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Exercise 1. For A ∈ L(X) and z ∈ C define

T (z) = ezA :=
∞∑

n=0

znAn

n!
.

Then T is an analytic semigroup.

Proof. For all z ∈ C we have
∞∑

n=0

∥∥∥∥
znAn

n!

∥∥∥∥ =
∞∑

n=0

(|z| · ‖A‖)n

n!
= e|z|·‖A‖,

i.e. the series
∞∑

n=0

znAn

n! is absolutely convergent. Obviously, we have T (0) = I.

The absolute convergence of the exponential series allows to compute the

product of T (z) and T (ω) for all z, ω ∈ C via the Cauchy product formula:

T (z)T (ω) =
∞∑

n=0

znAn

n!

∞∑
m=0

ωmAm

m!
=

∞∑
n=0

n∑
m=0

zmAmωn−mAn−m

m!(n−m)!

=
∞∑

n=0

An

n!

n∑
m=0

(
n

m

)
zmωn−m = e(z+ω)A = T (z + ω).

The limit

lim
h↓0

T (z + h)− T (z)

h
x = lim

h↓0
T (h)− I

h
T (z)x

exists for all x ∈ X and z ∈ C. That’s mean that T is holomorphic. Now

prove that for every θ
′ ∈ (0, θ) the equality

lim
z→0

z∈∑
θ′

T (z)f = f holds for all f ∈ X.
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lim
z→0

z∈∑
θ′

T (z)f = lim
z→0

z∈∑
θ′

ezAf = lim
z→0

z∈∑
θ′

∞∑
n=0

znAn

n!
f = lim

z→0
z∈∑

θ′

(
I +

∞∑
n=1

znAn

n!

)
f = f.

(1)

Thus, we obtain that T is an analytic semigroup.

Exercise 2. Show that T defined in Example 9.6 is a bounded analytic

semigroup.

Proof. In Example 9.6 the semigroup was determined as

T (t) := S−1MezmS, T : Σπ
2
∪ {0} → L(H),

where S : H → L2 is unitary operator, H is a Hilbert space and m in

(−∞, 0]. The operator Mezm is a multiplication operator which acts as follows:

(Mx)(t) = ezm(t)x(t), where m(t) ≤ 0. Thus, from the structure of this

operator, the semigroup T (t) is a holomorphic.

Checking the properties of analytic semigroup.

1) Let z1, z2 ∈ Σπ
2
∪ {0}. Then

T (z1 + z2) = S−1Me(z1+z2)mS = S−1Mez1mez2mS = S−1Mez1mMez2mS

= S−1Mez1mSS−1Mez2mS = T (z1)T (z2).

2) T (0) = S−1Me0mS = S−1S = I.

3) For each θ′ ∈ (0, π
2 ) we have

‖T (z)f − f‖ = ‖S−1MezmSf − f‖ = ‖S−1MezmSf − S−1Sf‖
= ‖S−1(Mezm − 1)Sf‖ → 0,

as z → 0, holds for all f ∈ L2. Thus, T (t) is analytic semigroup.

4) Prove that T (t) is a bounded. For all θ′ ∈ (0, π
2 ) we have

‖T (z)f‖ = ‖S−1MezmSf‖ ≤ ‖S−1‖‖Mezmf‖‖S‖ ≤ ‖Mezmf‖ ≤ Const‖f‖,
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because function m ≤ 0. Hence, supz∈Σθ′ ‖T (z)‖ < ∞. Thus, T (t) is a

bounded analytic semigroup.

Exercise 3. Prove the assertions in Example 9.7.

Example 9.7. The shift semigroup on Lp(R) is not analytic. Or, more

generally, if T is a strongly continuous group which is not continuous for

the operator norm at t = 0, then T is not analytic.

Proof. Shift semigroup on Lp(R) is an isometric group. Its generator A is

the differential operator with spectrum σ(A) = iR. Then T is not analytic,

because the spectrum of the analytic semigroup fills a sector.

Exercise 4. Let X,Y be Banach spaces. Show that if A is a sectorial operator

on X and S : X → Y is continuously invertible then SAS−1 is a sectorial

operator on Y .

Proof. Let operator B = SAS−1. Consider the following equations

R(λ,B) = λI −B = λI − SAS−1 = S(λI −B)S−1 = SR(λ,A)S−1,

where λ ∈ ρ(B). Thus, ρ(A) = ρ(B). Operator A is a sectorial operator, so

sup
λ∈C\{0}

‖λR(λ,A)‖ < ∞.

‖λR(λ,B)‖ = ‖λSR(λ,A)S−1‖ ≤ ‖S‖‖λR(λ,A)‖‖S−1‖ ≤ ‖λR(λ,A)‖ < ∞.

Thus, sup
λ∈C\{0}

‖λR(λ,B)‖ ≤ sup
λ∈C\{0}

‖λR(λ, A)‖ < ∞. Hence, B = SAS−1 is

a sectorial operator.

Exercise 6. Suppose that A generates an analytic semigroup and that B ∈
L(X). Prove that A + B generates an analytic semigroup.

Proof. As A generates an analytic semigroup we have that for θ ∈ (0, π
2 ]

exists the sector
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∑
θ :=

{
z ∈ C \ {0} : |arg(z)| < θ

}
.

Prove that the resolvent set R(λ,A + B) is a bounded and then A + B

is a generates semigroup. Indeed, take θ0 > θ and consider the following

equations

λI − (A + B) =
(
I −B(λI − A)−1

)
(λI − A),

(
λI − (A + B)

)−1
= (λI − A)−1

(
I −B(λI − A)−1

)−1
.

We have that

∥∥R(λ,A)
∥∥ ≤ M

1 + |λ| for all λ ≤ 0 and some M ≥ 0.

Therefore we have

‖R(λ,A+B)‖ = ‖R(λ,A)‖‖
∞∑

n=0

(−B(λI−A)−1)n‖ ≤ M1

1 + |λ| for some M1 ≥ 0.

Thus, operator A + B will be generates analytic semigroup.
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