Solutions of the exercises — Lecture C — without problem 8
Problem 1.

It is a classical result, that under the condition L := max{1,sup, g [F’(x)|} < co the function ® is uniquely
defined on the whole space R xR and it is also continuous. We will use the following property of ®: for an
arbitrary € > 0 and a,b € R,a < b there is a sufficiently small time t, = tc(a,b, f) > 0 such that

O, s)eR\[a—-1/2,b+1/2] forall t € [0,¢],s e R\ [a—1,b+1] (1)

and
|D(t,5)—s| < eforall t€[0,t],s€[a—1,b+1]. 2)

Fact (1): Note that from continuity of ® we have #; > 0 such that ®(¢+,b+ 1) > b+ 1/2 and O(t,a -
1) <a—-1/2. If we would have ¢’ € [0,#;] and b’ > b+ 1 such that ®(¢',b’) < b+ 1/2 then becouse the
function ¢ € [0,#'] — ®(z,b’) is continuous and its image includes the interval [b+ 1/2,b"] we also would
have t”” € [0,7'] such that ®(¢””,b") = b+ 1. Then we would arrive (using the well-known semigroup property
O(t+1';5) = D(t,D(, 5))) at the contradiction

b+1/2>®F,b)=0F 1", 01" ,b") =0 —t",b+1)>b+1/2.
€[0,t]]

Therefore O(t,s) > b+ 1/2 forall t € [0,#1] and s > b+ 1. Similarly we obtain O(¢,s) <a—1/2 for all t € [0,#]
and s<a-1.

Fact (2): Integrating from O to ¢ the differential equation for y in the layout of the exercises we get
yit)—s= fot F(y(1))dr. Therefore

! 5
Iy(t)—slsfoIF(y(T))—F(s)|+|F(s)|detIF(s)|+foLIy(T)—sldT.

The usual application of Gronwall — Bellman lemma yields

_IF )]

T (et -1). (3)

f
(1) — s| < 1|F (s)| + f |F(s)ltLeX " Ddr = - -
0

Now we have

IF(s)| < [F(s) = F(O)|+|F(0) < Ls|+ F(0) < max Lls|+ F(0) := C < co.
s€la—1,b+1]

For € > 0 we can choose #, > 0 such that %(eL’ —1)<eforall t€[0,1;]. Forthese tand s € [a—1,b+ 1] we
arrive at |O(¢, 5) — s| = [y(¢) — s| < €.

Therefore (1) and (2) are valid for ¢, := min{t;,1,}.

Part a) of the exercise: The semigroup property of 7(¢) is a straightforward consequence of the semi-
group property of @. T'(¢) is well-defined, that is 7(¢) f € X for all f € X. To see this, choose f € X,>0 (=0
is trivial). T'(¢) f is continuous (becouse of the continuity of @) so we have to show that its limits are zero at
+o00. Choose € > 0. For a sufficiently long intervall [a,b] we have |f(s)| < € for all s € R\ [a,b]. Modificating
the ideas showing (1) and (2) we can establich the existence of A < a and B > b such that ®(z, s) € R\ [a, ]
for all s € R\ [A, B]. Therefore (T (r)f)(s)| = |f(D(z, 5))| < € for s € R\ [A, B] and we are done.



From [IT(2) | = supeg | f(D(7, )| = SUP,ep.35er:r=a.5) |/ (M| < |l fIl we have that T' is a contraction semi-
group. Now we show strong continuity. Becouse of locally boundedness it is enough to prove this for
functions f € X which are C! and has compact support. Fix such a function f and also € > 0. Let [a,b] be an
interval for which f(s) = f’(s) = 0 for all s € R\ [a,b]. Then for 7 € [0,7.(a,b, f)] using (1) and (2) we get

IT(®f—-fll= sup “|f(q)(5,l‘))—f(s)| sre[g%mlf'(r)le

s€la-1,b+

which yields strong continuity.
To identify the generator denote by N the set of zeros of F, that is

Nr:={seR: F(s)=0}.

Let (A, D(A)) be the generator. Note that the expression w has a uniform limit function (uniform
in s € R) in X as t — 0% only if it has a pointwise limit. Therefore define the candidate (B, D(B)) as follows

D(B) := {f €X : f'(s) exists for s € R\ N and g € X for g(s) := { g’(s)F(s) ii j i %; NF }
(Bf)(s) { (J)C(S)F(s) f;)()rrssee111%v>Np , for f € D(B).

From what we said before we have A C B. On the other choose f € D(B). For s € Nr,t > 0 we get simply

[LOED=I gy

Let s € R\ Ng then

(1, 5)) - L
S( (t,Sz) f(s)—Bf(s)‘: ;jo‘f,(¢(7’s))F(¢(T’S))_f,(s)F(s)dT.

=w(t,s)

Choose € > 0. Then we have [a,b],a < b such that |f’'(s)F(s)| < €/2 for all s € R\ [a,b]. Now we apply
again (1) and (2). Denote by . := te(a,b, f'(-), F(-)) > 0. For 7 € (0,2c] we obtain |w(, s)| < € in the cases
s€la—1,b+1]Np and s e R\ (NpU[a—1,b+ 1]). These considerations implies

Hf(q)(t,-))—f(')
t

- Bf()

<E€

for t € (0,1,.] and therefore A = B.
Part b) of the exercise: The abstract Cauchy problem can be formuleted as follows

at
u0,x) = wup(x) for x e R.

{ e~ (Au(t,))(x) fort>0,x€R,
We can associete with it in the case u € C!(R x R) the following PDR

augt’X)_F(x)% =0 fort>0,x€R,
u(0,x) up(x) forxeR.



Using the method of characteristics we are seeking for a solution of
' =1, =-F(x),10) =0,x(0) = xo

this can be easily found as & x,(s) = (s, D(=s,xp)) for 5 > 0,x9 € R. We know that the solution u is constant
along this curve, therefore

u(t, x) = u(t, ®(=1, (1, X)) = u€o.:(1)) = uo(2) = uo(P(t,x)) = (T(1)uo)(x).
=z
Problem 2.
The general Taylor formula for n > 1 is the following one for f € D(A")

tn—l
(n-1)!

t2 ) el ft (t— S)n—l ;
T f=f+tAf+ =A"f+---+ A" f+ ——T(s)A" fds. (@]
2! o (n—1)!

This is a straightforward consequence of ¢(¢) — ¢(0) = fot ¢’ (s)ds for continuosly differentiable function
¢ :[0,¢] — X defined as

2 n—1
r— -
Unb)) T()A%f+---+ ="
2! (n—-1)!
Indeed, it is easy to see, that ¢(¢) = T(¢)f and ¢(0) = (—1) times the right-hand side of (4) except the
integral. Becouse f € D(A") we have that ¢ is continuosly differentiable. The last task is to find the derivative,
easy calculations shows

¢(s) 1= T(s)f +(t— HT(HA(f) + T()A™ ' f.

, B (t— s)nfl 0
¢'(s)= WT(S)A e
Problem 3.

Georg Spielberger show me this solution. From previous problem we have
Af=-TOf=H=7 | C=9T(HAfds,  feDA"),1>0.
0
Using that T is a contraction we get
IASI= ZIAl+ S IA%AL - 1> 0. &)

In the case ||A%f]| = 0 we get [|Af]| < lim,_,e %||f|| = 0 therefore ||Af][> < |IA2fIlllf|l is valid. On the other

hand for ||A%f]| > 0 it is enough to substitute ¢ := 2 ”/ﬂ{gc” to (5) and we are done.

Problem 4.
The eqiuvalence of the norm follows from

A1l = sup{IT()f1l : >0} < sup{MI|f]| : t >0} = M||f|



and
LA =T O)f1l < sup{[IT(®)f1l : =0} = [II £l

In the new norm the semigruop 7T is a contraction becuouse of

NT @A =sup{llT(HT @) f1l = s = 0} < sup{[|T(Nf1l : r =0} =[]l
——
=T(s+0)

Problem 5.

We give a solution in three situations, from simplest one to the general case:

| =l G 2

sl )

II. Assume that ||T(#)|| < M for some constant M > 1. We can apply results from Problem 4 — we use the
notation ||| - ||| for the new norm in X and also for the induced operator norm on £(X). We know that T
is a contraction in the new operator norm ||| - |||. Therefore from the previous step we get

| et
s Al s

III. In the general situation we have ||T(¢)|| < Me“’. Now we use II. for a semigroup T defined as T(¢) :=
e “'T(f) (see part b) of Exercise 3 in Lecture 2) — because of ||T(f)|| < M the assumption of II. is

fullfilled. So we get
~ (1 \\*
GG
n n

Now returning to 7 we finally arrive at
wtaft \\"*
GG
(e n n

GG

n
< Bl

< ¢lIBi

B B
< <Pl < pel® 1.

< MelBl,

< Me(@HIBID:

The Crank-Nicolson scheme F' (cf. Example 4.4 from Lecture 4) is well-defined. To show consistency
we use Proposition 4.5 from Lecture 4. We see for f € D(A) and h € (0,1/w] (here w > 0 is an arbitrary
number for which T is of the type (M, w)) that

Fihf-f  U+h/2AI-h/2A1" f~f [U+h/2A—1+h/2A1[1-h/2A]" f
h - h - h
_ _ e o 1
= A[l-h/2A] f_h/zR(h/z,A)Af.

From part b) of Proposition 4.8 we have M%R(ﬁ,A)A f — Af as h — 0*. Therefore chftt)f lr=0 = Af for all
f € D(A) and we are done.



Problem 7.

We show for a strongly continuous scheme F : [0,00) — £(X) that the following three statements are
equivalent:

(A) for all #; > 0 there is M| = M/ (1) = O such that

I(F(h)"|| < My, forh>0,neN,hn<t,
(B) there is t, > 0 and M5 > 0 such that

I(F(h)"| < My, forh>0,neN,hn<t,,

(C) for all t3 > 0 there is M3 = M3(t3) > 0 such that

(2

Note that it is necessary that M, Ma, M3 > 1 becouse of ||F(0)|| = 1. We use notation c(#) := supeo . lF(s)Il.
Again ¢(f) > 1 and from part a) of Propostition 2.2 (Lecture 2) we have also c¢(f) < co.

(A) = (B) is trivial. We prove the reversed fact (B) = (A). Choose #; > 0. For case #; < 1, it suffices to
set M(t1) := M,. Therefore assume that t{ > t,. If h > t,/2 and n € N is such that nh < t; then

<Ms, forte[0,sl,neN,ke(l,2,...,n}

ILFMW]"|| < C(tr)".
From /2 <h <t /nwegetn< % so in this case

2t

1
ILF(M]"I < C(t) ™ .
On the other hand for 7 < t,/2,n € N let j, > 2 denote the greatest integer for which j,h <t,. Let p, €N, g; €
{0,1,---, jn} be the numbers uniquely determined by the equation n = py, j, + g,. Now we get

ILEGY = |[F e (EampY”|| < Mg,

From nh <t|, (j,+ 1)h > t, and h < 1, /2 we obtain

n ti/h _ n 2t
P —<——= <=
ji nh/h=1 H-h~ b

SO
21

—+
IF(W]" < M,>
Therefore the following setting gives the reversed statement

M, fort; <1,

— a2y
M(t): max{C(tl) n ’Mztz } for t; > 1.

Now we show (A) & (C). For (A) = (C) let t3 > 0 be arbitrary. Seting & := t/n we arrive at ||F(t/n)¥|| =
IE(RY¥|| < M;(23) and so M5(53) := M, (t3) is a good choice. (C) = (A) is similarly simple. Let #{ > 0 with a
setting ¢ := hn € (0,;] we get ||F(h)"|| = ||F(¢/n)"|| £ M3(t;), therefore M;(t;) := M3(t1) is a right expression
for our purpose.



