this talk are based on the arXiv preprint [1].

References

[1] Altmann, R., Ostermann, A., 2016. Splitting methods for constrained diffusion-reaction sys-
tems. arXiv:1607.07683.
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Magnus integrators on graphic processing units

Naomi Auer (University of Innsbruck, Austria)

Given a first order, linear differential equation Y ′(t) = A(t)Y (t) with initial value Y (0) =
Y0, the solution can be expressed in the exponential form Y (t) = exp(Ω(t))Y0 following
the idea of Wilhelm Magnus. Magnus integrators are time integrators that make use
of this representation of the solution by truncating Ω(t) =

∑∞
k=1 Ωk(t) after a certain

number of terms. The computation of the matrix exponential can be realized in different
ways, we chose Leja interpolation.
The aim is a comparison of an implementation for the CPU and an implementation for
the GPU. NVIDIA graphic processing units (GPUs) provide a massively parallel archi-
tecture. The CUDA programming model extends C/C++ (or other well established
programming languages) by a relatively small number of keywords, which allow to run
parts of the code on the GPU instead of the CPU. The GPU is used for highly paralleliz-
able program sequences while non-parallelizable code sequences are usually executed on
the CPU.
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Similarity to contraction: the companion matrix case

Winfried Auzinger (Technische Universität Wien, Austria)

We consider a family of companion matrices

C =

 0 1
−c0 −c1

=

 0 1
−ζ1 ζ2 ζ1 + ζ2

 ∈ C2×2 , ζ1, ζ2 ∈ C ,

with characteristic polynomial ζ2 + c1ζ + c0 = (ζ − ζ1)(ζ − ζ2). Under the asymptotic
stability condition

|ζ1| ≤ 1, |ζ2| ≤ 1, and |ζ| < 1 if ζ1 = ζ2 = ζ , (1)

the matrix C is power-bounded, i.e., there exists a constant K = K(ζ1, ζ2) such that
‖Cν‖2 ≤ K for all ν ∈ N. Since C is not normal, in general we have K > 1 and, in
particular K � 1 near the unstable limit, i.e., for ζ1 ≈ ζ2 with |ζ1| ≈ |ζ2| ≈ 1.
We study the question of finding – for arbitrary ζ1, ζ2 ∈ C satisfying the stability condi-
tion (1) – a ‘natural’ similarity transformation

C = X T X−1 ,

depending on ζ1, ζ2, such that
‖T‖2 ≤ 1 . (2)

For this purpose we make an ansatz X = X(δ), T = T (δ) based on the LQ -
decomposition of the Vandermonde matrix associated with C, with a scaling param-
eter δ which needs to be determined. We present the idea of our construction and the
technique for the proof of (2). The optimal choice for δ such that (2) is indeed valid
turns out to be

δ =
√

1
2(1− |ζ1|2)(1− |ζ2|2) + 1

4 |ζ1 − ζ2|2 > 0 ,

which may be called the ‘distance to instability’ related to the spectrum of C; it exactly
vanishes in the unstable limit.
Further topics discussed include

– analogous results for the case that C satisfies a stability condition with respect to
the left complex half plane;

– the 3×3 case – here only tentative numerical results are available;

– some numerical considerations, in particular concerning order reductions, for the
case where C represents a stiff second-order ODE.

References

[1] Auzinger, W., 2016. A note on similarity to contraction for stable 2×2 companion matrices.
Ukr.Mat.Zh. 68 (3), 400–407.
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Mind the gap - two approaches to highly oscillatory
differential equations

Simone Buchholz ∗ (Karlsruhe Institute of Technology, Germany)

Ludwig Gauckler (Free University Berlin, Germany)

Volker Grimm (Karlsruhe Institute of Technology, Germany)

Marlis Hochbruck (Karlsruhe Institute of Technology, Germany)

Tobias Jahnke (Karlsruhe Institute of Technology, Germany)

In this talk a particular class of linear, highly oscillatory problems

q′′(t) = −Ω2q(t) +Gq(t), t > 0, q(0) = q0, q′(0) = q′0, (1)

is considered, where Ω is a symmetric positive semi-definite matrix of arbitrary large
norm (e.g. representing the spatial discretization of a differential operator), and where
‖G‖ is moderate. For such problems, trigonometric integrators have been constructed
and analyzed under a finite-energy condition, see e. g. [2]. These methods involve filter
functions which are chosen in such a way that the oscillatory parts of the local error do
not sum up in the global error. To prove this in the error analysis is a delicate matter
and usually excludes standard techniques like Taylor expansion or a Lady Windermere’s
fan argument.
It is known that applying a symmetric trigonometric integrator to (1) is equivalent to
applying Strang splitting to an averaged version of the first-order formulation of (1).
Most of the analysis of splitting methods for different classes of pdes is based on a
technique established in [3], where the local error is interpreted as a quadrature error.
The error bounds then rely on commutator bounds. Unfortunately, this technique does
not generalize to highly oscillatory problems in an obvious way.
In this talk we build a bridge between these two worlds by proving error bounds for
trigonometric integrator considered as a splitting method. The novelty of our analysis
in [1] is not the error bound itself, but the fact that it is proven by techniques which, to
the best of our knowledge, have so far not been considered in the context of trigonometric
integrators.
We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft
(DFG) through RTG 1294, CRC 1114, CRC 1173, and project GA 2073/2-1.

References

[1] Buchholz, S., Gauckler, L., Grimm, V., Hochbruck, M., Jahnke, T., 2016. Closing the gap
between trigonometric integrators and splitting methods for highly oscillatory differential
equations. Preprint (https://www.waves.kit.edu/preprints.php).

[2] Grimm, V., Hochbruck, M., 2006. Error analysis of exponential integrators for oscillatory
second-order differential equations. J. Phys. A., 5495-5507.

[3] Jahnke, T., Lubich, C., 2000. Error bounds for exponential operator splittings. BIT (40),
735-744.
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Word series: some applications in numerical integration

Mari Paz Calvo (Universidad de Valladolid, Spain)

Word series have been recently introduced as an alternative to the well known B-series,
that have played a very important role in the analysis of numerical integrators. Word
series are formal series that are parameterized by words of an alphabet. Although they
possess a narrower scope of application, they are more compact and easier to handle
than the corresponding B-series parameterized by rooted trees with coloured nodes.
In the talk I shall provide some general background on word series and present some
applications related to the numerical integration of differential systems.
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Exponential integrators for nonlinear Schrödinger
equations with white noise dispersion

David Cohen ∗ (University of Innsbruck/Ume̊a University, Austria/Sweden)

Guillaume Dujardin (Inria Lille Nord-Europe)

We consider the numerical integration in time of the nonlinear Schrödinger equation with
power law nonlinearity and random dispersion. We introduce a new explicit exponential
integrator for this purpose that integrates the noisy part of the equation exactly. We
prove that this numerical scheme is of mean-square order 1 and we draw consequences
of this fact. We compare our exponential integrator with several other numerical meth-
ods from the literature. We finally propose a second exponential integrator, which is
symmetric and, in contrast to the first one, preserves the L2-norm of the solution.
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Stability issues for stochastic multistep methods

Evelyn Buckwar (Johannes Kepler University of Linz)

Raffaele D’Ambrosio ∗ (University of Salerno, Italy)

Martina Moccaldi (University of Salerno)

Beatrice Paternoster (University of Salerno)

The aim of this talk is the analysis of various stability issues for numerical methods
designed to solve stochastic differential equations. We first aim to consider a nonlinear
system of Itô stochastic differential equation (SDE)

dX(t) = f(X(t))dt+ g(X(t))dW (t), t > 0. (1)

Under suitable regularity conditions, exponential mean-square stability holds, i.e. any
two solutions X(t) and Y (t) of (1) with E|X0|2 <∞ and E|Y0|2 <∞ satisfy

E|X(t)− Y (t)|2 ≤ E|X0 − Y0|2eαt, (2)

with α < 0. We aim to investigate the numerical counterpart of (2) when trajectories are
generated by stochastic linear multistep methods, in order to provide stepsize restrictions
ensuring analogous exponential mean-square stability properties also numerically [1, 4].
We next consider the following second order stochastic differential equation

ẍ = f(x)− ηs2(x)ẋ+ εs(x)ξ(y), (3)

describing the position of a particle subject to the deterministic forcing f(x) and a
random forcing ξ(t) of amplitude ε. The dynamics exhibits damped oscillations, with
damping parameter η. We aim to analyze asymptotic mean-square stability properties
for indirect stochastic multistep methods, applied to the system equivalent to (3){

dX(t)) = V (t)dt,
dV (t) = −ηs2(X(t))V (t)dt+ f(X(t))dt+ εs(X(t))dW (t),

with special emphasis to understanding the ability of such methods in retaining long-
term invariance laws [2, 3].

References

[1] E. Buckwar, R. D’Ambrosio, Exponential mean-square stability of linear multistep methods,
submitted.

[2] K. Burrage, G. Lythe, Numerical methods for second-order stochastic differential equations,
SIAM J. Sci. Comput. 29(1), 245–264 (2007).

[3] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Long-term preservation of invariance laws by
stochastic multistep methods, in preparation.

[4] D.J. Higham, P.E. Kloeden, Numerical Methods for Nonlinear Stochastic Differential Equa-
tions with Jumps, Numer. Math., 101, 101–119 (2005).
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Fractional error estimates of splitting schemes for the
nonlinear Schrödinger equation

Johannes Eilinghoff ∗ (Karlsruhe Institute of Technology, Germany)

Roland Schnaubelt (Karlsruhe Institute of Technology)

Katharina Schratz (Karlsruhe Institute of Technology)

We investigate the Lie and the Strang splitting for the cubic nonlinear Schrdinger equa-
tion on the full space and the torus in up to three spatial dimensions. We prove that
the Strang splitting converges in L2 with order 1 + θ for initial values in H2+2θ with
θ ∈ [0, 1) and that the Lie splitting converges with order one for initial values in H2.

References

[1] Eilinghoff, J., Schnaubelt, R., Schratz, K., 2016. Fractional error estimates of splitting
schemes for the nonlinear Schrödinger equation. JMAA 442, 740–760.
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A comparison of boundary corrections for Strang
splitting

Lukas Einkemmer ∗ (University of Innsbruck, Austria)

Alexander Ostermann (University of Innsbruck)

It is well known that splitting methods suffer from order reduction in the presence of
non-trivial boundary conditions. This usually implies that Strang splitting is no more
accurate than Lie splitting. To remedy this issue corrections have been developed that
allow Strang splitting to retain second order accuracy.
The method proposed in [1] uses a modified (but time dependent) boundary condition.
A convergence analysis of this method in the liner case has been performed in [2]. We
will refer to this method as time dependent boundary correction (TDBC).
More recently, an alternative approach has been proposed in [3] (we refer to this method
by the abbreviation CEC). This correction does not require a modification of the bound-
ary condition but requires the computation of a global correction. The convergence of
this scheme for diffusion-reaction problems has been shown in [3] (for Dirichlet boundary
conditions) and in [4] (for Neumann, Robin, and mixed boundary conditions).
In this talk we demonstrate that the methods used to proof convergence for the CEC
method can be extended to perform a mathematically rigorous convergence analysis for
the TDBC correction in the nonlinear case.
In addition, we present the results of numerical simulations for diffusion-reaction,
advection-reaction, and dispersion-reaction equations in order to evaluate the relative
performance of these two corrections. Furthermore, we introduce an extension of both
methods to obtain order three locally and evaluate under what circumstances this is ben-
eficial. We find that while the performance is comparable for diffusion-reaction problems,
for advection-reaction problems the CEC method can outperform the TDBC method by
more than an order of magnitude. In addition, whether performing the third order
correction is benifical is highly problem dependent.
This talk is based on [5]

References

[1] R.J. LeVeque, J. Oliger, 1983, Numerical methods based on additive splittings for hyperbolic
partial differential equations. Math. Comp. 40(162), 469-497.

[2] I. Alonso-Mallo, B. Cano, N. Reguera, 2016, Avoiding order reduction when integrating linear
initial boundary value problems with exponential splitting methods. Private copy.

[3] L. Einkemmer, A. Ostermann, 2015, Overcoming order reduction in diffusion-reaction split-
ting. Part 1: Dirichlet boundary conditions. SIAM J. Sci. Comput. 37(3), A1577-A1592.

[4] L. Einkemmer, A. Ostermann, 2016, Overcoming order reduction in diffusion-reaction split-
ting. Part 2: oblique boundary conditions. To appear in SIAM J. Sci. Comput.

[5] L. Einkemmer, A. Ostermann, 2016, A comparison of boundary correction methods for Strang
splitting. arXiv preprint, arXiv:1609.05505.
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A Splitting Approach for Freezing Waves

Robin Flohr ∗ (Karlsruhe Institute of Technology, Germany)

Jens Rottmann–Matthes (Karlsruhe Institute of Technology)

We propose a numerical method which is able to approximate viscous profiles by a direct
long-time forward simulation. A difficulty with long-time simulations is the fact that
traveling solutions leave the computational domain. To handle this problem one should
go in a suitable co-moving frame. Since the speed of the (numerical) steady state is
often unknown, we use the method of freezing [2] to calculate the right co-moving frame
on the fly. As a test example we consider the (viscous) Burgers equation, which leads to
the PDAE 

vt = vxx − (1
2v

2)x + µvx,

0 = Ψ(v, µ),

γt = µ(t).

The variable µ represents the unknown speed of the profile and the algebraic constraint
Ψ(v, µ), which is called phase condition, is needed for the well-posedness and fixes the
frame. To this problem we use the operator splitting approach. The benefit of splitting
methods in this context lies in the possibility to solve hyperbolic and parabolic parts with
different numerical algorithms. Our numerical methods use the central schemes from
Kurganov and Tadmor [1] to solve the hyperbolic problem. In combination with Lie-
and Strang-splitting, we constructed full-discrete schemes to solve hyperbolic-parabolic
problems. First promising numerical experiments for the Burgers equation show that
we can expect linear and quadratic convergence respectively of a numerical steady state
to an analytically given traveling wave.

References

[1] A. Kurganov and E. Tadmor, 2000. New High-Resolution Central Schemes for Nonlinear
Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys, 241–282.

[2] Beyn, W.-J., Otten, D., Rottmann-Matthes, J., 2014. Stability and computation of dynamic
patterns in PDEs. Current challenges in stability issues for numerical differential equations,
89–172.
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Space-Time Parallel Methods Based on Domain
Decomposition

Martin J. Gander (University of Geneva, Switzerland)

Domain decomposition methods like the classical Schwarz method and the Dirichlet-
Neumann and Neumann-Neumann methods have historically been developed for steady
partial differential equations. All these methods have however also a natural waveform
relaxation extension to time dependent partial differential equations. These waveform
relaxation variants are still based on a spatial decomposition of the physical domain
into subdomains, but then time dependent problems are solved in the subdomains, and
information is exchanged on the space-time interfaces between subdomains in an iteration
that converges in space-time to the underlying solution of the evolution problem. While
domain decomposition methods for steady problems converge linearly, the waveform
relaxation variants exhibit superlinear convergence for parabolic problems, and often
become direct solvers for hyperbolic problems. After a simple introduction to the main
classes of domain decompositions for steady problems, I will give in my talk an overview
over the development of their waveform relaxation variants as it happened over the past
20 years.
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ADI Preconditioners for the Solution of the
Steady-State Vlasov equation

Lukas Einkemmer (University of Innsbruck)

Markus Gasteiger ∗ (University of Innsbruck, Austria)

Alexander Ostermann (University of Innsbruck)

The concern of the current work is to find numerical solutions to the steady-state in-
homogeneous Vlasov equation. This problem has countless applications in the kinetic
simulation of non-thermal plasmas.
For such problems the direct application of iterative methods (such as Krylov based
methods like GMRES or relaxation schemes) is computationally expensive. This is due
to the fact that a large number of iterations is required for any sufficiently fine space
discretization.
Our approach relies on a preconditioner that is based on an ADI type splitting method.
This preconditioner is then applied to both GMRES and Richardson iteration. We
explain the specific construction and implementation of such preconditioning methods
and present the observed computational gains. We also discuss the advantages and
disadvantages for specific problems.
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Numerical analysis of wave equations with dynamic
boundary conditions

David Hipp ∗ (Karlsruhe Institute of Technology, Germany)

Marlis Hochbruck (Karlsruhe Institute of Technology)

In this talk we consider the wave equation in a bounded domain Ω ⊂ Rd with dynamic
boundary conditions on Γ = ∂Ω. In contrast to standard boundary conditions of Dirich-
let, Neumann or Robin type, dynamic boundary conditions model the momentum of the
wave on the boundary, cf. [1], and therefore often better describe the physical reality.
While a variety of dynamic boundary conditions are well understood analytically, to
the best of our knowledge, the numerical approximation of such problems has not been
studied so far.
The two guiding examples of dynamic boundary conditions on which we focus in this
talk are the acoustic boundary condition, cf. [2],

δt = ∂νu on Γ,

δtt + dδt + k2δ = −ρut on Γ,

and the kinetic boundary condition, cf. [3],

utt = cΓ∆Γu− ∂νu on Γ.

We begin by showing how these examples can be dealt within a unified framework. This
framework allows us to construct suitable function spaces and operators in an abstract
way such that the well-posedness of the corresponding evolution equations can be shown
by means of semigroup theory.
The second part of the talk addresses the numerical treatment for the case Ω ⊂ R2.
We describe a finite element method for the spatial discretization in the bulk Ω and
on the surface Γ and prove error bounds. As an exemplary time stepping schemes we
consider the implicit midpoint rule. Following the method of lines we apply the scheme
to the spatial semidiscretization. Energy techniques can then be used to prove full order
of convergence in space and time in the energy norm. These theoretical results are
illustrated by numerical tests.

References

[1] Goldstein, G. R., 2006. Derivation and physical interpretation of general boundary conditions.
Advances in Differential Equations 11 (4), 457–480.

[2] Beale, J. T., 1976. Spectral properties of an acoustic boundary condition. Indiana University
Mathematics Journal 25 (9), 895–917.

[3] Vitillaro, E., 2013. Strong solutions for the wave equation with a kinetic boundary condition.
Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems 594, 306-
316.
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Limit dynamics of the dispersion-managed nonlinear
Schrödinger equation

Tobias Jahnke ∗ (Karlsruhe Institute of Technology, Germany)

Marcel Mikl (Karlsruhe Institute of Technology)

Dispersion-managed optical fibers are modelled by the nonlinear Schrödinger equation

∂tu(t, x) = i
εγ
(
t
ε

)
∂2
xu(t, x) + i|u(t, x)|2u(t, x) , x ∈ T, t > 0 (1)

on the one-dimensional torus T = R/2πZ with a small parameter 0 < ε � 1 and a dis-
continuous, rapidly changing coefficient γ(t/ε). Approximating the solution numerically
is a challenging task because typical solutions oscillate in time with frequency ∼ ε−1

which imposes severe step-size restrictions for traditional methods.
In this talk, we present a transformation of (1) to an equivalent problem which, in
contrast to (1), converges to a well-defined limit equation when ε → 0. The limit
equation can then be solved with standard methods because its solution does not depend
on the critical parameter ε, and after transforming back, this yields an approximation
to u(t, x). Our main result states that the accuracy of this procedure is O(ε+ τp) or, in
special cases, O(ε2 + τp), where τ and p are the step-size and the order, respectively, of
the method used for the limit equation.
This is the first of two talks about the dispersion-managed nonlinear Schrödinger equa-
tion. In the second talk, Marcel Mikl will present a tailor-made numerical method for
(1).
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The action of trigonometric and hyperbolic matrix
functions

Nickolas J. Higham (University of Manchester)

Peter Kandolf ∗ (University of Innsbruck, Austria)

The action of trigonometric and hyperbolic matrix functions finds various applications,
e.g. in the field of differential equations or network analysis. We present an algorithm that
can compute cos(A)V and sin(A)V as well as cosh(A)V and sinh(A)V simultaneously.
It is based on a procedure for computing the action of the matrix exponential exp(A)V .
The characteristics of the new approach can be exploited to improve performance in the
exponential case as well.

References

[1] Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with
an application to exponential integrators. SIAM J. Sci. Comput. 33 (2), 488-511.

[2] Higham, N. J.,Kandolf, P., 2016. Computing the Action of Trigonometric and Hyperbolic
Matrix Functions, submitted.
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Error Analysis of Splitting Methods for Parabolic
Problems under Dirichlet Boundary Conditions

Winfried Auzinger (Technische Universität Wien)

Harald Hofstätter (Technische Universität Wien)

Othmar Koch ∗ (Universität Wien, Austria)

Mechthild Thalhammer (Universität Innsbruck)

We analyze the convergence of splitting methods for a reaction-diffusion equation under
homogeneous Dirichlet boundary conditions of the form

∂t u(x, t) = ∆u(x, t) + F (u(x, t)), (x, t) ∈ Ω× (0, T ), (1a)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (1b)

u(x, 0) = u0(x), x ∈ Ω, (1c)

for an unknown function u : Ω × [0, T ] → R; Ω is a bounded domain with smooth
boundary.
We prove that while the local error shows an order reduction, the full convergence
order is restored for the global error of the Lie–Trotter splitting. The local convergence
result deviates for consistent initial conditions in the domain of A (u0(x) ∈ D(A)) and
inconsistent initial conditions (u0(x) 6∈ D(A)):

Theorem:

1. If u0 ∈ H1(Ω), the Lie–Trotter approximation satisfies the local error bound (for
any ε > 0)

‖L(t, u0)‖ ≤ C ‖u0‖H1 t
5
4
−ε.

2. To observe the full order of the local error, we have to assume u0 ∈ D(A) =
H2(Ω)∩H1

0 (Ω). Then the Lie–Trotter approximation satisfies the local error bound
(C depends on ‖u0‖2H2)

‖L(t, u0)‖ ≤ C t2.

The full convergence order of the global error can be established nonetheless:

Theorem: Let u0 ∈ C(Ω) ∩H1(Ω) (inconsistent initial conditions permitted). Then

‖un − u(tn)‖L2 ≤ C ∆t1−ε, n = 1, . . . , N.

Even for the second order Strang splitting, the full convergence order holds in both
situations.
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ADI splitting and the discontinuous Galerkin method

Marlis Hochbruck (Karlsruhe Institute of Technology)

Jonas Köhler ∗ (Karlsruhe Institute of Technology, Germany)

We consider the alternating direction implicit (ADI) method for the time-integration of
Maxwell’s equations with linear, isotropic material properties on a cuboid. This method
was introduced by Namiki in [2] and Zhen, Chen, Zhang in [3], where it is combined
with a spatial discretization by finite differences on the Yee grid. Its main advantage
is unconditional stability, while only being of linear complexity, which is obtained by
splitting the differential operator in a suitable way and using the implicit Peaceman–
Rachford scheme to propagate in time. This splitting is designed in such a way, that the
flows in the different spatial directions decouple and the linear systems corresponding
to the subproblems exhibit tridiagonal form. For the abstract Cauchy problem, an error
analysis of the method was given by Hochbruck, Jahnke and Schnaubelt in [1].
In this talk, we combine the ADI method with a discontinuous Galerkin discretization
of the spatial domain, which allows for more flexibility and requires weaker regularity
assumptions in the error analysis. However, the desired efficiency is not so apparent
anymore for this case. Nevertheless, for a regular mesh consisting of cuboids, we show
how the special structure of the grid can be exploited to preserve the linear complexity.
This result is also validated by numerical experiments.
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Two-grid method for solving non-linear models in
mathematical finance

Miglena N. Koleva (Ruse University, Bulgaria)

In this work we construct and investigate efficient finite difference approximation for solv-
ing a class of non-linear modifications of Black-Scholes equation, in which the volatility
is assumed to be a function of the underlying asset, time and Greek Gamma (second
spatial derivative) of the option. The constructed numerical method is focused on the
Delta equation, i.e. the unknown solution is Greek Delta - the first spatial derivative
of the option value. Monotonicity and stability of the numerical scheme are proved.
One-grid and two-grid Picard and Newton methods for solving the non-linear algebraic
system of equations are studied. Numerical results are presented and discussed.
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Krylov approximation of
polynomially perturbed linear ODEs

Antti Koskela ∗ (KTH Royal Institute of Technology, Sweden)

Elias Jarlebring (KTH Royal Institute of Technology)

Michiel Hochstenbach (Eindhoven University of Technology)

We propose an efficient Krylov subspace method to compute for several values of ε and
t the solution of the initial value problem

u′(t, ε) =
( N∑
`=0

ε`A`
)
u(t, ε), u(0) = u0,

where A0, A1, . . . , AN ∈ Cn×n and u0 ∈ Cn. The approach is based on the Taylor
expansion of the exact solution u(t, ε) with respect to ε. The derivation of the Krylov
subspace method and its convergence analysis follow from a theorem given in [2], which
shows that the coefficient vectors of this expansion are given by the matrix exponential
of a block Toeplitz matrix. We further specialize the algorithm and its error analysis for
the case where the matrices A1, . . . , AN are of low-rank structure.
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Numerical Methods for an efficient integration of the
Maxwell-Dirac System

Patrick Krämer ∗ (Karlsruhe Institute of Technology, Germany)

Katharina Schratz (Karlsruhe Institute of Technology, Germany)

Solving the Maxwell-Dirac (MD) equation in the non-relativistic limit regime is numeri-
cally very delicate as the solution becomes highly oscillatory in time. In order to resolve
the oscillations, standard integration schemes require severe time step restrictions.
The aim of the talk is to present a uniformly accurate numerical method for the solution
which yields good results for the highly-oscillatory non-relativistic limit regime as well
as for the purely relativistic regime.
In case of the non-relativistic limit regime, a recent idea lies in the asymptotic expan-
sion of the solution, which allows us to break down the numerical task to solving a
non-oscillatory Schrödinger-Poisson system (SP). The latter can be carried out very ef-
ficiently without any additional time step restriction, e.g. by applying classical splitting
methods (cf. [1]). In the recent works [2, 3] this numerical approach has been success-
fully applied to other Klein-Gordon type equations. However, as this approach is based
on the asymptotic expansion of the exact solution it only yields a good approximation
in the non-relativistic limit regime.
In my talk I present the idea of solving a first order system in the so-called twisted
variables instead, which gives a good approximation in both the relativistic and the
non-relativistic regime. For numerical results in case of the Klein-Gordon equation, see
[4].
Furthermore, I give a comparison of both methods numerically and highlight their ad-
vantages and disadvantages.
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Approximating the stability of linear periodic delay
models by pseudospectral methods

Dimitri Breda (University of Udine, Italy)

Davide Liessi ∗ (University of Udine, Italy)

Realistic models of structured populations are often based on delay equations. Due to
the complexity of such models, their dynamics cannot usually be studied analitically and
must be approximated numerically. A method based on pseudospectral collocation for
approximating the eigenvalues of evolution operators of linear delay differential equations
has been recently developed in [1, 2]. The method can be applied in particular to the
monodromy operator of linearized problems to study the local asymptotic stability of
periodic solutions. In this talk we present an extension of that method to coupled renewal
equations and delay differential equations. The extended method has been applied in [3]
with promising results.
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Conditioning and relative error propagation in linear
autonomous ordinary differential equations

Stefano Maset (Università di Trieste, Italy)

In this talk, we deal with the relative error propagation in the solution of linear au-
tonomous ordinary differential equations{

y′(t) = Ay(t), t ≥ 0,
y(0) = y0

with respect to perturbations in the initial value y0. We also consider equations with a
constant forcing term {

y′(t) = Ay(t) + b, t ≥ 0,
y(0) = y0

which have a nonzero equilibrium point.
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Muli-level Local Time-Stepping Methods of
Runge-Kutta type for Wave Equations

Martin Almquist (Uppsala University)

Michaela Mehlin ∗ (Karlsruhe Institute of Technology , Germany)

Wave type phenomena are common in many fields of science, such as seismology, acous-
tics and electromagnetics. The propagation of waves is often modeled by partial differen-
tial equations (PDEs), for which it is important to have accurate and efficient numerical
solvers. In the presence of small geometric features or re-entrant corners in the spatial
domain, locally refined meshes around the obstacles permit accurate simulations without
introducing too many spatial unknowns and are thus computationally efficient.
Local mesh refinement, however, significantly decreases the performance of explicit time-
stepping methods, as the smallest mesh elements dictate the size of the time-step in the
entire domain. To circumvent this problem we propose multi-level local time-stepping
(MLTS) schemes. In the presence of meshes with several levels of refinement, the MLTS
methods allow for an appropriate time-step on each of the levels. The methods are based
on explicit Runge–Kutta (RK) schemes and an extension of the work presented in [1],
where only one level of refinement was considered. They retain the explicitness and the
one-step nature of the underlying RK method and thus require no starting procedure
and facilitate adaptivity in time. We show that the novel schemes keep the accuracy of
the underlying RK scheme and present numerical results that illustrate the versatility
of the approach.
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Splitting Methods for Stochastic Partial Differential
Equations

Andreas Kofler (University of Innsbruck)

Hermann Mena ∗ (YachayTech, Ecuador)

Alexander Ostermann (University of Innsbruck)

We analyse the convergence of the exponential Lie splitting applied to inhomoge-
neous second-order stochastic parabolic equations with additive/multiplicative noise and
Dirichlet boundary conditions. The equations are considered in the white noise frame-
work, where every stochastic squared integrable processes can be represented in terms
of a orthogonal polynomial basis which is the core of the polynomial chaos methodology.
After applying polynomial chaos to the equation, we obtain a system of infinitely many
deterministic partial differential equations in terms of the coefficients of the solution.
Each coefficient is computed by Lie splitting following the ideas in [1, 2]. We compute
finely many coefficients and discuss the convergence of the solution. Our approach can
be extended in the same setting to equations of hyperbolic type.
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Adiabatic Midpoint Rule for the dispersion-managed
nonlinear Schrödinger Equation

Tobias Jahnke (Karlsruhe Institute of Technology)

Marcel Mikl ∗ (Karlsruhe Institute of Technology, Germany)

Modeling a dispersion-managed optical fiber leads to a nonlinear Schrödinger equa-
tion containing a rapidly changing piecewise constant coefficient function. The occur-
ring oscillations of the solution impose severe step-size restrictions for traditional time-
integrators. In this talk, we present and analyze a tailor-made numerical method for
this equation which attains the desired accuracy with a significantly larger step-size than
traditional methods.
The construction of this method is based on a favorable transformation to an equivalent
problem, which is presented in the talk of Tobias Jahnke. To fully understand the
behavior of the method, we have to deviate from the classical concept “stability +
consistency = convergence”. Instead, we utilize an error recursion formula which allows
to exploit cancellation effects in the error terms. This results in an improved error
behavior for specific step-sizes.
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A Linear Domain Decomposition Method for
Unsaturated Flow in Porous Media

Davis Seus (University of Stuttgart)

Koondanibha Mitra ∗ (TU Eindhoven, Netherlands)

Iuliu Sorin Pop (Hasselt University, University of Bergen)

Florin Adrian Radu (University of Bergen)

The Richards equation is a commonly used model for unsaturated flow through porous
media. Using the Darcy law in the mass balance equation, and bringing the resulting to
a dimensionless form gives [1]

∂tS = ∇ · (k(S)∇p) + f(S, ~x) (1)

The nonlinear function k(S) (Relative permeability) is determined based on experiments.
Two unknowns are involved: S, the saturation and p, the pressure of the fluid. Com-
monly, it is assumed that these are related by a nonlinear relationship determined, again,
based on experiments [1]

− p = Pc(S) for 0 < S < 1 (2)

The exact form of these nonlinearities are depending on the medium. Most realistic prob-
lems are involving heterogeneous media. Example in this sense are layered or fractured
oil and gas reservoirs. In this case, the functions above are changing their depending on
the location inside the medium. In particular, if the medium consists of adjacent ho-
mogeneous blocks, this poses difficulties for both mathematical analysis and numerical
simulation since at the interfaces separating the homogeneous sub-domains, the model
parameters become discontinuous.
In this work we consider a medium consisting of two homogeneous blocks and propose a
non-overlapping domain decomposition scheme that couples the models in the two sub-
domains. The scheme involves linear iterations [2] [3]. After analyzing its convergence,
we show some numerical results confirming the theoretical findings and discuss different
implementation aspects.
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Adapted numerical integration of
advection-reaction-diffusion problems generating

periodic wavefronts

Raffaele D’Ambrosio (University of Salerno)

Martina Moccaldi ∗ (University of Salerno, Italy)

Beatrice Paternoster (University of Salerno)

This talk deals with an adapted numerical treatment of advection-reaction-diffusion
problems having periodic waves as fundamental solutions. Such problems are widely
studied in applications, especially involving chemical processes: for instance, they are
employed to describe the phenomenon of morphogenesis as explained in [3]. The adap-
tation in space has been carried out through a trigonometrically fitted method of lines.
Indeed, classical finite difference methods could determine an extreme reduction in step-
size to accurately follow the prescribed oscillations because they are constructed in order
to be exact (within round-off error) on polynomials up to a certain degree. In this work,
we employ adapted finite differences which are constructed in order to be exact (within
round-off error) on functions other than polynomials, following the well-known exponen-
tial fitting strategy. These functions belong to a finite dimensional space (called fitting
space) and are chosen according to the qualitative behaviour of the exact solution. How-
ever, the coefficients of the resulting method are no longer constant but rely on unknown
parameters linked to the solution. Thus, an accurate estimate of these parameters is a
crucial challenge in order to exploit the benefits of the exponential fitting. We approach
this aspect by proposing a selection technique which suitably treats the truncation error.
Once an advection-reaction-diffusion problem is discretized in space, the vector field of
the resulting system of ordinary differential equations can be split into different terms,
a stiff and a non-linear one. For this reason, we employ an implicit-explicit (IMEX)
scheme which implicitly integrates only stiff constituents and explicitly treats the oth-
ers, gaining benefits both in terms of stability and efficiency.
The effectiveness of this problem-oriented approach has been proved by a rigorous anal-
ysis of accuracy and stability properties and some numerical tests.

This work is co-granted by GNCS-INDAM.
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Solution of large-scale
Lyapunov differential equations

Hermann Mena (Yachay Tech University)

Alexander Ostermann (University of Innsbruck)

Chiara Piazzola ∗ (University of Innsbruck, Austria)

Lyapunov differential equations are the key ingredient for the simulation of systems
governed by stochastic partial differential equations. In this talk we are interested in
large-scale problems and we propose to perform model reduction by low-rank approxi-
mation. In particular we present the dynamical low-rank approximation [1]. That is, a
differential equations based approach for the approximation of the solution in low-rank
factorized form. The strength of this strategy is that the time integration is performed
only on the low-rank factors of the solution.
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A Riemann solver free numerical method for
two-dimensional conservation laws

Alexander Kurganov (Tulane University)

Martina Prugger ∗ (University of Innsbruck, Austria)

Tong Wu (NC State University)

The modeling of fluids usually results in a number of partial differential equations that
relate the change of local properties (such as density, velocity, temperature, ...) in time
to the corresponding change in space. A typical set of equations that result from such
models are so-called conservation laws. Since the solution of such partial differential
equations can develop discontinuities (i.e., shocks), solving them is an interesting prob-
lem in the field of numerical analysis. Due to Godunov’s theorem, linear and monotone
schemes are at most first order accurate and thus special care has to be taken to prop-
agate shock waves without diminishing the performance of the scheme.
The most commonly used numerical methods that deal with such type of problems are
based on solving 1D generalized Riemann problems. However, solving a Riemann prob-
lem comes with a large computational cost. Furthermore, since there is no analytic
solution for the Riemann problem in multiple dimensions, splitting methods have to be
used.
In this talk, we present a high resolution central-upwind-scheme in two space dimensions
on a staggered grid in space. This scheme is able to evolve the solution without solving
a Riemann problem.

References

[1] Kurganov, A., Prugger, M., Wu, T., 2015. Second-Order Fully Discrete Central-Upwind
Scheme for Two-Dimensional Hyperbolic Systems of Conservation Laws. Submitted to SIAM
Journal on Scientific Computing.

30



Numerical bifurcation analysis of nonlinear delay
equations through pseudospectral discretization

Dimitri Breda (University of Udine)

Odo Diekmann (Utrecht University)

Mats Gyllenberg (University of Helsinki)

Francesca Scarabel ∗ (University of Helsinki, Finland)

Rossana Vermiglio (University of Udine)

Delay equations, including renewal and delay-differential equations, are increasingly used
in the mathematical modelling of biological populations. In this context, the interest is
mainly focused on the long-term dynamics of the system and their change when varying
some parameters.
In this talk I will present the pseudospectral discretization of nonlinear delay equations
with finite delay. This approach leads to an approximating nonlinear ODE system whose
dynamical and bifurcation properties can be investigated by using well-established soft-
ware for ODEs (e.g., matcont for matlab). The spectral convergence of the approach
for approximating equilibria, their stability properties and the parameter values of bifur-
cations has been proved in [1] and allows to obtain reliable results with low-dimensional
ODE systems. Moreover, I will present some test examples from [1, 2], which show the
effectiveness of the method for investigating periodic solutions and the relevant stability
and bifurcation properties.
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An extension of the Savage-Hutter equations for the
modeling of gravity driven mass flows over arbitrary

topography in one space dimension

Wolfgang Fellin (University of Innsbruck)

Alexander Ostermann (University of Innsbruck)

Gregor Staggl ∗ (University of Innsbruck, Austria)

Gravity driven mass flows (e.g. debris flows, snow or rock avalanches), pose a threat to
human life and property. To predict their behavior, many models have been proposed in
the last decades, where the Saint Venant model for shallow water flow and the Savage-
Hutter model [2] for granular flow are of high importance.
Due to many simplifications, these models have difficulties on irregular terrain and are
therefore only partially applicable on arbitrary topography, which we encounter in real
world problems.
To get a better understanding of the additional forces induced by topographical changes,
we focus on two space dimensions, the slope following coordinate X and perpendicular
to it Z. Inspired by the paper by Bouchut et.al. [1], we have repeated the derivations,
starting with the compressible Euler equations of gas dynamics. After linearization in
the curvature ∂Xθ, depth integration in Z and scaling analysis, we acquire a system
of PDEs for mass and momentum balance in one space dimension X with additional
force terms, which can be reduced to the classical Savage-Hutter equations after further
simplification.
With numerical simulations we demonstrate the differences between the old and new
equations, which are significant in strongly curved terrain and at higher speeds of the
mass flow.
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Finite Element Heterogeneous Multiscale Method for
Time-Dependent Maxwell’s Equations

Marlis Hochbruck (Karlsruhe Institute of Technology)

Christian Stohrer ∗ (Karlsruhe Institute of Technology, Germany)

Our goal is to simulate electromagnetic wave propagation through a highly oscillatory
material. More precisely, let Ω ⊂ Rd be a bounded Lipschitz domain (d = 2, 3), the final
time T be positive, and f ∈ L2(0, T ;L2(Ω)), E0 ∈H0(curl; Ω), and E′0 ∈ L2(Ω) be the
given source term, the initial state, and the initial velocity, respectively. We consider
the second-order formulation of time-dependent Maxwell’s equations, whose variational
formulation is given as follows.

Find Eη : (0, T )→H0(curl; Ω), such that for all v ∈H0(curl; Ω)(
∂ttε

ηEη(t),v
)

0,Ω
+
(
(µη)−1 curlEη(t), curlv

)
0,Ω

=
(
f(t),v

)
0,Ω
,

Eη(0) = E0, and ∂tE
η(0) = E′0,

(1)

where εη is the electric permittivity and µη is the magnetic permeability. We assume,
that both material properties oscillate on a microscopic scale of size η � diam(Ω), e.g.
for periodic materials, η is the period.
The use of standard discretization methods, such as Finite Differences or Finite Element
(FE), would lead to humongous degrees of freedom, since all the microscopic details
must be resolved. To overcome these difficulties, we present a multiscale method for
(1) within the framework of FE Heterogeneous Multiscale Methods (HMM), see [1] and
references therein. This method is capable of approximating the effective behavior of
Eη efficiently, e.g in the special case of periodic materials, the computational costs are
independent of η.
Our FE-HMM for (1) can be seen as a non-conforming FE method for second-order
hyperbolic equations. To prove an a-priori error bound we use a new generalization of
the Strang-type lemma given in [2].
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Locally implicit time integration for linear Maxwell’s
equations

Marlis Hochbruck (Karlsruhe Institute of Technology)

Andreas Sturm ∗ (Karlsruhe Institute of Technology, Germany)

An attractive feature of discontinuous Galerkin (dG) spatial discretizations of Maxwell’s
equations is their ability to handle complex geometries by using unstructured, possibly
locally-refined meshes. Furthermore, dG methods lead to block diagonal mass matrices
which in combination with an explicit time integration method allow for a fully explicit
scheme. However, such explicit approaches require a constraint on the time step size
related to the diameter of the smallest mesh element to ensure stability, the well-known
CFL condition. This makes the simulation inefficient, in particular if the number of
tiny mesh elements is small compared to the total number of elements. A natural way
to overcome this restriction is using implicit time integrators but these come with the
expense of having to solve a large linear system in each time step.
A more suitable approach consists in treating only the tiny mesh elements implicitly
while retaining an explicit time integration for the remaining coarse elements. This
results in so-called locally implicit methods. In this talk we consider a second order
locally implicit method proposed by [1] and analyzed in [2, 3]. Both, the efficiency and
the error analysis of this method strongly rely on the skew-adjointness of the Maxwell-
operator and its (central fluxes) dG discretization. Unfortunately, this skew-adjointness
does not hold for stabilized dG discretizations, i.e. for upwind fluxes dG methods. Thus,
the construction and the analysis of the locally implicit method are so far restricted
to dG methods with central fluxes. However, upwind fluxes dG methods exhibit many
advantages such as a superior stability behavior and higher accuracy.
In this talk we present how the locally implicit method can be adapted to treat the
upwind fluxes dG discretization. We show that the new method preserves the efficiency
of the underlying locally implicit method. Moreover, we give an error analysis for the
full discretization based on a variational formulation and energy techniques. We prove
that the new method is again of second order in time and that it exhibits the higher
spatial accuracy of an upwind dG method.
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Numerical solution of degenerate ultraparabolic
equations for pricing of Asian options

Tatiana Chernogorova (University of Sofia)

Luben Vulkov ∗ (Ruse University, Bulgaria)

In this talk, we develop splitting methods for degenerate parabolic equations that arise
naturally within the framework of PDE valuation of Asian options. Here we are concen-
trated on path-dependent options. First, using the energy method we discuss well-posed
boundary conditions. Then, two splitting algorithms are proposed to transform the
whole time-dependent problem into two unsteady subproblems of a smaller complexity.
Convection-diffusion degenerate parabolic equation is involved on the first problem and
it is discretized by fitted finite volume difference schemes. The second one is a transport
problem and it is approximated by monotone weighted difference schemes. Numerical
experiments show that the numerical algorithms are working appropriately to conserve
the positivity of the price of options and are better than those provided in the existing
literature.
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