Solutions of the exercises - Lecture C - without problem 8

Problem 1.

It is a classical result, that under the condition $L:=\max \left\{1, \sup _{x \in \mathbb{R}}\left|F^{\prime}(x)\right|\right\}<\infty$ the function Φ is uniquely defined on the whole space $\mathbb{R} \times \mathbb{R}$ and it is also continuous. We will use the following property of Φ : for an arbitrary $\epsilon>0$ and $a, b \in \mathbb{R}, a<b$ there is a sufficiently small time $t_{\epsilon}=t_{\epsilon}(a, b, f)>0$ such that

$$
\begin{equation*}
\Phi(t, s) \in \mathbb{R} \backslash[a-1 / 2, b+1 / 2] \text { for all } t \in\left[0, t_{\epsilon}\right], s \in \mathbb{R} \backslash[a-1, b+1] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Phi(t, s)-s|<\epsilon \text { for all } t \in\left[0, t_{\epsilon}\right], s \in[a-1, b+1] . \tag{2}
\end{equation*}
$$

Fact (1): Note that from continuity of Φ we have $t_{1}>0$ such that $\Phi(t, b+1)>b+1 / 2$ and $\Phi(t, a-$ 1) $<a-1 / 2$. If we would have $t^{\prime} \in\left[0, t_{1}\right]$ and $b^{\prime} \geq b+1$ such that $\Phi\left(t^{\prime}, b^{\prime}\right) \leq b+1 / 2$ then becouse the function $t \in\left[0, t^{\prime}\right] \rightarrow \Phi\left(t, b^{\prime}\right)$ is continuous and its image includes the interval $\left[b+1 / 2, b^{\prime}\right]$ we also would have $t^{\prime \prime} \in\left[0, t^{\prime}\right]$ such that $\Phi\left(t^{\prime \prime}, b^{\prime}\right)=b+1$. Then we would arrive (using the well-known semigroup property $\left.\Phi\left(t+t^{\prime} ; s\right)=\Phi\left(t, \Phi\left(t^{\prime}, s\right)\right)\right)$ at the contradiction

$$
b+1 / 2 \geq \Phi\left(t^{\prime}, b^{\prime}\right)=\Phi\left(t^{\prime}-t^{\prime \prime}, \Phi\left(t^{\prime \prime}, b^{\prime}\right)\right)=\Phi(\underbrace{t^{\prime}-t^{\prime \prime}}_{\in\left[0, t_{1}\right]}, b+1)>b+1 / 2 .
$$

Therefore $\Phi(t, s)>b+1 / 2$ for all $t \in\left[0, t_{1}\right]$ and $s \geq b+1$. Similarly we obtain $\Phi(t, s)<a-1 / 2$ for all $t \in\left[0, t_{1}\right]$ and $s \leq a-1$.

Fact (2): Integrating from 0 to t the differential equation for y in the layout of the exercises we get $y(t)-s=\int_{0}^{t} F(y(\tau)) \mathrm{d} \tau$. Therefore

$$
|y(t)-s| \leq \int_{0}^{t}|F(y(\tau))-F(s)|+|F(s)| \mathrm{d} \tau \leq t|F(s)|+\int_{0}^{t} L|y(\tau)-s| \mathrm{d} \tau
$$

The usual application of Gronwall - Bellman lemma yields

$$
\begin{equation*}
|y(t)-s| \leq t|F(s)|+\int_{0}^{t}|F(s)| \tau L \mathrm{e}^{L(t-\tau)} \mathrm{d} \tau=\cdots=\frac{|F(s)|}{L}\left(\mathrm{e}^{L t}-1\right) \tag{3}
\end{equation*}
$$

Now we have

$$
|F(s)| \leq|F(s)-F(0)|+|F(0)| \leq L|s|+F(0) \leq \max _{s \in[a-1, b+1]} L|s|+F(0):=C<\infty .
$$

For $\epsilon>0$ we can choose $t_{2}>0$ such that $\frac{C}{L}\left(e^{L t}-1\right)<\epsilon$ for all $t \in\left[0, t_{2}\right]$. For these t and $s \in[a-1, b+1]$ we arrive at $|\Phi(t, s)-s|=|y(t)-s|<\epsilon$.

Therefore (1) and (2) are valid for $t_{\epsilon}:=\min \left\{t_{1}, t_{2}\right\}$.
Part a) of the exercise: The semigroup property of $T(t)$ is a straightforward consequence of the semigroup property of $\Phi . T(t)$ is well-defined, that is $T(t) f \in X$ for all $f \in X$. To see this, choose $f \in X, t>0(t=0$ is trivial). $T(t) f$ is continuous (becouse of the continuity of Φ) so we have to show that its limits are zero at $\pm \infty$. Choose $\epsilon>0$. For a sufficiently long intervall $[a, b]$ we have $|f(s)|<\epsilon$ for all $s \in \mathbb{R} \backslash[a, b]$. Modificating the ideas showing (1) and (2) we can establich the existence of $A \leq a$ and $B \geq b$ such that $\Phi(t, s) \in \mathbb{R} \backslash[a, b]$ for all $s \in \mathbb{R} \backslash[A, B]$. Therefore $|(T(t) f)(s)|=|f(\Phi(t, s))|<\epsilon$ for $s \in \mathbb{R} \backslash[A, B]$ and we are done.

From $\|T(t) f\|=\sup _{s \in \mathbb{R}}|f(\Phi(t, s))|=\sup _{r \in \mathbb{R}: \exists s \in \mathbb{R}: r=\Phi(t, s)}|f(r)| \leq\|f\|$ we have that T is a contraction semigroup. Now we show strong continuity. Becouse of locally boundedness it is enough to prove this for functions $f \in X$ which are C^{1} and has compact support. Fix such a function f and also $\epsilon>0$. Let $[a, b]$ be an interval for which $f(s)=f^{\prime}(s)=0$ for all $s \in \mathbb{R} \backslash[a, b]$. Then for $t \in\left[0, t_{\epsilon}(a, b, f)\right]$ using (1) and (2) we get

$$
\|T(t) f-f\|=\sup _{s \in[a-1, b+1]}|f(\Phi(s, t))-f(s)| \leq \max _{r \in[a-1, b+1]}\left|f^{\prime}(r)\right| \epsilon
$$

which yields strong continuity.
To identify the generator denote by N_{F} the set of zeros of F, that is

$$
N_{F}:=\{s \in \mathbb{R}: F(s)=0\}
$$

Let $(A, D(A))$ be the generator. Note that the expression $\frac{f(\Phi(t, s))-f(s)}{t}$ has a uniform limit function (uniform in $s \in \mathbb{R}$) in X as $t \rightarrow 0^{+}$only if it has a pointwise limit. Therefore define the candidate $(B, D(B))$ as follows

$$
\begin{aligned}
D(B) & :=\left\{f \in X: f^{\prime}(s) \text { exists for } s \in \mathbb{R} \backslash N_{F} \text { and } g \in X \text { for } g(s):=\left\{\begin{array}{ll}
f^{\prime}(s) F(s) & \text { if } s \in \mathbb{R} \backslash N_{F} \\
0 & \text { if } s \in N_{F}
\end{array}\right\}\right. \\
(B f)(s) & :=\left\{\begin{array}{ll}
f^{\prime}(s) F(s) & \text { for } s \in \mathbb{R} \backslash N_{F} \\
0 & \text { for } s \in N_{F}
\end{array}, \quad \text { for } f \in D(B) .\right.
\end{aligned}
$$

From what we said before we have $A \subset B$. On the other choose $f \in D(B)$. For $s \in N_{F}, t>0$ we get simply

$$
\left|\frac{f(\Phi(t, s))-f(s)}{t}-B f(s)\right|=0 .
$$

Let $s \in \mathbb{R} \backslash N_{F}$ then

$$
\left|\frac{f(\Phi(t, s))-f(s)}{t}-B f(s)\right|=|\frac{1}{t} \int_{0}^{t} \underbrace{f^{\prime}(\phi(\tau, s)) F(\phi(\tau, s))-f^{\prime}(s) F(s)}_{:=w(\tau, s)} \mathrm{d} \tau|
$$

Choose $\epsilon>0$. Then we have $[a, b], a<b$ such that $\left|f^{\prime}(s) F(s)\right|<\epsilon / 2$ for all $s \in \mathbb{R} \backslash[a, b]$. Now we apply again (1) and (2). Denote by $t_{\epsilon}:=t_{\epsilon}\left(a, b, f^{\prime}(\cdot), F(\cdot)\right)>0$. For $\tau \in\left(0, t_{\epsilon}\right]$ we obtain $|w(\tau, s)|<\epsilon$ in the cases $s \in[a-1, b+1] N_{F}$ and $s \in \mathbb{R} \backslash\left(N_{F} \cup[a-1, b+1]\right)$. These considerations implies

$$
\left\|\frac{f(\Phi(t, \cdot))-f(\cdot)}{t}-B f(\cdot)\right\|<\epsilon
$$

for $t \in\left(0, t_{\epsilon}\right]$ and therefore $A=B$.
Part b) of the exercise: The abstract Cauchy problem can be formuleted as follows

$$
\begin{cases}\frac{\partial u(t, x)}{\partial t}=(A u(t, \cdot))(x) & \\ \text { for } t \geq 0, x \in \mathbb{R}, \\ u(0, x)=u_{0}(x) & \\ \text { for } x \in \mathbb{R} .\end{cases}
$$

We can associete with it in the case $u \in C^{1}(\mathbb{R} \times \mathbb{R})$ the following PDR

$$
\left\{\begin{aligned}
\frac{\partial u(t, x)}{\partial t}-F(x) \frac{\partial u(t, x)}{\partial x} & =0 & & \text { for } t \geq 0, x \in \mathbb{R}, \\
u(0, x) & =u_{0}(x) & & \text { for } x \in \mathbb{R} .
\end{aligned}\right.
$$

Using the method of characteristics we are seeking for a solution of

$$
t^{\prime}=1, x^{\prime}=-F(x), t(0)=0, x(0)=x_{0}
$$

this can be easily found as $\xi_{0, x_{0}}(s)=\left(s, \Phi\left(-s, x_{0}\right)\right)$ for $s \geq 0, x_{0} \in \mathbb{R}$. We know that the solution u is constant along this curve, therefore

$$
u(t, x)=u(t, \Phi(-t, \underbrace{\Phi(t, x)}_{:=z}))=u\left(\xi_{0, z}(t)\right)=u_{0}(z)=u_{0}(\Phi(t, x))=\left(T(t) u_{0}\right)(x) .
$$

Problem 2.

The general Taylor formula for $n \geq 1$ is the following one for $f \in D\left(A^{n}\right)$

$$
\begin{equation*}
T(t) f=f+t A f+\frac{t^{2}}{2!} A^{2} f+\cdots+\frac{t^{n-1}}{(n-1)!} A^{n-1} f+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} T(s) A^{n} f \mathrm{~d} s \tag{4}
\end{equation*}
$$

This is a straightforward consequence of $\phi(t)-\phi(0)=\int_{0}^{t} \phi^{\prime}(s) \mathrm{d} s$ for continuosly differentiable function $\phi:[0, t] \rightarrow X$ defined as

$$
\phi(s):=T(s) f+(t-s) T(s) A(f)+\frac{(t-s)^{2}}{2!} T(s) A^{2} f+\cdots+\frac{(t-s)^{n-1}}{(n-1)!} T(s) A^{n-1} f
$$

Indeed, it is easy to see, that $\phi(t)=T(t) f$ and $\phi(0)=(-1)$ times the right-hand side of (4) except the integral. Becouse $f \in D\left(A^{n}\right)$ we have that ϕ is continuosly differentiable. The last task is to find the derivative, easy calculations shows

$$
\phi^{\prime}(s)=\frac{(t-s)^{n-1}}{(n-1)!} T(s) A^{n} f
$$

Problem 3.

Georg Spielberger show me this solution. From previous problem we have

$$
A f=\frac{1}{t}(T(t) f-f)-\frac{1}{t} \int_{0}^{t}(t-s) T(s) A^{2} f \mathrm{~d} s, \quad f \in D\left(A^{2}\right), t>0 .
$$

Using that T is a contraction we get

$$
\begin{equation*}
\|A f\| \leq \frac{2}{t}\|f\|+\frac{t}{2}\left\|A^{2} f\right\|, \quad t>0 \tag{5}
\end{equation*}
$$

In the case $\left\|A^{2} f\right\|=0$ we get $\|A f\| \leq \lim _{t \rightarrow \infty} \frac{2}{t}\|f\|=0$ therefore $\|A f\|^{2} \leq\left\|A^{2} f\right\|\|f\|$ is valid. On the other hand for $\left\|A^{2} f\right\|>0$ it is enough to substitute $t:=2 \sqrt{\frac{\|f\|}{\left\|A^{2} f\right\|}}$ to (5) and we are done.

Problem 4.

The eqiuvalence of the norm follows from

$$
\|f f\|=\sup \{\|T(t) f\|: t \geq 0\} \leq \sup \{M\|f\|: t \geq 0\}=M\|f\|
$$

and

$$
\|f\|=\|T(0) f\| \leq \sup \{\|T(t) f\|: t \geq 0\}=\|f\| \| .
$$

In the new norm the semigruop T is a contraction becuouse of

$$
\||\|(t) f\|\|=\sup \{\|\underbrace{T(s) T(t)}_{=T(s+t)} f\|: s \geq 0\} \leq \sup \{\|T(r) f\|: r \geq 0\}=\mid\| f\|\| .
$$

Problem 5.

We give a solution in three situations, from simplest one to the general case:
I. Assume that $\|T(t)\| \leq 1$. Then

$$
\left\|\left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n}\right\| \leq \underbrace{\left(\left\|T\left(\frac{t}{n}\right)\right\|\left\|S\left(\frac{t}{n}\right)\right\|\right) \cdots\left(\left\|T\left(\frac{t}{n}\right)\right\|\left\|S\left(\frac{t}{n}\right)\right\|\right)}_{n \text { times }} \leq\left\|S\left(\frac{t}{n}\right)\right\|^{n} \leq \mathrm{e}^{\|B\| t} .
$$

II. Assume that $\|T(t)\| \leq M$ for some constant $M \geq 1$. We can apply results from Problem 4 - we use the notation $||\cdot|| \mid$ for the new norm in X and also for the induced operator norm on $\mathcal{L}(X)$. We know that T is a contraction in the new operator norm $\|\|\cdot\|\|$. Therefore from the previous step we get

$$
\left\|\left\|\left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n}\right\|\right\| \leq \mathrm{e}^{\| \| B \| t}
$$

Again from Problem 4. we obtain for $f \in X$

$$
\left\|\left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n} f\right\| \leq\| \|\left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n} f\| \| \leq \mathrm{e}^{\| \| B \| t}\| \| f\left\|\leq M \mathrm{e}^{\| \| B \| t}\right\| f \|
$$

III. In the general situation we have $\|T(t)\| \leq M \mathrm{e}^{\omega t}$. Now we use II. for a semigroup \tilde{T} defined as $\tilde{T}(t):=$ $\mathrm{e}^{-\omega t} T(t)$ (see part b) of Exercise 3 in Lecture 2) - because of $\|\tilde{T}(t)\| \leq M$ the assumption of II. is fullfilled. So we get

$$
\left\|\left(\tilde{T}\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n}\right\| \leq M \mathrm{e}^{\|B\| t} .
$$

Now returning to T we finally arrive at

$$
\left\|\left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n}\right\|=\left\|\left(\mathrm{e}^{\omega \frac{t}{n}} \tilde{T}\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right)\right)^{n}\right\| \leq M \mathrm{e}^{(\omega+\|B\| \|) t}
$$

Problem 6.

The Crank-Nicolson scheme F (cf. Example 4.4 from Lecture 4) is well-defined. To show consistency we use Proposition 4.5 from Lecture 4 . We see for $f \in D(A)$ and $h \in(0,1 / \omega]$ (here $\omega>0$ is an arbitrary number for which T is of the type $(M, \omega))$ that

$$
\begin{aligned}
\frac{F(h) f-f}{h} & =\frac{[I+h / 2 A][I-h / 2 A]^{-1} f-f}{h}=\frac{[I+h / 2 A-I+h / 2 A][I-h / 2 A]^{-1} f}{h} \\
& =A[I-h / 2 A]^{-1} f=\frac{1}{h / 2} R\left(\frac{1}{h / 2}, A\right) A f
\end{aligned}
$$

From part b) of Proposition 4.8 we have $\frac{1}{h / 2} R\left(\frac{1}{h / 2}, A\right) A f \rightarrow A f$ as $h \rightarrow 0^{+}$. Therefore $\left.\frac{\mathrm{d} F(t) f}{\mathrm{~d} t}\right|_{t=0}=A f$ for all $f \in D(A)$ and we are done.

Problem 7.

We show for a strongly continuous scheme $F:[0, \infty) \rightarrow \mathcal{L}(X)$ that the following three statements are equivalent:
(A) for all $t_{1}>0$ there is $M_{1}=M_{1}\left(t_{1}\right) \geq 0$ such that

$$
\left\|(F(h))^{n}\right\| \leq M_{1}, \quad \text { for } h \geq 0, n \in \mathbb{N}, h n \leq t_{1}
$$

(B) there is $t_{2}>0$ and $M_{2} \geq 0$ such that

$$
\left\|(F(h))^{n}\right\| \leq M_{2}, \quad \text { for } h \geq 0, n \in \mathbb{N}, h n \leq t_{2}
$$

(C) for all $t_{3} \geq 0$ there is $M_{3}=M_{3}\left(t_{3}\right) \geq 0$ such that

$$
\left\|\left(F\left(\frac{t}{n}\right)\right)^{k}\right\| \leq M_{3}, \quad \text { for } t \in\left[0, t_{3}\right], n \in \mathbb{N}, k \in\{1,2, \ldots, n\} .
$$

Note that it is necessary that $M_{1}, M_{2}, M_{3} \geq 1$ becouse of $\|F(0)\|=1$. We use notation $c(t):=\sup _{s \in[0, t]}\|F(s)\|$. Again $c(t) \geq 1$ and from part a) of Propostition 2.2 (Lecture 2) we have also $c(t)<\infty$.
$(A) \Rightarrow(B)$ is trivial. We prove the reversed fact $(B) \Rightarrow(A)$. Choose $t_{1}>0$. For case $t_{1} \leq t_{2}$ it suffices to set $M_{1}\left(t_{1}\right):=M_{2}$. Therefore assume that $t_{1}>t_{2}$. If $h>t_{2} / 2$ and $n \in N$ is such that $n h \leq t_{1}$ then

$$
\left\|[F(h)]^{n}\right\| \leq C\left(t_{1}\right)^{n}
$$

From $t_{2} / 2<h \leq t_{1} / n$ we get $n<\frac{2 t_{1}}{t_{2}}$ so in this case

$$
\left\|[F(h)]^{n}\right\| \leq C\left(t_{1}\right)^{\frac{2 t_{1}}{t_{2}}} .
$$

On the other hand for $h \leq t_{2} / 2, n \in \mathbb{N}$ let $j_{h} \geq 2$ denote the greatest integer for which $j_{h} h \leq t_{2}$. Let $p_{h} \in \mathbb{N}, q_{h} \in$ $\left\{0,1, \cdots, j_{h}\right\}$ be the numbers uniquely determined by the equation $n=p_{h} j_{h}+q_{h}$. Now we get

$$
\left\|[F(h)]^{n}\right\|=\left\|[F(h)]^{q_{h}}\left([F(h)]^{j_{h}}\right)^{p_{h}}\right\| \leq M_{2}^{p_{h}+1}
$$

From $n h \leq t_{1},\left(j_{h}+1\right) h>t_{2}$ and $h \leq t_{2} / 2$ we obtain

$$
p_{h} \leq \frac{n}{j_{h}}<\frac{t_{1} / h}{t_{2} / h-1}=\frac{t_{1}}{t_{2}-h} \leq \frac{2 t_{1}}{t_{2}}
$$

so

$$
\left\|[F(h)]^{n}\right\| \leq M_{2}^{\frac{2 t_{1}}{t_{2}}+1}
$$

Therefore the following setting gives the reversed statement

$$
M_{1}\left(t_{1}\right):= \begin{cases}M_{2} \\ \max \left\{C\left(t_{1}\right)^{\frac{2 t_{1}}{t_{2}}}, M_{2}^{\frac{2 t_{1}}{t_{2}}+1}\right\} & \text { for } t_{1} \leq t_{2} \\ \text { for } t_{1}>t_{2}\end{cases}
$$

Now we show $(A) \Leftrightarrow(C)$. For $(A) \Rightarrow(C)$ let $t_{3} \geq 0$ be arbitrary. Seting $h:=t / n$ we arrive at $\left\|F(t / n)^{k}\right\|=$ $\left\|F(h)^{k}\right\| \leq M_{1}\left(t_{3}\right)$ and so $M_{3}\left(t_{3}\right):=M_{1}\left(t_{3}\right)$ is a good choice. $(C) \Rightarrow(A)$ is similarly simple. Let $t_{1}>0$ with a setting $t:=h n \in\left(0, t_{1}\right]$ we get $\left\|F(h)^{n}\right\|=\left\|F(t / n)^{n}\right\| \leq M_{3}\left(t_{1}\right)$, therefore $M_{1}\left(t_{1}\right):=M_{3}\left(t_{1}\right)$ is a right expression for our purpose.

