Lecture 9 - Solutions

Voronezh Team

Polyakov Dmitry, Karpikova Alina, Dikarev Yegor.

Exercise 1. For $A \in \mathcal{L}(X)$ and $z \in \mathbb{C}$ define

$$
T(z)=\mathrm{e}^{z A}:=\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!} .
$$

Then T is an analytic semigroup.
Proof. For all $z \in \mathbb{C}$ we have

$$
\sum_{n=0}^{\infty}\left\|\frac{z^{n} A^{n}}{n!}\right\|=\sum_{n=0}^{\infty} \frac{(|z| \cdot\|A\|)^{n}}{n!}=\mathrm{e}^{|z| \cdot\|A\|},
$$

i.e. the series $\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!}$ is absolutely convergent. Obviously, we have $T(0)=I$. The absolute convergence of the exponential series allows to compute the product of $T(z)$ and $T(\omega)$ for all $z, \omega \in \mathbb{C}$ via the Cauchy product formula:

$$
\begin{aligned}
& T(z) T(\omega)=\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!} \sum_{m=0}^{\infty} \frac{\omega^{m} A^{m}}{m!}=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{z^{m} A^{m} \omega^{n-m} A^{n-m}}{m!(n-m)!} \\
&=\sum_{n=0}^{\infty} \frac{A^{n}}{n!} \sum_{m=0}^{n}\binom{n}{m} z^{m} \omega^{n-m}=\mathrm{e}^{(z+\omega) A}=T(z+\omega) .
\end{aligned}
$$

The limit

$$
\lim _{h \downarrow 0} \frac{T(z+h)-T(z)}{h} x=\lim _{h \downarrow 0} \frac{T(h)-I}{h} T(z) x
$$

exists for all $x \in X$ and $z \in \mathbb{C}$. That's mean that T is holomorphic. Now prove that for every $\theta^{\prime} \in(0, \theta)$ the equality

$$
\lim _{\substack{z \rightarrow 0 \\ z \in \sum_{\theta^{\prime}}}} T(z) f=f \text { holds for all } f \in X \text {. }
$$

$$
\begin{equation*}
\lim _{\substack{z \rightarrow 0 \\ z \in \sum_{\theta^{\prime}}}} T(z) f=\lim _{\substack{z \rightarrow 0 \\ z \in \sum_{\theta^{\prime}}}} \mathrm{e}^{z A} f=\lim _{\substack{z \rightarrow 0 \\ z \in \sum_{\theta^{\prime}}}} \sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!} f=\lim _{\substack{z \rightarrow \overbrace{0} \\ z \in \sum_{\theta^{\prime}}}}\left(I+\sum_{n=1}^{\infty} \frac{z^{n} A^{n}}{n!}\right) f=f \tag{1}
\end{equation*}
$$

Thus, we obtain that T is an analytic semigroup.
Exercise 2. Show that T defined in Example 9.6 is a bounded analytic semigroup.

Proof. In Example 9.6 the semigroup was determined as

$$
T(t):=S^{-1} M_{\mathrm{e}^{z m}} S, \quad T: \Sigma_{\frac{\pi}{2}} \cup\{0\} \rightarrow \mathcal{L}(H)
$$

where $S: H \rightarrow L^{2}$ is unitary operator, H is a Hilbert space and m in $(-\infty, 0]$. The operator $M_{\mathrm{e}^{z m}}$ is a multiplication operator which acts as follows: $(M x)(t)=\mathrm{e}^{z m(t)} x(t)$, where $m(t) \leq 0$. Thus, from the structure of this operator, the semigroup $T(t)$ is a holomorphic.

Checking the properties of analytic semigroup.

1) Let $z_{1}, z_{2} \in \Sigma_{\frac{\pi}{2}} \cup\{0\}$. Then

$$
\begin{aligned}
T\left(z_{1}+z_{2}\right)=S^{-1} M_{\mathrm{e}^{\left(z_{1}+z_{2}\right) m}} S= & S^{-1} M_{\mathrm{e}^{z_{1} m} \mathrm{e}^{z_{2} m}} S=S^{-1} M_{\mathrm{e}^{z_{1} m}} M_{\mathrm{e}^{z_{2} m}} S \\
& =S^{-1} M_{\mathrm{e}^{z_{1} m}} S S^{-1} M_{\mathrm{e}^{z_{2} m}} S=T\left(z_{1}\right) T\left(z_{2}\right) .
\end{aligned}
$$

2) $T(0)=S^{-1} M_{\mathrm{e}^{\mathrm{om}}} S=S^{-1} S=I$.
3) For each $\theta^{\prime} \in\left(0, \frac{\pi}{2}\right)$ we have

$$
\begin{aligned}
& \|T(z) f-f\|=\left\|S^{-1} M_{\mathrm{e}^{z m}} S f-f\right\|=\left\|S^{-1} M_{\mathrm{e}^{z m}} S f-S^{-1} S f\right\| \\
& \quad=\left\|S^{-1}\left(M_{\mathrm{e}^{z m}}-1\right) S f\right\| \rightarrow 0,
\end{aligned}
$$

as $z \rightarrow 0$, holds for all $f \in L^{2}$. Thus, $T(t)$ is analytic semigroup.
4) Prove that $T(t)$ is a bounded. For all $\theta^{\prime} \in\left(0, \frac{\pi}{2}\right)$ we have

$$
\|T(z) f\|=\left\|S^{-1} M_{\mathrm{e}^{z m}} S f\right\| \leq\left\|S^{-1}\right\|\left\|M_{\mathrm{e}^{z m}} f\right\|\|S\| \leq\left\|M_{\mathrm{e}^{z m}} f\right\| \leq \text { Const }\|f\|,
$$

because function $m \leq 0$. Hence, $\sup _{z \in \Sigma_{\theta^{\prime}}}\|T(z)\|<\infty$. Thus, $T(t)$ is a bounded analytic semigroup.

Exercise 3. Prove the assertions in Example 9.7.
Example 9.7. The shift semigroup on $\mathrm{L}^{p}(\mathbb{R})$ is not analytic. Or, more generally, if T is a strongly continuous group which is not continuous for the operator norm at $t=0$, then T is not analytic.

Proof. Shift semigroup on $\mathrm{L}^{p}(\mathbb{R})$ is an isometric group. Its generator A is the differential operator with spectrum $\sigma(A)=\mathrm{i} \mathbb{R}$. Then T is not analytic, because the spectrum of the analytic semigroup fills a sector.

Exercise 4. Let X, Y be Banach spaces. Show that if A is a sectorial operator on X and $S: X \rightarrow Y$ is continuously invertible then $S A S^{-1}$ is a sectorial operator on Y.

Proof. Let operator $B=S A S^{-1}$. Consider the following equations

$$
R(\lambda, B)=\lambda I-B=\lambda I-S A S^{-1}=S(\lambda I-B) S^{-1}=S R(\lambda, A) S^{-1}
$$

where $\lambda \in \rho(B)$. Thus, $\rho(A)=\rho(B)$. Operator A is a sectorial operator, so

$$
\begin{gathered}
\sup _{\lambda \in \mathbb{C} \backslash\{0\}}\|\lambda R(\lambda, A)\|<\infty . \\
\|\lambda R(\lambda, B)\|=\left\|\lambda S R(\lambda, A) S^{-1}\right\| \leq\|S\|\| \| R(\lambda, A)\| \| S^{-1}\|\leq\| \lambda R(\lambda, A) \|<\infty .
\end{gathered}
$$

Thus, $\sup _{\lambda \in \mathbb{C} \backslash\{0\}}\|\lambda R(\lambda, B)\| \leq \sup _{\lambda \in \mathbb{C} \backslash\{0\}}\|\lambda R(\lambda, A)\|<\infty$. Hence, $B=S A S^{-1}$ is a sectorial operator.

Exercise 6. Suppose that A generates an analytic semigroup and that $B \in$ $\mathcal{L}(X)$. Prove that $A+B$ generates an analytic semigroup.

Proof. As A generates an analytic semigroup we have that for $\theta \in\left(0, \frac{\pi}{2}\right]$ exists the sector

$$
\sum_{\theta}:=\{z \in \mathbb{C} \backslash\{0\}:|\arg (z)|<\theta\} .
$$

Prove that the resolvent set $R(\lambda, A+B)$ is a bounded and then $A+B$ is a generates semigroup. Indeed, take $\theta_{0}>\theta$ and consider the following equations

$$
\begin{aligned}
\lambda I-(A+B) & =\left(I-B(\lambda I-A)^{-1}\right)(\lambda I-A), \\
(\lambda I-(A+B))^{-1} & =(\lambda I-A)^{-1}\left(I-B(\lambda I-A)^{-1}\right)^{-1} .
\end{aligned}
$$

We have that

$$
\|R(\lambda, A)\| \leq \frac{M}{1+|\lambda|} \text { for all } \lambda \leq 0 \text { and some } M \geq 0
$$

Therefore we have
$\|R(\lambda, A+B)\|=\|R(\lambda, A)\|\left\|\sum_{n=0}^{\infty}\left(-B(\lambda I-A)^{-1}\right)^{n}\right\| \leq \frac{M_{1}}{1+|\lambda|}$ for some $M_{1} \geq 0$.
Thus, operator $A+B$ will be generates analytic semigroup.

