ISEM 2011
Solutions for the exercises of Lecture 9
Teams of Bern and Bogotá

Exercise 1. For $A \in \mathcal{L}(X)$ and $z \in \mathbb{C}$ define

$$
T(z)=\mathrm{e}^{z A}:=\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!} .
$$

Show that T is an analytic semigroup.
Solution. (Bogotá)
(1) $T(z)$ is a bounded linear operator for every $z \in \mathbb{C}$.

In fact, for all $z \in \mathbb{C},\left\|\frac{z^{n} A^{n}}{n!}\right\| \leq \frac{|z|^{n}\|A\|^{n}}{n!}$, so the series $\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!}$ converges absolutely in $\mathcal{L}(X)$. Therefore $T(z)=\sum_{n=0}^{\infty} \frac{z^{n} A^{n}}{n!} \in$ $\mathcal{L}(X)$ and we have the estimate

$$
\|T(z)\| \leq \sum_{n=0}^{\infty}\left\|\frac{z^{n} A^{n}}{n!}\right\| \leq \sum_{n=0}^{\infty} \frac{|z|^{n}\|A\|^{n}}{n!}=\mathrm{e}^{\mid z\|A\|} .
$$

(2) $T(z)$ is satisfies the semigroup property.

Indeed, since all sums involved are absolutely convergent, we find for all $z, w \in \mathbb{C}$ that

$$
\begin{aligned}
T(z+w) & =\sum_{n=0}^{\infty} \frac{(z+w)^{n} A^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^{k}}{k!} A^{k} \frac{w^{n-k}}{(n-k)!} A^{n-k} \\
& =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} A^{n} \sum_{n=0}^{\infty} \frac{w^{n}}{n!} A^{n}=T(z) T(w) .
\end{aligned}
$$

(3) $T(\cdot)$ is holomorphic.

Since T is additive, it is sufficient to prove that $T(\cdot)$ is holomorphic in 0 .

$$
\begin{aligned}
\left\|\frac{T(h)-I}{h}-A\right\| & =\left\|\frac{1}{h}\left(-I+\sum_{n=0}^{\infty} \frac{h^{n} A^{n}}{n!}\right)-A\right\|=\left\|\frac{1}{h} \sum_{n=2}^{\infty} \frac{h^{n} A^{n}}{n!}\right\| \\
& =\left\|h \sum_{n=0}^{\infty} \frac{h^{n} A^{n+2}}{(n+2)!}\right\| \\
& \leq|h|\|A\|^{2} \sum_{n=0}^{\infty} \frac{|h|^{n}}{(n+2)!}\|A\|^{n} \\
& \leq|h|\|A\|^{2} \mathrm{e}^{|h|\|A\|} .
\end{aligned}
$$

Thus $\lim _{h \rightarrow 0} \frac{T(h)-I}{h}=A$.
(4) For any $\theta \in(0, \pi / 2)$ and $\theta^{\prime} \in(0, \theta)$ we have that $\lim _{z \rightarrow 0} T(z) f=f$ for $z \in \Sigma_{\theta^{\prime}}$.

In fact, this is an immediate consequence of the holomorphy of T.

Exercise 2. Let H be a Hilbert space and A be a negative selfadjoint operator on H. If $S: H \rightarrow L^{2}$ is a unitary operator such that $S A S^{-1}: L^{2} \rightarrow L^{2}, S A S^{-1}=M_{m}$, where M_{m} is a multiplication operator on L^{2} by a real-valued function m (with maximal domain), prove that $T(z):=S^{-1} M_{\mathrm{e}^{z m}} S$ defines a bounded analytic semigroup $T: \Sigma_{\frac{\pi}{2}} \cup\{0\} \rightarrow \mathcal{L}(H)$ generated by A.

Solution. (Bern) Consider the operator M_{m} with its maximal domain $D\left(M_{m}\right)=\left\{f \in L^{2}: m f \in L^{2}\right\}$. It is easy to see that $D\left(M_{m}\right)$ is dense and the spectrum of M_{m} is the essential range of m, see [EN00, Prop. I.4.10]. Thus the sector $\Sigma_{\frac{\pi}{2}+\frac{\pi}{2}}$ is contained in the resolvent set of M_{m}. Moreover for any $\lambda \in \Sigma_{\frac{\pi}{2}+\frac{\pi}{2}}$ we have $R\left(\lambda, M_{m}\right) f=\frac{1}{\lambda-m(\cdot)} f$. Thus for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ we obtain

$$
\left\|\lambda R\left(\lambda, M_{m}\right) f\right\|^{2}=\int \underbrace{\left|\frac{\lambda}{\lambda-m(x)}\right|^{2}}_{\leq 1}|f(x)|^{2} d x \leq \int|f(x)|^{2} d x=\|f\|^{2} .
$$

So

$$
\sup _{\operatorname{Re} \lambda>0}=\left\|\lambda R\left(\lambda, M_{m}\right)\right\| \leq 1<\infty .
$$

Using Corollary 9.16 we conclude that M_{m} generates a bounded analytic semigroup $\tilde{T}: \Sigma_{\frac{\pi}{2}} \cup\{0\} \rightarrow \mathcal{L}\left(L^{2}\right)$.

In addition, we know that M_{m} generates the strongly continuous semigroup

$$
\tilde{T}_{m}:[0, \infty) \rightarrow \mathcal{L}\left(L^{2}\right), \quad \tilde{T}_{m}(t) f=e^{t m} f
$$

and for any $\alpha \in(-\pi / 2, \pi / 2)$ the multiplication operator $M_{e^{i \alpha} m}$ with $D\left(M_{e^{i \alpha} m}\right)=D\left(M_{m}\right)$ generates the strongly continuous semigroup

$$
\tilde{T}_{\alpha, m}:[0, \infty) \rightarrow \mathcal{L}\left(L^{2}\right), \quad \tilde{T}_{\alpha, m}(t) f=e^{t e^{i \alpha} m} f
$$

see [EN00, Lemma II.2.9].
Now let $z \in\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. Then there exist $\alpha \in(-\pi / 2, \pi / 2)$ and $t>0$ such that $z=t e^{i \alpha}$. Using Proposition 9.3 we obtain

$$
\tilde{T}(z) f=\tilde{T}\left(e^{i \alpha} t\right) f \stackrel{\text { Prop. }}{=}{ }^{9.3} \tilde{T}_{\alpha, m}(t) f=e^{t e^{i \alpha} m} f=e^{z m} f .
$$

The similarity transformations preserves the properties of the semigroup and thus also

$$
T: \Sigma_{\frac{\pi}{2} \cup\{0\}} \rightarrow \mathcal{L}(H), \quad T(z)=S^{-1} M_{e^{z m}} S
$$

is a bounded analytic semigroup.

Exercise 3. Show that the shift semigroup on $L^{p}(\mathbb{R})$ is not analytic. Or, more generally, if T is a strongly continuous group which is not continuous for the operator norm at $t=0$, then T is not analytic.

Solution. (Bern) First of all we prove that if $T: \mathbb{R} \rightarrow \mathcal{L}(X)$ is an analytic group, then it must be continuous for the operator norm at $t=0$. Let A be the generator of T. Then by Proposition 9.20 (ii), for some $\omega>0$ the operator $A_{1}=A-\omega I$ generates a bounded analytic semigroup T_{1}. Then Proposition 9.17 implies that

$$
\begin{equation*}
\operatorname{ran} T_{1}(t) \subset D\left(A_{1}\right) \text { for all } t>0 \tag{1}
\end{equation*}
$$

On the other hand the operator $-A+\omega I$ generates a semigroup T_{2} and for all $t \geq 0$ we have $\left\|T_{1}(t)\right\| \leq M$, and $\left\|T_{2}(t)\right\|=\left\|e^{\omega t} T(-t)\right\| \leq M$. Hence T_{1} is a group (for more details see [EN01, Page 72]). Since $T_{1}(-t)$ is a semigroup, by Proposition 2.8 we obtain that $T_{1}(-t) D\left(A_{1}\right) \subseteq$ $D\left(A_{1}\right)$, and therefore from (1) and the group property of T_{1} we obtain

$$
X=T_{1}(0) X=T_{1}(-t) T_{1}(t) X \subseteq D\left(A_{1}\right)
$$

and consequently, $D\left(A_{1}\right)=X$, i.e. A_{1} is bounded. Now Example 9.4 and the uniqueness theorem (Theorem 2.11) imply that

$$
T_{1}(z) \equiv \sum_{n=0}^{\infty} \frac{z^{n} A_{1}^{n}}{n!}
$$

Since

$$
\begin{aligned}
0 \leq \lim _{z \rightarrow 0}\left\|\sum_{n=0}^{\infty} \frac{z^{n} A_{1}^{n}}{n!}-I\right\| & =\lim _{z \rightarrow 0}\left\|\sum_{n=1}^{\infty} \frac{z^{n} A_{1}^{n}}{n!}\right\| \\
& \leq \lim _{z \rightarrow 0} \sum_{n=1}^{\infty} \frac{|z|^{n}\left\|A_{1}\right\|^{n}}{n!} \\
& =\lim _{z \rightarrow 0}\left(e^{\mid z\| \| A_{1} \|}-1\right)=0
\end{aligned}
$$

it follows that T_{1} (hence T) is continuous for the operator norm at $t=0$.

The shift semigroup on $L^{p}(\mathbb{R})$ with $1 \leq p<\infty$ is not analytic since it is a strongly continuous group which is not continuous for the operator norm at $t=0$. Note that the shift semigroup is not even strongly continuous in the case $p=\infty$.

Exercise 4. Let X, Y be Banach spaces. Show that if A is a sectorial operator on X and $S: X \rightarrow Y$ is continuously invertible, then $S A S^{-1}$ is a sectorial operator on Y.

Solution. (Bern) Since A is sectorial, there exists $\delta \in\left(0, \frac{\pi}{2}\right)$ such that the sector

$$
\Sigma_{\frac{\pi}{2}+\delta}=\left\{\lambda \in \mathbb{C} \backslash\{0\}:|\arg \lambda|<\frac{\pi}{2}+\delta\right\}
$$

is contained in the resolvent set $\rho(A)$ of A, and by Remark 9.11 for every $\delta^{\prime} \in(0, \delta)$ there exists $M_{\delta^{\prime}} \geq 1$ such that for all $\lambda \in \bar{\Sigma}_{\frac{\pi}{2}+\delta^{\prime}} \backslash\{0\}$ the following estimate holds

$$
\begin{equation*}
\|R(\lambda, A)\| \leq \frac{M_{\delta^{\prime}}}{|\lambda|} \tag{2}
\end{equation*}
$$

On the other hand, clearly $S(\lambda I-A) S^{-1}=\lambda I-S A S^{-1}$ and thus $\rho\left(S A S^{-1}\right)=\rho(A)$, with

$$
\begin{equation*}
\left(\lambda I-S A S^{-1}\right)^{-1}=S(\lambda I-A)^{-1} S^{-1} \text { for } \lambda \in \rho(A) \tag{3}
\end{equation*}
$$

Now from (2) and (3) it follows that

$$
\sup _{\lambda \in \Sigma_{\frac{\pi}{2}+\delta^{\prime}}}\left\|\lambda R\left(\lambda, S A S^{-1}\right)\right\| \leq\|S\|\left\|S^{-1}\right\| \sup _{\lambda \in \Sigma_{\frac{\pi}{2}+\delta^{\prime}}}\|\lambda R(\lambda, A)\|<\infty
$$

for every $\delta^{\prime} \in(0, \delta)$. Therefore $S A S^{-1}$ is a sectorial operator of angle δ on Y.

Exercise 5. For a densely defined linear operator A on the Banach space X the following assertions are equivalent:
(i) The operator A generates an analytic semigroup (of some angle).
(ii) For some $\omega>0$ the operator $A-\omega$ generates a bounded analytic semigroup (of some angle).
(iii) There is $r>0$ such that

$$
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0,|\lambda|>r\} \subset \rho(A)
$$

and

$$
\sup _{\substack{\text { Re>>0 } \\ \text { Re|>r }}}\|\lambda R(\lambda, A)\|<\infty
$$

Solution. (Bogotá) We show that $(i) \Longleftrightarrow(i i)$ and $(i i) \Longleftrightarrow(i i i)$.
$(i) \Rightarrow(i i)$: Let $T(t)$ an analytic semigroup of angle θ generated by A, then by proposition $9.3(\mathrm{~b})$ for all $\theta^{\prime} \in(0, \theta)$ there exist $\omega>0$ and $M \geq 1$ such that

$$
\|T(z)\| \leq M \mathrm{e}^{\omega \operatorname{Re} z} \quad \text { for all } z \in \Sigma_{\theta^{\prime}}
$$

If we define $S(z):=\mathrm{e}^{-\omega z} T(z)$ then $S(z)$ is a bounded analytic semigroup of angle θ^{\prime} whose generator is $A-\omega$. In fact, that $S(z)$ is an analytic semigroup of angle θ^{\prime} is inherited from $T(z)$. Since

$$
\|S(z)\|=\mathrm{e}^{-\omega \operatorname{Re} z}\|T(z)\| \leq M
$$

$S(z)$ is bounded in $\Sigma_{\theta^{\prime}}$. And if B denote the generator of $S(z)$ then for λ sufficiently large we have that

$$
\begin{aligned}
R(\lambda, B) & =\int_{0}^{\infty} \mathrm{e}^{-\lambda t} S(t) \mathrm{d} t=\int_{0}^{\infty} \mathrm{e}^{-(\lambda+\omega) t} T(t) \mathrm{d} t \\
& =R(\lambda+\omega, A)=R(\lambda, A-\omega) .
\end{aligned}
$$

Thus $B=A-\omega$.
$(i i) \Rightarrow(i)$: Let us suppose that $A-\omega$ is the generator of a bounded analytic semigroup $T(z)$ of angle θ. Let us define $S(z)=\mathrm{e}^{\omega z} T(z)$. It is clear that $S(z)$ satisfies all the properties of an analytic semigroup in Σ_{θ}. If B denotes its generator then for λ sufficiently large we have that

$$
\begin{aligned}
R(\lambda+\omega, A) & =R(\lambda, A-\omega)=\int_{0}^{\infty} \mathrm{e}^{-\lambda t} T(t) \mathrm{d} t \\
& =\int_{0}^{\infty} \mathrm{e}^{-(\lambda+\omega) t} S(t) \mathrm{d} t=R(\lambda+\omega, B) .
\end{aligned}
$$

Thus $A=B$, i.e, A is the generator of an analytic semigroup $S(z)$.
(ii) \Rightarrow (iii) : Suppose that for some $\omega>0$ the operator $A-\omega$ generates a bounded analytic semigroup of an angle $\delta \in\left(0, \frac{\pi}{2}\right]$. By Corollary 9.16 this means that the operator $A-\omega$ is sectorial of angle δ. Therefore we have

$$
\begin{equation*}
\sup _{\lambda \in \sum_{\frac{\pi}{2}+\frac{\delta}{2}}}\|\lambda R(\lambda, A-\omega)\|<+\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{\frac{\pi}{2}+\delta} \subset \rho(A-\omega) . \tag{5}
\end{equation*}
$$

Let $r:=\max \left(2 \omega, \omega \cot \frac{\delta}{2}\right)$. Then from (5) it easily follows that

$$
\begin{equation*}
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0,|\lambda|>r\} \subset \rho(A) \tag{6}
\end{equation*}
$$

Now choose $M \in \mathbb{R}$ so that $\|\lambda R(\lambda, A-\omega)\| \leq M$ holds for all $\lambda \in \Sigma_{\frac{\pi}{2}+\frac{\delta}{2}}$. Then for every $\lambda \in w+\Sigma_{\frac{\pi}{2}+\frac{\delta}{2}}$ we have

$$
\begin{aligned}
\|\lambda R(\lambda, A)\| & \leq\|(\lambda-\omega) R(\lambda-\omega, A-\omega)\|+\|\omega R(\lambda, A)\| \\
& \leq M+\|\omega R(\lambda, A)\| \\
& =M+\frac{\omega}{|\lambda|}\|\lambda R(\lambda, A)\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|\lambda R(\lambda, A)\| \leq \frac{|\lambda|}{|\lambda|-\omega} M, \quad \text { whenever }|\lambda|>\omega \text { and } \lambda \in w+\Sigma_{\frac{\pi}{2}+\frac{\delta}{2}} . \tag{7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0,|\lambda|>r\} \subset\left\{\lambda \in \mathbb{C}:|\lambda|>r, \lambda \in \omega+\Sigma_{\frac{\pi}{2}+\frac{\delta}{2}}\right\} \tag{8}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\sup _{\substack{\operatorname{Re}|>0\\| \lambda \mid>r}}\|\lambda R(\lambda, A)\| \leq \sup _{\substack{\text { Re>>0 } \\|\lambda|>r}} \frac{|\lambda|}{|\lambda|-\omega} M<2 M \tag{9}
\end{equation*}
$$

Now (6) together with (9) imply (iii).
$(i i i) \Rightarrow(i i):$ Let $r>0$ be such that

$$
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0,|\lambda|>r\} \subset \rho(A)
$$

and

$$
\sup _{\substack{\text { Red>0 } \\|\lambda|>r}}\|\lambda R(\lambda, A)\|<\infty
$$

Then there exists $M>0$ such that $\|\lambda R(\lambda, A)\| \leq M$ for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ and $|\lambda|>r$. Hence for $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ we have that

$$
\begin{equation*}
\|(\lambda+r) R(\lambda+r, A)\| \leq M \tag{10}
\end{equation*}
$$

and since $|\lambda+r|>|\lambda|$, (10) implies

$$
\begin{aligned}
\|\lambda R(\lambda, A-r)\| & \leq\left|\frac{\lambda+r}{\lambda}\right|\|\lambda R(\lambda, A-r)\|=\|(\lambda+r) R(\lambda, A-r)\| \\
& =\|(\lambda+r) R(\lambda+r, A)\| \leq M
\end{aligned}
$$

Thus

$$
\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda>0\} \subset \rho(A-r) \quad \text { and } \quad \sup _{\operatorname{Re} \lambda>0}\|\lambda R(\lambda, A-r)\|<\infty
$$

By Proposition 9.18, the last two relations imply that $A-r$ generates a bounded analytic semigroup.

Exercise 6. Suppose that A generates an analytic semigroup and that $B \in \mathcal{L}(X)$. Prove that $A+B$ generates an analytic semigroup.

S olution. (Bern) Let T be a semigroup generated by A. By Proposition 9.3 we have $\|T(z)\| \leq M e^{\omega \operatorname{Re}(z)}$, and the semigroup $e^{-\omega z} T(z)$ is uniformly bounded with generator $A-\omega I$. Clearly, if $A+B$ generates an analytic semigroup, then so does $A+B-\omega I$. Therefore without loss of generality we may suppose that T is uniformly bounded. Then by Proposition 9.8 there exists $\theta \in\left(0, \frac{\pi}{2}\right)$ such that the sector $\Sigma_{\frac{\pi}{2}+\theta}$ is contained in $\rho(A)$, and for all $\theta^{\prime} \in(0, \theta)$ there exists $M_{\theta^{\prime}} \geq 1$ such that the estimate

$$
\|R(\lambda, A)\| \leq \frac{M_{\theta^{\prime}}}{|\lambda|}
$$

holds for all $\lambda \in \Sigma_{\frac{\pi}{2}+\theta^{\prime}}$. Since $B \in \mathcal{L}(X)$

$$
\|B R(\lambda, A) f\| \leq\|B\|\|R(\lambda, A) f\| \leq \frac{\|B\| M_{\theta^{\prime}}}{|\lambda|}\|f\|,
$$

it follows that for $|\lambda|>2\|B\| M_{\theta^{\prime}}$ and $\lambda \in \Sigma_{\frac{\pi}{2}+\theta^{\prime}}$ we have

$$
\|B R(\lambda, A)\|<\frac{1}{2}
$$

and thus $I-B R(\lambda, A)$ is invertible with

$$
\begin{equation*}
\left\|(I-B R(\lambda, A))^{-1}\right\| \leq \sum_{k=0}^{\infty}\|B R(\lambda, A)\|^{k}<\sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 . \tag{11}
\end{equation*}
$$

Then the identity

$$
\begin{aligned}
R(\lambda, A+B) & =\left(\left(I-B(\lambda I-A)^{-1}\right)(\lambda I-A)\right)^{-1} \\
& =R(\lambda, A)(I-B R(\lambda, A))^{-1}
\end{aligned}
$$

together with (11) imply that for $|\lambda|>2\|B\| M_{\theta^{\prime}}$ and $\lambda \in \Sigma_{\frac{\pi}{2}+\theta^{\prime}}$ the following estimate holds

$$
\|R(\lambda, A+B)\| \leq \frac{2 M_{\theta^{\prime}}}{|\lambda|}
$$

Now taking $r:=2\|B\| M_{\theta^{\prime}}$ in Proposition 9.20, we conclude that the operator $A+B$ generates an analytic semigroup.

References

[EN00] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.
[EN01] K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups, Springer, 2006.

