
Solutions of the exercises – Lecture C – without problem 8

Problem 1.

It is a classical result, that under the condition L := max{1,supx∈R |F
′(x)|} <∞ the function Φ is uniquely

defined on the whole space R×R and it is also continuous. We will use the following property of Φ: for an
arbitrary ε > 0 and a,b ∈ R,a < b there is a sufficiently small time tε = tε(a,b, f ) > 0 such that

Φ(t, s) ∈ R \ [a−1/2,b + 1/2] for all t ∈ [0, tε], s ∈ R \ [a−1,b + 1] (1)

and
|Φ(t, s)− s| < ε for all t ∈ [0, tε], s ∈ [a−1,b + 1]. (2)

Fact (1): Note that from continuity of Φ we have t1 > 0 such that Φ(t,b + 1) > b + 1/2 and Φ(t,a−
1) < a − 1/2. If we would have t′ ∈ [0, t1] and b′ ≥ b + 1 such that Φ(t′,b′) ≤ b + 1/2 then becouse the
function t ∈ [0, t′]→ Φ(t,b′) is continuous and its image includes the interval [b + 1/2,b′] we also would
have t′′ ∈ [0, t′] such that Φ(t′′,b′) = b+1. Then we would arrive (using the well-known semigroup property
Φ(t + t′; s) = Φ(t,Φ(t′, s))) at the contradiction

b + 1/2 ≥ Φ(t′,b′) = Φ(t′− t′′,Φ(t′′,b′)) = Φ(t′− t′′︸︷︷︸
∈[0,t1]

,b + 1) > b + 1/2.

Therefore Φ(t, s) > b+1/2 for all t ∈ [0, t1] and s ≥ b+1. Similarly we obtain Φ(t, s) < a−1/2 for all t ∈ [0, t1]
and s ≤ a−1.

Fact (2): Integrating from 0 to t the differential equation for y in the layout of the exercises we get
y(t)− s =

∫ t
0 F(y(τ))dτ. Therefore

|y(t)− s| ≤
∫ t

0
|F(y(τ))−F(s)|+ |F(s)|dτ ≤ t|F(s)|+

∫ t

0
L|y(τ)− s|dτ.

The usual application of Gronwall – Bellman lemma yields

|y(t)− s| ≤ t|F(s)|+
∫ t

0
|F(s)|τLeL(t−τ)dτ = · · · =

|F(s)|
L

(
eLt −1

)
. (3)

Now we have

|F(s)| ≤ |F(s)−F(0)|+ |F(0)| ≤ L|s|+ F(0) ≤ max
s∈[a−1,b+1]

L|s|+ F(0) := C <∞.

For ε > 0 we can choose t2 > 0 such that C
L (eLt −1) < ε for all t ∈ [0, t2]. For these t and s ∈ [a−1,b + 1] we

arrive at |Φ(t, s)− s| = |y(t)− s| < ε.
Therefore (1) and (2) are valid for tε := min{t1, t2}.
Part a) of the exercise: The semigroup property of T (t) is a straightforward consequence of the semi-

group property of Φ. T (t) is well-defined, that is T (t) f ∈ X for all f ∈ X. To see this, choose f ∈ X, t > 0 (t = 0
is trivial). T (t) f is continuous (becouse of the continuity of Φ) so we have to show that its limits are zero at
±∞. Choose ε > 0. For a sufficiently long intervall [a,b] we have | f (s)| < ε for all s ∈ R\ [a,b]. Modificating
the ideas showing (1) and (2) we can establich the existence of A ≤ a and B ≥ b such that Φ(t, s) ∈ R \ [a,b]
for all s ∈ R \ [A,B]. Therefore |

(
T (t) f

)
(s)| = | f (Φ(t, s))| < ε for s ∈ R \ [A,B] and we are done.
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From ||T (t) f || = sups∈R | f (Φ(t, s))| = supr∈R:∃s∈R:r=Φ(t,s) | f (r)| ≤ || f || we have that T is a contraction semi-
group. Now we show strong continuity. Becouse of locally boundedness it is enough to prove this for
functions f ∈ X which are C1 and has compact support. Fix such a function f and also ε > 0. Let [a,b] be an
interval for which f (s) = f ′(s) = 0 for all s ∈ R \ [a,b]. Then for t ∈ [0, tε(a,b, f )] using (1) and (2) we get

||T (t) f − f || = sup
s∈[a−1,b+1]

| f (Φ(s, t))− f (s)| ≤ max
r∈[a−1,b+1]

| f ′(r)|ε

which yields strong continuity.
To identify the generator denote by NF the set of zeros of F, that is

NF := {s ∈ R : F(s) = 0}.

Let (A,D(A)) be the generator. Note that the expression f (Φ(t,s))− f (s)
t has a uniform limit function (uniform

in s ∈ R) in X as t→ 0+ only if it has a pointwise limit. Therefore define the candidate (B,D(B)) as follows

D(B) :=
{

f ∈ X : f ′(s) exists for s ∈ R \NF and g ∈ X for g(s) :=
{

f ′(s)F(s) if s ∈ R \NF
0 if s ∈ NF

}
(
B f

)
(s) :=

{
f ′(s)F(s) for s ∈ R \NF
0 for s ∈ NF

, for f ∈ D(B).

From what we said before we have A ⊂ B. On the other choose f ∈ D(B). For s ∈ NF , t > 0 we get simply∣∣∣∣∣ f (Φ(t, s))− f (s)
t

−B f (s)
∣∣∣∣∣ = 0.

Let s ∈ R \NF then

∣∣∣∣∣ f (Φ(t, s))− f (s)
t

−B f (s)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1
t

∫ t

0
f ′(φ(τ, s))F(φ(τ, s))− f ′(s)F(s)︸                                   ︷︷                                   ︸

:=w(τ,s)

dτ

∣∣∣∣∣∣∣∣∣ .
Choose ε > 0. Then we have [a,b],a < b such that | f ′(s)F(s)| < ε/2 for all s ∈ R \ [a,b]. Now we apply
again (1) and (2). Denote by tε := tε

(
a,b, f ′(·),F(·)

)
> 0. For τ ∈ (0, tε] we obtain |w(τ, s)| < ε in the cases

s ∈ [a−1,b + 1]NF and s ∈ R \
(
NF ∪ [a−1,b + 1]

)
. These considerations implies∣∣∣∣∣∣∣∣∣∣ f (Φ(t, ·))− f (·)

t
−B f (·)

∣∣∣∣∣∣∣∣∣∣ < ε
for t ∈ (0, tε] and therefore A = B.

Part b) of the exercise: The abstract Cauchy problem can be formuleted as follows{
∂u(t,x)
∂t =

(
Au(t, ·)

)
(x) for t ≥ 0, x ∈ R,

u(0, x) = u0(x) for x ∈ R.

We can associete with it in the case u ∈C1(R×R) the following PDR{
∂u(t,x)
∂t −F(x) ∂u(t,x)

∂x = 0 for t ≥ 0, x ∈ R,
u(0, x) = u0(x) for x ∈ R.
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Using the method of characteristics we are seeking for a solution of

t′ = 1, x′ = −F(x), t(0) = 0, x(0) = x0

this can be easily found as ξ0,x0 (s) =
(
s,Φ(−s, x0)

)
for s ≥ 0, x0 ∈ R. We know that the solution u is constant

along this curve, therefore

u(t, x) = u
(
t,Φ(−t,Φ(t, x)︸︷︷︸

:=z

)
)

= u(ξ0,z(t)) = u0(z) = u0(Φ(t, x)) =
(
T (t)u0

)
(x).

Problem 2.

The general Taylor formula for n ≥ 1 is the following one for f ∈ D(An)

T (t) f = f + tA f +
t2

2!
A2 f + · · ·+

tn−1

(n−1)!
An−1 f +

∫ t

0

(t− s)n−1

(n−1)!
T (s)An f ds. (4)

This is a straightforward consequence of φ(t)−φ(0) =
∫ t

0 φ
′(s)ds for continuosly differentiable function

φ : [0, t]→ X defined as

φ(s) := T (s) f + (t− s)T (s)A( f ) +
(t− s)2

2!
T (s)A2 f + · · ·+

(t− s)n−1

(n−1)!
T (s)An−1 f .

Indeed, it is easy to see, that φ(t) = T (t) f and φ(0) = (−1) times the right-hand side of (4) except the
integral. Becouse f ∈D(An) we have that φ is continuosly differentiable. The last task is to find the derivative,
easy calculations shows

φ′(s) =
(t− s)n−1

(n−1)!
T (s)An f .

Problem 3.

Georg Spielberger show me this solution. From previous problem we have

A f =
1
t

(T (t) f − f )−
1
t

∫ t

0
(t− s)T (s)A2 f ds, f ∈ D(A2), t > 0.

Using that T is a contraction we get

||A f || ≤
2
t
|| f ||+

t
2
||A2 f ||, t > 0. (5)

In the case ||A2 f || = 0 we get ||A f || ≤ limt→∞
2
t || f || = 0 therefore ||A f ||2 ≤ ||A2 f |||| f || is valid. On the other

hand for ||A2 f || > 0 it is enough to substitute t := 2
√
|| f ||
||A2 f ||

to (5) and we are done.

Problem 4.

The eqiuvalence of the norm follows from

||| f ||| = sup{||T (t) f || : t ≥ 0} ≤ sup{M|| f || : t ≥ 0} = M|| f ||
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and
|| f || = ||T (0) f || ≤ sup{||T (t) f || : t ≥ 0} = ||| f |||.

In the new norm the semigruop T is a contraction becuouse of

|||T (t) f ||| = sup{||T (s)T (t)︸   ︷︷   ︸
=T (s+t)

f || : s ≥ 0} ≤ sup{||T (r) f || : r ≥ 0} = ||| f |||.

Problem 5.

We give a solution in three situations, from simplest one to the general case:

I. Assume that ||T (t)|| ≤ 1. Then∣∣∣∣∣∣∣∣∣∣(T ( t
n

)
S

( t
n

))n∣∣∣∣∣∣∣∣∣∣ ≤ (∣∣∣∣∣∣∣∣∣∣T ( t
n

)∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣S ( t
n

)∣∣∣∣∣∣∣∣∣∣) · · · (∣∣∣∣∣∣∣∣∣∣T ( t
n

)∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣S ( t
n

)∣∣∣∣∣∣∣∣∣∣)︸                                              ︷︷                                              ︸
n times

≤

∣∣∣∣∣∣∣∣∣∣S ( t
n

)∣∣∣∣∣∣∣∣∣∣n ≤ e||B||t.

II. Assume that ||T (t)|| ≤ M for some constant M ≥ 1. We can apply results from Problem 4 – we use the
notation ||| · ||| for the new norm in X and also for the induced operator norm on L(X). We know that T
is a contraction in the new operator norm ||| · |||. Therefore from the previous step we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(T ( t

n

)
S

( t
n

))n∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ e|||B|||t.

Again from Problem 4. we obtain for f ∈ X∣∣∣∣∣∣∣∣∣∣(T ( t
n

)
S

( t
n

))n
f
∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(T ( t

n

)
S

( t
n

))n
f
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ e|||B|||t ||| f ||| ≤ Me|||B|||t || f ||.

III. In the general situation we have ||T (t)|| ≤ Meωt. Now we use II. for a semigroup T̃ defined as T̃ (t) :=
e−ωtT (t) (see part b) of Exercise 3 in Lecture 2) – because of ||T̃ (t)|| ≤ M the assumption of II. is
fullfilled. So we get ∣∣∣∣∣∣∣∣∣∣(T̃ ( t

n

)
S

( t
n

))n∣∣∣∣∣∣∣∣∣∣ ≤ Me|||B|||t.

Now returning to T we finally arrive at∣∣∣∣∣∣∣∣∣∣(T ( t
n

)
S

( t
n

))n∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣(eω t
n T̃

( t
n

)
S

( t
n

))n∣∣∣∣∣∣∣∣∣∣ ≤ Me(ω+|||B|||)t.

Problem 6.

The Crank-Nicolson scheme F (cf. Example 4.4 from Lecture 4) is well-defined. To show consistency
we use Proposition 4.5 from Lecture 4. We see for f ∈ D(A) and h ∈ (0,1/ω] (here ω > 0 is an arbitrary
number for which T is of the type (M,ω)) that

F(h) f − f
h

=
[I + h/2A][I−h/2A]−1 f − f

h
=

[I + h/2A− I + h/2A][I−h/2A]−1 f
h

= A[I−h/2A]−1 f =
1

h/2
R
(

1
h/2

,A
)

A f .

From part b) of Proposition 4.8 we have 1
h/2 R

(
1

h/2 ,A
)
A f → A f as h→ 0+. Therefore dF(t) f

dt |t=0 = A f for all
f ∈ D(A) and we are done.
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Problem 7.

We show for a strongly continuous scheme F : [0,∞)→ L(X) that the following three statements are
equivalent:

(A) for all t1 > 0 there is M1 = M1(t1) ≥ 0 such that

||(F(h))n|| ≤ M1, for h ≥ 0,n ∈ N,hn ≤ t1,

(B) there is t2 > 0 and M2 ≥ 0 such that

||(F(h))n|| ≤ M2, for h ≥ 0,n ∈ N,hn ≤ t2,

(C) for all t3 ≥ 0 there is M3 = M3(t3) ≥ 0 such that∣∣∣∣∣∣
∣∣∣∣∣∣(F ( t

n

))k
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ M3, for t ∈ [0, t3],n ∈ N,k ∈ {1,2, . . . ,n}.

Note that it is necessary that M1,M2,M3 ≥ 1 becouse of ||F(0)|| = 1. We use notation c(t) := sups∈[0,t] ||F(s)||.
Again c(t) ≥ 1 and from part a) of Propostition 2.2 (Lecture 2) we have also c(t) <∞.

(A)⇒ (B) is trivial. We prove the reversed fact (B)⇒ (A). Choose t1 > 0. For case t1 ≤ t2 it suffices to
set M1(t1) := M2. Therefore assume that t1 > t2. If h > t2/2 and n ∈ N is such that nh ≤ t1 then

||[F(h)]n|| ≤C(t1)n.

From t2/2 < h ≤ t1/n we get n < 2t1
t2

so in this case

||[F(h)]n|| ≤C(t1)
2t1
t2 .

On the other hand for h ≤ t2/2,n ∈N let jh ≥ 2 denote the greatest integer for which jhh ≤ t2. Let ph ∈N,qh ∈

{0,1, · · · , jh} be the numbers uniquely determined by the equation n = ph jh + qh. Now we get

||[F(h)]n|| =
∣∣∣∣∣∣∣∣[F(h)]qh

(
[F(h)] jh

)ph
∣∣∣∣∣∣∣∣ ≤ Mph+1

2 .

From nh ≤ t1, ( jh + 1)h > t2 and h ≤ t2/2 we obtain

ph ≤
n
jh
<

t1/h
t2/h−1

=
t1

t2−h
≤

2t1
t2

so

||[F(h)]n|| ≤ M
2t1
t2

+1

2 .

Therefore the following setting gives the reversed statement

M1(t1) :=


M2 for t1 ≤ t2,

max

C(t1)
2t1
t2 ,M

2t1
t2

+1

2

 for t1 > t2.

Now we show (A)⇔ (C). For (A)⇒ (C) let t3 ≥ 0 be arbitrary. Seting h := t/n we arrive at ||F(t/n)k || =

||F(h)k || ≤ M1(t3) and so M3(t3) := M1(t3) is a good choice. (C)⇒ (A) is similarly simple. Let t1 > 0 with a
setting t := hn ∈ (0, t1] we get ||F(h)n|| = ||F(t/n)n|| ≤ M3(t1), therefore M1(t1) := M3(t1) is a right expression
for our purpose.
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