Problem 1

To prove that $T(z)$ is an analytic semigroup we have to check conditions (i)-(iii) of Definition 9.1.

Observe first that as A is bounded

$$
\left\|\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!}\right\| \leq \sum_{n=0}^{\infty} \frac{|z|^{n}\|A\|^{n}}{n!}=e^{|z|\|A\|}
$$

Thus the series is convergent and so we obtain conditions (i) and (iii). To prove (ii) we use the arguments analogous to those in Exercise 2.1, namely

$$
\begin{aligned}
T(z) T(w) & =\left(\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{w^{n} A^{n}}{n!}\right)=\sum_{l, k \geq 0} \frac{1}{l!k!} z^{l} w^{k} A^{l+k} \\
& =\sum_{m=0}^{\infty} \sum_{l=0}^{m} \frac{1}{l!(m-l)!} z^{l} w^{m-l} A^{m}=\sum_{m=0}^{\infty} \frac{1}{m!} \sum_{l=0}^{m} \frac{m!}{l!(m-l)!} z^{l} w^{m-l} A^{m} \\
& =\sum_{m=0}^{\infty} \frac{(z+w)^{m} A^{m}}{m!}=T(z+w)
\end{aligned}
$$

The condition $T(0)=I$ is obvious. This completes the proof.

Problem 2

Let H be a Hilbert space and A a self-adjoint operator on $H\left(A=A^{*}\right)$. then there is L^{2}-space and a unitary operator $S: H \rightarrow L^{2}$ such that

$$
\begin{equation*}
S A S^{-1}: L^{2} \rightarrow L^{2}, S A S^{-1}=M_{m} \tag{1}
\end{equation*}
$$

where M_{m} is a multiplication operator on L^{2} by a real-valued function m. If A is negative, then $\sigma(A) \subseteq(-\infty, 0]$.

Let us consider an operator

$$
\begin{equation*}
T(z):=S^{-1} M_{e^{z m}} S: \sum_{\frac{\pi}{2} \cup\{0\}} \rightarrow L(H) \tag{2}
\end{equation*}
$$

First of all let us prove that $T(z)$ is holomorphic. For an arbitrary $f \in H$ $T(z) f=\left(S^{-1} M_{e^{z m}} S\right)\{f\}=\left(S^{-1}\right)\left\{e^{z m} S f\right\}$. Let us put $A(z):=S^{-1} m e^{z m} S$. Now our aim is to show that $A(z)$ is a derivative of $T(z) \forall z \in \sum_{\frac{\pi}{2} \cup\{0\}}$:

$$
\begin{equation*}
\left\|\frac{T(z+h) f-T(z) f}{h}-A(z) f\right\| \leq\left\|S^{-1}\right\|\left\|\frac{e^{(z+h) m}-e^{z m}}{h}-m e^{z m}\right\|_{L^{2}}\|S\| \rightarrow 0, h \rightarrow 0 \tag{3}
\end{equation*}
$$

I.e.,

$$
\begin{equation*}
\left\|\frac{T(z+h)-T(z)}{h}-A(z)\right\| \rightarrow 0, h \rightarrow 0 \tag{4}
\end{equation*}
$$

The fact, that $m \leq 0$ and $z \in \sum_{\frac{\pi}{2} \cup\{0\}}$ guarantees that the corresponding integrals in L^{2} are convergent, because $\operatorname{Re}(z) m \leq 0$. The continuity of $A(z)$ can also be easily checked.

The semigroup property also holds:
(5) $\quad T(z+w)=S^{-1} M_{e^{(z+w) m}} S=S^{-1} M_{e^{z m}} S S^{-1} M_{e^{w m}} S=T(z) T(w)$.

Now it remains to prove the equality:

$$
\begin{equation*}
\lim _{z \rightarrow 0}^{z \in \sum_{\frac{\pi}{2} \cup\{0\}}} 1 T(z) f=f . \tag{6}
\end{equation*}
$$

It holds, because

$$
\begin{equation*}
\|T(z) f-f\| \leq\left\|S^{-1}\right\| \int_{X}\left|e^{m z} f-f\right|^{2} d \mu\|S\| \rightarrow 0, z \rightarrow 0 \tag{7}
\end{equation*}
$$

where μ is a measure in L^{2}.
The analytic semigroup $T(z)$ is bounded, because

$$
\|T(z) f\| \leq\left\|S^{-1}\right\|\left\|e^{z m}\right\|\|S\|\| \| f\|\leq\| S\| \| S^{-1}\| \| f \| .
$$

Thus, $T(z)$ is a bounded analytic semigroup.

Problem 3

Suppose that T is an analytic semigroup of angle θ. Clearly, $T: \Sigma_{\theta} \rightarrow$ $\mathcal{L}(X)$ is continuous. From the definition of an analytic semigroup ((iii)) it follows that T may be extended by continuity to $\widehat{T}: \Sigma_{\theta} \cup\{0\} \rightarrow \mathcal{L}(X)$ and that

$$
\widehat{T}(0)=I=T(0) .
$$

Thus T is continuous for the operator norm at $t=0$. This contradiction completes the proof.

Problem 4

Note firstly that

$$
\left(\lambda-S A S^{-1}\right)=S(\lambda-A) S^{-1} .
$$

Thus if $\lambda-A$ is invertible then $\lambda-S A S^{-1}$ is also invertible and its inverse is

$$
\left(\lambda-S A S^{-1}\right)^{-1}=S(\lambda-A)^{-1} S^{-1} .
$$

Moreover,

$$
\begin{aligned}
\left\|\left(\lambda-S A S^{-1}\right)^{-1}\right\| & =\left\|S(\lambda-A)^{-1} S^{-1}\right\| \\
& \leq\|S\|\left\|(\lambda-A)^{-1}\right\|\left\|S^{-1}\right\|=\left\|(\lambda-A)^{-1}\right\| .
\end{aligned}
$$

Thus we conclude that if λ belongs to the resolvent set $\rho(A)$ then it also belongs to $\rho\left(S A S^{-1}\right)$. And therefore if $\Sigma_{\frac{\pi}{2}+\delta}$ is contained in $\rho(A)$ it is also contained in $\rho\left(S A S^{-1}\right)$.

Observe also that

$$
\begin{aligned}
\left\|\lambda R\left(\lambda, S A S^{-1}\right)\right\| & =\left\|\lambda\left(\lambda-S A S^{-1}\right)^{-1}\right\|=\left\|\lambda S(\lambda-A)^{-1} S^{-1}\right\| \\
& \leq\|S\|\left\|\lambda(\lambda-A)^{-1}\right\|\left\|S^{-1}\right\|=\|\lambda R(\lambda, A)\|
\end{aligned}
$$

Using this we obtain that if $\sup _{\lambda \in \Sigma_{\frac{\pi}{2}+\delta^{\prime}}}\|\lambda R(\lambda, A)\|<\infty$ then

$$
\sup _{\lambda \in \Sigma_{\frac{\pi}{2}+\delta^{\prime}}}\left\|\lambda R\left(\lambda, S A S^{-1}\right)\right\|<\infty
$$

for $\delta^{\prime} \in(0, \delta)$.
The above arguments imply that if A is a sectorial operator on X and $S: X \rightarrow Y$ is continuously invertible then $S A S^{-1}$ is a sectorial operator on Y.

Problem 5

Let us prove that (i) implies (ii). We have to consider the analytic semigroup $T(z)$ of angle $\theta\left(z \in \sum_{\theta}\right)$ with its generator A and to prove that for an arbitrary number $\omega>0 \quad \tilde{T}(z):=T(z) e^{-w z}=e^{-w z} T(z), z \in \sum_{\theta}$ is an analytic semigroup with the generator $A-w$. Let us check this:

$$
\begin{aligned}
& \left|\frac{\tilde{T}(h) f-\tilde{T}(0) f}{h}-A f+w f\right|=\left|\frac{T(h) e^{-w h} f-f}{h}-A f+w f\right|= \\
= & \left|e^{-w h} \frac{T(h) f-f}{h}-e^{-w h} A f+\frac{e^{-w h} f-f}{h}+w f-A f+e^{-w h} A f\right| \leq
\end{aligned}
$$

$$
\begin{equation*}
\leq\left|e^{-w h}\right|\left|\frac{T(h) f-f}{h}-A f\right|+\left|\frac{e^{-w h} f-f}{h}+w f\right|+\left|e^{-w h} A f-A f\right| \rightarrow 0, h \rightarrow 0 \tag{8}
\end{equation*}
$$

The inverse implication can analogously be obtained.
Now we have to prove that (i) \Longleftrightarrow (iii). It can be obtained by using Proposition 9.3 and proving analogues of Propositions 9.8, 9.18.

Problem 6

Suppose A generates an analytic semigroup T of angle θ, that $B \in \mathcal{L}(X)$. We define an analytic semigroup $\mathrm{e}^{z B}$ (see Example 9.4.). Then $T(z) \mathrm{e}^{z B}$ is an analytic semigroup of angle θ with generator $A+B$ (see Lecture 5, Problem 5.).

L’viv Team: Oleksandr Chvartatskyi, Stepan Man'ko, Nataliya Pronska.

