8th NAI Workshop, October 14-17, 2014

Most unstable trajectories of linear switched systems

Marino Zennaro (University of Trieste)

joint work with

Nicola Guglielmi (University of L'Aquila)

Discrete-time linear switched systems (LSS)

We consider the linear switched system (for n = 0, 1, ...)

$$x(n+1) = A_{\sigma(n)} x(n), \quad \sigma : \mathbb{N} \longrightarrow \mathcal{I} := \{1, 2, \dots, m\}$$

where $x(0) \in \mathbb{R}^k$ and $A_{\sigma(n)} \in \mathbb{R}^{k \times k}$ is an element of the finite (this simplifies presentation) family of matrices

$$\mathcal{F} = \{A_i\}_{i \in \mathcal{I}}$$

associated to the system and σ denotes the switching law.

We are interested in the following issues:

- Stability properties of the solutions in terms of joint spectral radius of the associated family \mathcal{F} .
- Geometry of most unstable solutions.

Example in control theory

For a matrix valued function $B:\{1,\ldots,m\}\to\mathbb{R}^{k\times k}$ and a control function $u:(t_0,+\infty)\to\{1,\ldots,m\}$, we consider the linear discontinuous system of ODEs

$$\dot{x}(t) = B(u(t)) x(t), \ t > t_0, \ x(t_0) = x_0.$$

We discretize it as follows: given a uniform grid $\{t_n\}$, where $t_{n+1} - t_n = \Delta t$, the discretized control function $u_{\Delta}(t)$ assumes constant values in each subinterval $(t_n, t_{n+1}]$ of the grid.

Thus the discretized solution $x_{\Delta}(t)$ satisfies

$$x_{\Delta}(t_{n+1}) = e^{\Delta t B(u_{\Delta}(t_n))} x_{\Delta}(t_n), \quad x_{\Delta}(t_0) = x_0,$$

which is of the previous type with $x(n) = x_{\Delta}(t_n)$ and

$$A_{\sigma(n)} = e^{\Delta t B(u_{\Delta}(t_n))}, n = 1, \dots, m.$$

Stability issues: worst case analysis

Aim: determining the most unstable switching law (MUSL), i.e., the law σ giving the solution with highest rate of growth ρ . Specifically we look for a law σ and a norm $\|\cdot\|$ such that

$$||x(n)|| = \rho^n ||x(0)||$$
 for all n .

The MUSL can be characterized using optimal control techniques. The variational approach leads to a Hamilton–Jacobi–Bellman equation.

Its solution is referred to as a Barabanov norm of the LSS.

"Although the Barabanov norm was studied extensively, it seems that there are only few examples where it was actually computed in closed form" (**Teichner and Margaliot '12**).

Worst case analysis: joint spectral radius

In order to analyze all possible solutions, we consider the difference inclusion

$$x(n+1) \in \{A_i \, x(n) \mid i \in \mathcal{I}\}$$

The maximal growth rate of the trajectories associated to the previous difference inclusion turns out to be the so called

joint spectral radius

of the associated family of matrices $\mathcal{F} = \{A_i\}_{i \in \mathcal{I}}$.

If this is less than 1 we have uniform asymptotic stability, i.e.,

$$\lim_{n \to \infty} x(n) = 0 \quad \forall \ x(0)$$

for any possible sequence $\{A_{i_n}\}_{n\geq 1}$ (Berger & Wang '92).

The multiplicative semigroup

We consider the set of products of degree n,

$$\Sigma_n(\mathcal{F}) = \{A_{i_n} \dots A_{i_1} \mid i_1, \dots, i_n \in \mathcal{I}\}$$

and define the product semigroup

$$\Sigma(\mathcal{F}) = \bigcup_{n\geq 1} \Sigma_n(\mathcal{F}).$$

Generalizing the spectral radius

(1) Joint spectral radius (Rota & Strang '60):

$$\widehat{\rho}(\mathcal{F}) = \limsup_{n \to \infty} \widehat{\rho}_n(\mathcal{F})^{1/n} \quad \text{with } \widehat{\rho}_n(\mathcal{F}) = \max_{P \in \Sigma_n(\mathcal{F})} \|P\|$$

(2) Generalized spectral radius (Daubechies et al. '92):

$$\overline{\rho}(\mathcal{F}) = \limsup_{n \to \infty} \overline{\rho}_n(\mathcal{F})^{1/n} \quad \text{with } \overline{\rho}_n(\mathcal{F}) = \max_{P \in \Sigma_n(\mathcal{F})} \rho(P)$$

(3) Common spectral radius (Elsner '95):

$$u(\mathcal{F}) = \inf_{\|\cdot\| \in \mathcal{N}} \|\mathcal{F}\| \quad \text{with} \quad \|\mathcal{F}\| = \max_{i \in \mathcal{I}} \|A_i\|$$

where \mathcal{N} is the set of operator norms.

All these quantities are equal to the same number $\rho(\mathcal{F})$

Framework

Daubechies & Lagarias proved the following inequality, where P is any product of degree d and $\|\cdot\|$ any operator norm:

$$\rho(P)^{1/d} \le \rho(\mathcal{F}) \le \|\mathcal{F}\|$$

Definitions

- 1. We say that \mathcal{F} has the finiteness property if there exists a spectrum maximizing product, that is a product P for which the left inequality is an equality.
- 2. We say that \mathcal{F} is nondefective if there exists an operator norm for which the right inequality becomes an equality. Such norm is called an extremal norm.

Extremal Barabanov norms

Definition [Barabanov norm]

We say that an extremal norm $\|\cdot\|$ for the family $\mathcal F$ is a Barabanov norm if

$$\max_{i \in \mathcal{I}} ||A_i x|| = \rho(\mathcal{F}) ||x|| \quad \forall x \in \mathbb{R}^k.$$

Barabanov norms identify - for any initial vector - a most unstable solution associated to a MUSL.

Theorem (Barabanov '88)

Assume that a family of matrices \mathcal{F} is irreducible. Then there exists a Barabanov norm for \mathcal{F} .

As a consequence, the existence of a Barabanov norm appears generic as well as the existence of a MUSL.

Computational framework

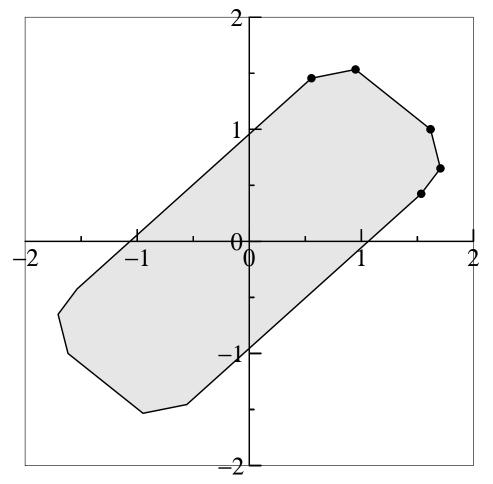
Recent algorithms proposed in the literature start from the guess of a candidate spectrum maximizing product and attempt to obtain an extremal norm.

Assumptions

- (i) Since the joint spectral radius $\rho(\mathcal{F})$ is a positively homogenous function of the set of matrices, i.e., $\rho(\alpha \mathcal{F}) = |\alpha| \rho(\mathcal{F})$, we assume $\rho(\mathcal{F}) = 1$.
- (ii) We assume that \mathcal{F} is nondefective and has the finiteness property.
- These imply that there exists P_* such that $\rho(P_*) = 1$ and a norm $\|\cdot\|_*$ such that $\|\mathcal{F}\|_* = 1$.

The polytope algorithms

These algorithms (see, e.g., Guglielmi, Wirth & Z. '05 and Guglielmi & Protasov '13) attempt to compute an extremal polytope norm, that is an extremal norm whose unit ball is a centrally symmetric polytope \mathcal{P} .



Starting from a suitable initial vector (the leading eigenvector x of the spectrum maximizing product P_*), the algorithm computes \mathcal{P} recursively.

The polytope algorithm

```
Notation: for a set of vectors V = \{v_1, \dots, v_p\}, \mathcal{F} V denotes the set \{A_i v_j\}_{i,j} and \operatorname{absco}(V) = \operatorname{convhull}(\pm v_1, \dots, \pm v_p).
```

Algorithm 1: Basic algorithm

```
Data: \mathcal{F}, x
```

Result: \mathcal{P}

begin

- **1** | Set $V_0 := \{x\}$ and i = 0
- 2 while $\mathcal{F} V_i \not\subset \mathcal{P}^{(i)}$ do
 - Set i = i + 1 and compute $U_i = \mathcal{F} V_{i-1}$
 - Determine an essential system of vertices V_i of

$$absco(V_{i-1} \cup U_i)$$

- Set $\mathcal{P}^{(i)} = \operatorname{absco}(V_i)$
- **6** Return $\mathcal{P} := \mathcal{P}^{(i)}$ (extremal polytope unit ball)

Example 1

Let
$$\mathcal{F} = \{A_1, A_2\}$$

$$A_1 = \alpha \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

with $\alpha = \left(\frac{3+\sqrt{5}}{2}\right)^{-1/5}$, which has spectral radius $\rho(\mathcal{F}) = 1$ and spectrum maximizing product $P_* = A_1 A_2 A_1^2 A_2$.

Applying the polytope algorithm yields an extremal polytope norm after 5 steps, whose unit ball \mathcal{P} is a polytope with 6 vertices.

Is this a Barabanov norm?

Computed extremal polytope norm



In the right picture a boundary point x is drawn in red and the transformed vectors A_1x and A_2x are drawn in blue. Therefore, this is not a Barabanov norm.

Duality

Definition [adjoint polytope]

Let \mathcal{P} be a real centrally symmetric polytope, i.e., there exists a set of vectors $V = \{v_1, \dots, v_p\}$ such that

$$\mathcal{P} = \text{convhull}(\pm v_1, \dots, \pm v_p)$$
.

Then we call adjoint (or dual) of \mathcal{P} the polytope

$$\mathcal{P}^* = \operatorname{adj}(V) = \left\{ x \in \mathbb{R}^k \mid |\langle x, v_i \rangle| \le 1, \ i = 1, \dots, p \right\}.$$

Proposition

Let \mathcal{P} and \mathcal{P}^* be a polytope and its ajoint and let $\|\cdot\|_{\mathcal{P}}$ and $\|\cdot\|_{\mathcal{P}^*}$ be the associated norms. Then, for any matrix A,

$$||A||_{\mathcal{P}^*} = ||A^{\mathrm{T}}||_{\mathcal{P}} \quad \text{(hence } ||\mathcal{F}||_{\mathcal{P}^*} = ||\mathcal{F}^{\mathrm{T}}||_{\mathcal{P}}\text{)}.$$

How to get a Barabanov extremal norm

Main observation: the polytope algorithm determines a polytope $\mathcal{P} = \text{convhull}(\pm v_1, \dots, \pm v_p)$ characterized by

$$v_{\ell} = A_{i_{\ell}}v_{j_{\ell}}$$
 for some $j_{\ell} \in \{1, \ldots, p\} \& i_{\ell} \in \{1, \ldots, m\}.$

Therefore, with $A_i \mathcal{P} = \{A_i x \mid x \in \mathcal{P}\}$, we have

$$\mathcal{P} = \operatorname{convhull}\left(\bigcup_{i=1}^{m} A_i \mathcal{P}\right) \tag{H}$$

Theorem (Plinschke & Wirth '08)

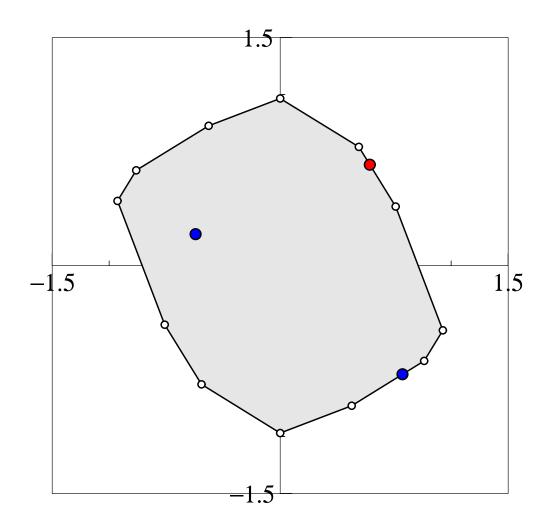
Let \mathcal{P} define an extremal norm $\|\cdot\|_{\mathcal{P}}$ for \mathcal{F} and assume that **(H)** holds. Then $\|\cdot\|_{\mathcal{P}^*}$ is a Barabanov norm for \mathcal{F}^T .

Recipe: Given \mathcal{F} , apply the polytope algorithm to \mathcal{F}^{T} .

Example 1 (again)

Consider the family $\mathcal{F}^{\mathrm{T}} = \{A_1^{\mathrm{T}}, A_2^{\mathrm{T}}\}$ and the norm $\|\cdot\|_{\mathcal{P}^*}$.

Then we have



For any initial vector $x \in \partial \mathcal{P}^*$ (in red), at least one of the vectors $A_1^T x, A_2^T x \in \partial \mathcal{P}^*$ (in blue).

Example in control theory

Consider the 3-dimensional control system

$$\dot{x}(t) = B(u(t)) \, x(t), \, ext{with}$$

$$B_1 = \begin{pmatrix} -1 & 0 & 0 \\ 10 & -1 & 0 \\ 0 & 0 & -10 \end{pmatrix}$$

$$B_2 = \begin{pmatrix} -10 & 0 & 10 \\ 0 & -10 & 0 \\ 0 & 10 & -1 \end{pmatrix}$$

and discretize it on a grid with $\Delta t = 1/256$.

A MUSL is computed through the determination of a the Barabanov norm whose unit ball \mathcal{B} is shown in the figure.

Software

Matlab routines are made available at

http://univaq.it/~guglielm/

THANK YOU