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Abstract evolution equations

We consider

u̇ =
(
F + G

)
u, u(0) = u0

on a Hilbert or Banach space H

F typically (nonlinear) diffusion operator

G (nonlinear) perturbation with sufficiently good properties
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Splitting methods

Full problem

u̇ =
(
F + G

)
u, u(0) = u0

difficult and/or expensive

Instead cleverly combine solutions to sub-problems

u̇ = Fu and u̇ = Gu

Simple and/or cheaper
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Splitting methods: examples

Lh = ehF ehG Lie

Sh = eh/2GehF eh/2G Strang

Mh = (I − hF )−1ehG Mixed Lie

Solution approximations to u(nh) are

Lnhu0, Snhu0, Mn
hu0
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Dissipative setting

Dissipative problems (Hilbert space)

(Fu − Fv , u − v)H ≤ 0 u, v ∈ D (F )

Further
D (F ) ⊂ C , C closed, convex

with range condition

C ⊂ R (I − hF ) , h ≥ 0
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Consequences

Non-expansive resolvent

‖(I − hF )−1u − (I − hF )−1v‖H ≤ ‖u − v‖H

⇒ will give stability for the schemes

Semigroup

etFu0 = lim
n→∞

(I − hF )−nu0, t = nh

is mild solution to u̇ = Fu if u0 ∈ D (F )

⇒ existence of solutions, but no further regularity
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Splitting analysis

Convergence of various splitting schemes:

Brézis & Pazy 1972, Barbu 1976, etc.

But how fast? Convergence orders

Basic result, Crandall & Liggett 1971:∥∥(I − hF )−nu0 − u(nh)
∥∥
H
≤ Chp p ∈ [1/2, 1]

Note: implicit Euler discretization for u̇ = Fu!

8



Analysis idea

Stability from dissipativity

Consistency by estimating distance to implicit Euler, O(hq)

Convergence of order O(hp + hq)
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The differential Riccati equation (DRE)

Ṗ(t) = A∗ ◦ P(t) + P(t) ◦ A + Q−P(t) ◦ P(t),

P(0) = P0

Solve for operator-valued P(t) for t ∈ [0,T ]

Assumption: Q and P0 self-adjoint, positive semi-definite

Important in e.g. optimal control - LQR problems
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DRE splitting

Ṗ(t) = A∗ ◦ P(t) + P(t) ◦ A + Q−P(t) ◦ P(t)

= FP + GP

Mixed Lie splitting scheme:

Mh = (I − hF)−1ehG
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More problems, but simpler

Nonlinear subproblem:

ehGP0 = (I + hP0)−1P0

Affine subproblem:
U = (I − hF)−1P0

equivalent to

(I − 2hA)∗U + U(I − 2hA) = 2hQ + 2P0

(Linear) Lyapunov equation for U
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The dissipative setting: Which space?

Given Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗

A, A∗ ∈ L(V ,V ∗) given by

〈−Au, v〉V ∗×V = a(u, v)

〈−A∗u, v〉V ∗×V = a(v , u)

with bounded, coercive a:

|a(u, v)| ≤ C1 ‖u‖V ‖v‖V and a(u, u) ≥ C2 ‖u‖2V
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The dissipative setting: Which space?

Given Gelfand triple

V := H1
0 (Ω) ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ H−1(Ω) =: V ∗

A, A∗ ∈ L(H1
0 ,H

−1) given by

〈−Au, v〉V ∗×V = (
√
α∇u,

√
α∇v)L2 + λ(u, v)L2

= 〈−A∗u, v〉V ∗×V

Diffusion operator
A = ∇ ·

(
α∇u

)
− λI
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Temam setting: Hilbert-Schmidt operators

We look for P(t) in
H = HS(H,H)

Stronger than bounded linear operator L(H,H)

Hilbert space with

(f , g)H =
∞∑
k=1

(fek , gek)H
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Why Hilbert-Schmidt?

New Gelfand triple

V ↪→ H ∼= H∗ ↪→ V∗

The operators F , G and F + G with

FP = A∗ ◦ P + P ◦ A + Q GP = −P ◦ P

D (F) = {P ∈ V ; FP ∈ H} D (G) = C

where
C = {P ∈ H ; P = P∗ ; (Px , x) ≥ 0}
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Why Hilbert-Schmidt?

New Gelfand triple

V ↪→ H ∼= H∗ ↪→ V∗

The operators F , G and F + G with

FP = A∗ ◦ P + P ◦ A + Q GP = −P ◦ P

D (F) = {P ∈ V ; FP ∈ H} D (G) = C

where
C = {P ∈ H ; P = P∗ ; (Px , x) ≥ 0}

are all dissipative:

(FP1 −FP2,P1 − P2)H ≤ 0
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Why Hilbert-Schmidt?

New Gelfand triple

V ↪→ H ∼= H∗ ↪→ V∗

The operators F , G and F + G with

FP = A∗ ◦ P + P ◦ A + Q GP = −P ◦ P

D (F) = {P ∈ V ; FP ∈ H} D (G) = C

where
C = {P ∈ H ; P = P∗ ; (Px , x) ≥ 0}

all satisfy the range condition:

(I − hF)−1C ⊂ C
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Convergence order

Mixed Lie
Mh = (I − hF)−1ehG

Stability by dissipativity of F , G

Consistency for P0 ∈ D (F) ∩ C∥∥Mn
hP0 − (I − h (F + G))−nP0

∥∥
H ≤ Ch

Convergence of order O(hp + h) (p = IE order)
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Large-scale setting

Solving for large (dense) matrices:

P(t) ∈ RN×N with N ∈ [103, 107]

Storage?

Essential to use structural properties!

Low-rank: P ≈ zzT with z ∈ RN×m

Our splitting methods preserve low rank: Mhzz
T = wwT
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Results: Mixed Lie

Ṗ(t) = ATP(t) + P(t)A + CTC − P(t)P(t)

A = ∇·
(
α∇u

)
− I , per. BC

α(x) = 2 + 2 cos 2πx

C
∞∑
k=0

ake
2πikx =

4∑
k=0

ake
2πikx
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Splitting error
O(h)

Discretization: 2001 points in space

Relative errors, ‖Mn
hP0 − P(nh)‖Fro / ‖P(nh)‖Fro
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Thank you

References on my webpage:
http://www.maths.lu.se/staff/tony-stillfjord/research/
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