Analysis of underdamped linear systems driven by Brownian motion with the help of ARMA processes

Georg Spielberger

joint work with Alexander Ostermann and Alexander Tributsch

Numerical Analysis Innsbruck Unit of Applied Mechanics University of Innsbruck, Austria

Numerical Analysis of Evolution Equations 15.10.2014

2 Application in structural health monitoring

2 Application in structural health monitoring

A linear SDE

• We consider the SDE:

$$\dot{Y}(t) = AY(t) + B\dot{W}_t$$

ullet Underdamped: all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have negative real parts

$$ightarrow Y(t) = \int_{-\infty}^t \mathrm{e}^{A(t-s)} B \, \mathrm{d} \, W_s$$

is stationary.

• The components of the uniformly sampled solution $X_k := Y_i(\tau k)$ are stationary time series.

ARMA processes

Definition

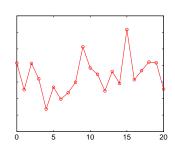
A stationary process $\{X_t, t \in \mathbb{Z}\}$ with mean zero is called an ARMA(p, q) process if for every $t \in \mathbb{Z}$ it holds that

$$X_t - \varphi_1 X_{t-1} - \ldots - \varphi_p X_{t-p} = a_t + \vartheta_1 a_{t-1} + \ldots + \vartheta_q a_{t-q},$$

where $\{a_t\} \sim WN(0, \sigma^2)$.

Notation:

- $\varphi(z) := 1 \varphi_1 z \ldots \varphi_p z^p$
- $\vartheta(z) := 1 + \vartheta_1 z + \ldots + \vartheta_q z^q$
- $SX_t = X_{t-1}$
- $\varphi(S)X_t = \vartheta(S)a_t$



Coherence

- Let $X_k := Y_i(\tau k)$ be a component of the uniformly sampled solution of $Y(t) = \int_{-\infty}^{t} e^{A(t-s)} B dW_s$.
- Then X_k is covariance equivalent to an ARMA(p,q) process with n = p > q.
- There is a relation of the eigenvalues of A and the autoregressive coefficients. This relation can be used to determine eigenvalues of underdamped systems.

2 Application in structural health monitoring

Model for engineering structures

A model for viscously damped engineering structures:

$$M\ddot{Z}(t) + R\dot{Z}(t) + KZ(t) = u\dot{W}(t),$$
 (1)

Z(t) ... displacement

M, R, K ... mass, damping and stiffness properties

uW(t) ... random excitation

The state space system

$$\dot{Y}(t) = AY(t) + B\dot{W}_t$$

with

$$Y = \begin{pmatrix} Z \\ \dot{Z} \end{pmatrix}, A = \begin{pmatrix} 0 & I \\ M^{-1}R & M^{-1}K \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 \\ u \end{pmatrix}$

usually forms an underdamped system and thus an ARMA process when sampled.

Example

The uniformly sampled (with samplingrate au) solution of the second-order system

$$m\ddot{Z}(t) + r\dot{Z}(t) + kZ(t) = \dot{W}_t$$

is covariance equivalent to an ARMA(2,1) process with

$$\varphi_1 = 2e^{-r\tau/2m}\cos\left(\tau\sqrt{\frac{k}{m} - \frac{r^2}{4m^2}}\right),$$

$$\varphi_2 = -e^{r\tau/m}.$$

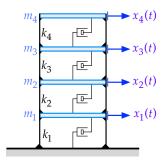
2 Application in structural health monitoring

Aluminium shear frame

- small-scale four storey shear frame
- two horizontal columns of a 15 × 2 mm cross section
- four horizontal beams of 19×19 mm cross section
- affixed on a 250kg concrete block

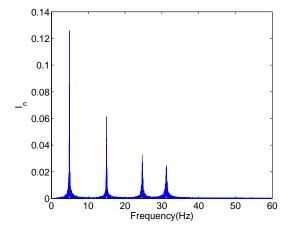
Aluminium shear frame cont.

- vibrations out of plane neglected
- beams are considered to be rigid
- ullet o the displacement of each storey expressed by 1 DoF
- ullet ightarrow 4 DoF model for the whole structure



Aluminium shear frame cont.

⇒ 4 dominant modes of a measurement stream



Damage states

- damage conducted by cut into vertical columns
- 13 different damage states
- incision of 3mm at a single location between two consecutive damage states

A distance measure

Consider the mean squared error as sum of one-step prediction errors:

$$\mathsf{MSE}(\varphi, \vartheta, \mathsf{x}) := \frac{1}{n-1} \sum_{t=1}^n \left(\frac{\vartheta(\mathsf{S})}{\varphi(\mathsf{S})} \mathsf{x}_t \right)^2$$

(remember $\varphi(z) := 1 - \varphi_1 z - \ldots - \varphi_p z^p$, $\vartheta(z) := 1 + \vartheta_1 z + \ldots + \vartheta_q z^q$) and $\{a_t\} \sim \mathsf{WN}(0, \sigma^2)$

Define the distance between two measurements x and \tilde{x} :

- $\bullet \ \, \text{Estimate the ARMA coefficients } (\varphi, \vartheta, \sigma) \text{ of } x \text{ and } \left(\widetilde{\varphi}, \widetilde{\vartheta}, \widetilde{\sigma}\right) \text{ of } \widetilde{x}$
- ② Normalize the streams by $x := x/\sigma$ and $\widetilde{x} := \widetilde{x}/\widetilde{\sigma}$
- $\qquad \textbf{Set the distance as} \ d\left(x,\widetilde{x}\right) := \min\left(\mathsf{MSE}\big(\varphi,\vartheta,\widetilde{x}\big),\mathsf{MSE}\big(\widetilde{\varphi},\widetilde{\vartheta},x\big)\right)$

Empiric threshold

Compare the distance of six measurements of the reference state using an ARMA(8,7) process:

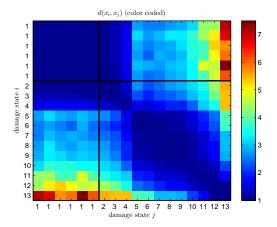
No.	1	2	3	4	5	6
1	1.00	1.02	1.05	1.04	1.01	1.03
2	1.02	1.00	1.01	1.02	1.02	0.99
3	1.05	1.01	1.00	1.01	1.01	1.02
4	1.04	1.02	1.01	1.00	1.00	1.02
5	1.01	1.02	1.01	1.00	1.00	0.99
6	1.03	0.99	1.02	1.02	0.99	1.00

→ streams with a distance greater than 1.05 are considered as different else considered as equal

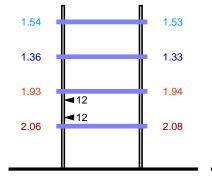
Performance

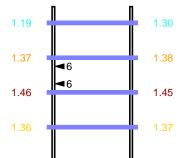
Comparing 6 measurements of the reference state with 13 different damage state measurements:

- 133 compared pairs of different states are identified as different
- 5 compared pairs of different states are identified as equal



Damage location





Conclusion and Outlook

- ✓ relation between ARMA coefficients and system modes
 ✓ distance measure to detect structural changes
 ✓ damage location worked in experiments
 □ theoretical analysis of damage location methods
 □ automatical choice of process order and samplingrate
 - Thank you for your attention!