ISEM 2011 Solutions for the exercises of Lecture 9 Teams of Bern and Bogotá

Exercise 1. For $A \in \mathcal{L}(X)$ and $z \in \mathbb{C}$ define

$$T(z) = e^{zA} := \sum_{n=0}^{\infty} \frac{z^n A^n}{n!}.$$

Show that T is an analytic semigroup.

- Solution. (Bogotá)
- (1) T(z) is a bounded linear operator for every $z \in \mathbb{C}$. In fact, for all $z \in \mathbb{C}$, $\|\frac{z^n A^n}{n!}\| \leq \frac{|z|^n \|A\|^n}{n!}$, so the series $\sum_{n=0}^{\infty} \frac{z^n A^n}{n!}$ converges absolutely in $\mathcal{L}(X)$. Therefore $T(z) = \sum_{n=0}^{\infty} \frac{z^n A^n}{n!} \in \mathcal{L}(X)$ and we have the estimate

$$||T(z)|| \le \sum_{n=0}^{\infty} \left\| \frac{z^n A^n}{n!} \right\| \le \sum_{n=0}^{\infty} \frac{|z|^n ||A||^n}{n!} = e^{|z|||A||}.$$

- (2) T(z) is satisfies the semigroup property.
 - Indeed, since all sums involved are absolutely convergent, we find for all $z, w \in \mathbb{C}$ that

$$T(z+w) = \sum_{n=0}^{\infty} \frac{(z+w)^n A^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{z^k}{k!} A^k \frac{w^{n-k}}{(n-k)!} A^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{z^n}{n!} A^n \sum_{n=0}^{\infty} \frac{w^n}{n!} A^n = T(z)T(w).$$

(3) $T(\cdot)$ is holomorphic.

Since T is additive, it is sufficient to prove that $T(\cdot)$ is holomorphic in 0.

$$\begin{split} \left\| \frac{T(h) - I}{h} - A \right\| &= \left\| \frac{1}{h} \left(-I + \sum_{n=0}^{\infty} \frac{h^n A^n}{n!} \right) - A \right\| = \left\| \frac{1}{h} \sum_{n=2}^{\infty} \frac{h^n A^n}{n!} \right\| \\ &= \left\| h \sum_{n=0}^{\infty} \frac{h^n A^{n+2}}{(n+2)!} \right\| \\ &\leq |h| \, \|A\|^2 \sum_{n=0}^{\infty} \frac{|h|^n}{(n+2)!} \|A\|^n \\ &\leq |h| \, \|A\|^2 e^{|h| \|A\|}. \\ \text{Thus } \lim_{h \to 0} \frac{T(h) - I}{h} = A. \end{split}$$

(4) For any $\theta \in (0, \pi/2)$ and $\theta' \in (0, \theta)$ we have that $\lim_{z \to 0} T(z)f = f$ for $z \in \Sigma_{\theta'}$.

In fact, this is an immediate consequence of the holomorphy of T.

Exercise 2. Let H be a Hilbert space and A be a negative selfadjoint operator on H. If $S : H \to L^2$ is a unitary operator such that $SAS^{-1} : L^2 \to L^2$, $SAS^{-1} = M_m$, where M_m is a multiplication operator on L^2 by a real-valued function m (with maximal domain), prove that $T(z) := S^{-1}M_{e^{zm}}S$ defines a bounded analytic semigroup $T : \Sigma_{\frac{\pi}{2}} \cup \{0\} \to \mathcal{L}(H)$ generated by A.

S o l u t i o n. (Bern) Consider the operator M_m with its maximal domain $D(M_m) = \{f \in L^2 : mf \in L^2\}$. It is easy to see that $D(M_m)$ is dense and the spectrum of M_m is the essential range of m, see [EN00, Prop. I.4.10]. Thus the sector $\sum_{\frac{\pi}{2}+\frac{\pi}{2}}$ is contained in the resolvent set of M_m . Moreover for any $\lambda \in \sum_{\frac{\pi}{2}+\frac{\pi}{2}}$ we have $R(\lambda, M_m)f = \frac{1}{\lambda - m(\cdot)}f$. Thus for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > 0$ we obtain

$$\|\lambda R(\lambda, M_m)f\|^2 = \int \underbrace{\left|\frac{\lambda}{\lambda - m(x)}\right|^2}_{\leq 1} |f(x)|^2 \, dx \leq \int |f(x)|^2 \, dx = \|f\|^2.$$

So

 $\mathbf{2}$

$$\sup_{\operatorname{Re}\lambda>0} = \|\lambda R(\lambda, M_m)\| \le 1 < \infty.$$

Using Corollary 9.16 we conclude that M_m generates a bounded analytic semigroup $\tilde{T}: \Sigma_{\frac{\pi}{2}} \cup \{0\} \to \mathcal{L}(L^2).$

In addition, we know that M_m generates the strongly continuous semigroup

$$\tilde{T}_m: [0,\infty) \to \mathcal{L}(L^2), \quad \tilde{T}_m(t)f = e^{tm}f,$$

and for any $\alpha \in (-\pi/2, \pi/2)$ the multiplication operator $M_{e^{i\alpha}m}$ with $D(M_{e^{i\alpha}m}) = D(M_m)$ generates the strongly continuous semigroup

$$\tilde{T}_{\alpha,m}: [0,\infty) \to \mathcal{L}(L^2), \quad \tilde{T}_{\alpha,m}(t)f = e^{te^{i\alpha}m}f,$$

see [EN00, Lemma II.2.9].

Now let $z \in \{z \in \mathbb{C} : \text{Re } z > 0\}$. Then there exist $\alpha \in (-\pi/2, \pi/2)$ and t > 0 such that $z = te^{i\alpha}$. Using Proposition 9.3 we obtain

$$\tilde{T}(z)f = \tilde{T}(e^{i\alpha}t)f \stackrel{\text{Prop. 9.3}}{=} \tilde{T}_{\alpha,m}(t)f = e^{te^{i\alpha}m}f = e^{zm}f.$$

The similarity transformations preserves the properties of the semigroup and thus also

$$T: \Sigma_{\frac{\pi}{2} \cup \{0\}} \to \mathcal{L}(H), \quad T(z) = S^{-1} M_{e^{zm}} S$$

is a bounded analytic semigroup.

Exercise 3. Show that the shift semigroup on $L^p(\mathbb{R})$ is not analytic. Or, more generally, if T is a strongly continuous group which is not continuous for the operator norm at t = 0, then T is not analytic.

S o l u t i o n. (Bern) First of all we prove that if $T : \mathbb{R} \to \mathcal{L}(X)$ is an analytic group, then it must be continuous for the operator norm at t = 0. Let A be the generator of T. Then by Proposition 9.20 (ii), for some $\omega > 0$ the operator $A_1 = A - \omega I$ generates a bounded analytic semigroup T_1 . Then Proposition 9.17 implies that

$$\operatorname{ran} T_1(t) \subset D(A_1) \quad \text{for all} \quad t > 0. \tag{1}$$

On the other hand the operator $-A + \omega I$ generates a semigroup T_2 and for all $t \ge 0$ we have $||T_1(t)|| \le M$, and $||T_2(t)|| = ||e^{\omega t}T(-t)|| \le M$. Hence T_1 is a group (for more details see [EN01, Page 72]). Since $T_1(-t)$ is a semigroup, by Proposition 2.8 we obtain that $T_1(-t)D(A_1) \subseteq D(A_1)$, and therefore from (1) and the group property of T_1 we obtain

$$X = T_1(0)X = T_1(-t)T_1(t)X \subseteq D(A_1),$$

and consequently, $D(A_1) = X$, i.e. A_1 is bounded. Now Example 9.4 and the uniqueness theorem (Theorem 2.11) imply that

$$T_1(z) \equiv \sum_{n=0}^{\infty} \frac{z^n A_1^n}{n!}.$$

Since

$$0 \le \lim_{z \to 0} \|\sum_{n=0}^{\infty} \frac{z^n A_1^n}{n!} - I\| = \lim_{z \to 0} \|\sum_{n=1}^{\infty} \frac{z^n A_1^n}{n!}\| \le \lim_{z \to 0} \sum_{n=1}^{\infty} \frac{|z|^n ||A_1||^n}{n!} = \lim_{z \to 0} (e^{|z|||A_1||} - 1) = 0$$

it follows that T_1 (hence T) is continuous for the operator norm at t = 0.

The shift semigroup on $L^p(\mathbb{R})$ with $1 \leq p < \infty$ is not analytic since it is a strongly continuous group which is not continuous for the operator norm at t = 0. Note that the shift semigroup is not even strongly continuous in the case $p = \infty$.

Exercise 4. Let X, Y be Banach spaces. Show that if A is a sectorial operator on X and $S: X \to Y$ is continuously invertible, then SAS^{-1} is a sectorial operator on Y.

S o l u t i o n. (Bern) Since A is sectorial, there exists $\delta \in (0, \frac{\pi}{2})$ such that the sector

$$\Sigma_{\frac{\pi}{2}+\delta} = \{\lambda \in \mathbb{C} \setminus \{0\} : |\arg\lambda| < \frac{\pi}{2} + \delta\}$$

is contained in the resolvent set $\rho(A)$ of A, and by Remark 9.11 for every $\delta' \in (0, \delta)$ there exists $M_{\delta'} \geq 1$ such that for all $\lambda \in \overline{\Sigma}_{\frac{\pi}{2}+\delta'} \setminus \{0\}$ the following estimate holds

$$\|R(\lambda, A)\| \le \frac{M_{\delta'}}{|\lambda|}.$$
(2)

On the other hand, clearly $S(\lambda I - A)S^{-1} = \lambda I - SAS^{-1}$ and thus $\rho(SAS^{-1}) = \rho(A)$, with

$$(\lambda I - SAS^{-1})^{-1} = S(\lambda I - A)^{-1}S^{-1}$$
 for $\lambda \in \rho(A)$. (3)

Now from (2) and (3) it follows that

$$\sup_{\lambda \in \Sigma_{\frac{\pi}{2} + \delta'}} \|\lambda R(\lambda, SAS^{-1})\| \le \|S\| \|S^{-1}\| \sup_{\lambda \in \Sigma_{\frac{\pi}{2} + \delta'}} \|\lambda R(\lambda, A)\| < \infty$$

for every $\delta' \in (0, \delta)$. Therefore SAS^{-1} is a sectorial operator of angle δ on Y.

Exercise 5. For a densely defined linear operator A on the Banach space X the following assertions are equivalent:

(i) The operator A generates an analytic semigroup (of some angle). (ii) For some $\omega > 0$ the operator $A - \omega$ generates a bounded analytic semigroup (of some angle).

(*iii*) There is r > 0 such that

$$\{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > 0, |\lambda| > r\} \subset \rho(A)$$
$$\sup_{\substack{\operatorname{Re}\lambda > 0\\ |\lambda| > r}} \|\lambda R(\lambda, A)\| < \infty.$$

and

S o l u t i o n . (Bogotá) We show that
$$(i) \iff (ii)$$
 and $(ii) \iff (iii)$.

 $(i) \Rightarrow (ii)$: Let T(t) an analytic semigroup of angle θ generated by A, then by proposition 9.3(b) for all $\theta' \in (0, \theta)$ there exist $\omega > 0$ and $M \ge 1$ such that

$$||T(z)|| \le M e^{\omega \operatorname{Re} z}$$
 for all $z \in \Sigma_{\theta'}$.

If we define $S(z) := e^{-\omega z}T(z)$ then S(z) is a bounded analytic semigroup of angle θ' whose generator is $A - \omega$. In fact, that S(z) is an analytic semigroup of angle θ' is inherited from T(z). Since

$$||S(z)|| = e^{-\omega \operatorname{Re} z} ||T(z)|| \le M,$$

S(z) is bounded in $\Sigma_{\theta'}$. And if B denote the generator of S(z) then for λ sufficiently large we have that

$$R(\lambda, B) = \int_{0}^{\infty} e^{-\lambda t} S(t) dt = \int_{0}^{\infty} e^{-(\lambda + \omega)t} T(t) dt$$
$$= R(\lambda + \omega, A) = R(\lambda, A - \omega).$$

Thus $B = A - \omega$.

 $(ii) \Rightarrow (i)$: Let us suppose that $A - \omega$ is the generator of a bounded analytic semigroup T(z) of angle θ . Let us define $S(z) = e^{\omega z}T(z)$. It is clear that S(z) satisfies all the properties of an analytic semigroup in Σ_{θ} . If B denotes its generator then for λ sufficiently large we have that

$$R(\lambda + \omega, A) = R(\lambda, A - \omega) = \int_{0}^{\infty} e^{-\lambda t} T(t) dt$$
$$= \int_{0}^{\infty} e^{-(\lambda + \omega)t} S(t) dt = R(\lambda + \omega, B).$$

Thus A = B, i.e., A is the generator of an analytic semigroup S(z).

 $(ii) \Rightarrow (iii)$: Suppose that for some $\omega > 0$ the operator $A - \omega$ generates a bounded analytic semigroup of an angle $\delta \in (0, \frac{\pi}{2}]$. By Corollary 9.16 this means that the operator $A - \omega$ is sectorial of angle δ . Therefore we have

$$\sup_{\lambda \in \sum_{\frac{\pi}{2} + \frac{\delta}{2}}} \|\lambda R(\lambda, A - \omega)\| < +\infty, \tag{4}$$

and

$$\sum_{\frac{\pi}{2}+\delta} \subset \rho(A-\omega). \tag{5}$$

Let $r := \max(2\omega, \omega \cot \frac{\delta}{2})$. Then from (5) it easily follows that

$$\{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > 0, |\lambda| > r\} \subset \rho(A).$$
(6)

Now choose $M \in \mathbb{R}$ so that $\|\lambda R(\lambda, A-\omega)\| \leq M$ holds for all $\lambda \in \Sigma_{\frac{\pi}{2}+\frac{\delta}{2}}$. Then for every $\lambda \in w + \Sigma_{\frac{\pi}{2}+\frac{\delta}{2}}$ we have

$$\begin{aligned} \|\lambda R(\lambda, A)\| &\leq \|(\lambda - \omega)R(\lambda - \omega, A - \omega)\| + \|\omega R(\lambda, A)\| \\ &\leq M + \|\omega R(\lambda, A)\| \\ &= M + \frac{\omega}{|\lambda|} \|\lambda R(\lambda, A)\|. \end{aligned}$$

Thus

$$\|\lambda R(\lambda, A)\| \le \frac{|\lambda|}{|\lambda| - \omega} M$$
, whenever $|\lambda| > \omega$ and $\lambda \in w + \sum_{\frac{\pi}{2} + \frac{\delta}{2}}$. (7)

Note that

$$\left\{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > 0, |\lambda| > r\right\} \subset \left\{\lambda \in \mathbb{C} : |\lambda| > r, \lambda \in \omega + \Sigma_{\frac{\pi}{2} + \frac{\delta}{2}}\right\}.$$
(8)

Therefore

$$\sup_{\substack{\operatorname{Re}\lambda>0\\|\lambda|>r}} \|\lambda R(\lambda,A)\| \le \sup_{\substack{\operatorname{Re}\lambda>0\\|\lambda|>r}} \frac{|\lambda|}{|\lambda|-\omega} M < 2M.$$
(9)

Now (6) together with (9) imply (iii).

 $(iii) \Rightarrow (ii) : \text{Let } r > 0 \text{ be such that}$

$$\{\lambda \in \mathbb{C} : \operatorname{Re}\lambda > 0, |\lambda| > r\} \subset \rho(A)$$
$$\sup_{\substack{\operatorname{Re}\lambda > 0\\|\lambda| > r}} \|\lambda R(\lambda, A)\| < \infty.$$

and

Then there exists M > 0 such that $\|\lambda R(\lambda, A)\| \leq M$ for every $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda > 0$ and $|\lambda| > r$. Hence for $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda > 0$ we have that

$$\|(\lambda + r)R(\lambda + r, A)\| \le M,\tag{10}$$

and since $|\lambda + r| > |\lambda|$, (10) implies

$$\|\lambda R(\lambda, A - r)\| \le \left|\frac{\lambda + r}{\lambda}\right| \|\lambda R(\lambda, A - r)\| = \|(\lambda + r)R(\lambda, A - r)\|$$
$$= \|(\lambda + r)R(\lambda + r, A)\| \le M.$$

Thus

$$\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\} \subset \rho(A - r) \quad \text{and} \quad \sup_{\operatorname{Re} \lambda > 0} \|\lambda R(\lambda, A - r)\| < \infty.$$

By Proposition 9.18, the last two relations imply that A - r generates a bounded analytic semigroup.

Exercise 6. Suppose that A generates an analytic semigroup and that $B \in \mathcal{L}(X)$. Prove that A + B generates an analytic semigroup.

S o l u t i o n. (Bern) Let T be a semigroup generated by A. By Proposition 9.3 we have $||T(z)|| \leq Me^{\omega \operatorname{Re}(z)}$, and the semigroup $e^{-\omega z}T(z)$ is uniformly bounded with generator $A-\omega I$. Clearly, if A+B generates an analytic semigroup, then so does $A + B - \omega I$. Therefore without loss of generality we may suppose that T is uniformly bounded. Then by Proposition 9.8 there exists $\theta \in (0, \frac{\pi}{2})$ such that the sector $\sum_{\frac{\pi}{2}+\theta}$ is contained in $\rho(A)$, and for all $\theta' \in (0,\theta)$ there exists $M_{\theta'} \geq 1$ such that the estimate

$$||R(\lambda, A)|| \le \frac{M_{\theta'}}{|\lambda|}$$

holds for all $\lambda \in \Sigma_{\frac{\pi}{2}+\theta'}$. Since $B \in \mathcal{L}(X)$

$$||BR(\lambda, A)f|| \le ||B|| ||R(\lambda, A)f|| \le \frac{||B||M_{\theta'}}{|\lambda|} ||f||,$$

6

it follows that for $|\lambda| > 2 \|B\| M_{\theta'}$ and $\lambda \in \sum_{\frac{\pi}{2} + \theta'}$ we have

$$\|BR(\lambda, A)\| < \frac{1}{2},$$

and thus $I - BR(\lambda, A)$ is invertible with

$$\| \left(I - BR(\lambda, A) \right)^{-1} \| \le \sum_{k=0}^{\infty} \| BR(\lambda, A) \|^k < \sum_{k=0}^{\infty} \frac{1}{2^k} = 2.$$
(11)

Then the identity

$$R(\lambda, A + B) = \left(\left(I - B(\lambda I - A)^{-1} \right) (\lambda I - A) \right)^{-1}$$
$$= R(\lambda, A) \left(I - BR(\lambda, A) \right)^{-1}$$

together with (11) imply that for $|\lambda| > 2||B||M_{\theta'}$ and $\lambda \in \Sigma_{\frac{\pi}{2}+\theta'}$ the following estimate holds

$$||R(\lambda, A+B)|| \le \frac{2M_{\theta'}}{|\lambda|}.$$

Now taking $r := 2 \|B\| M_{\theta'}$ in Proposition 9.20, we conclude that the operator A + B generates an analytic semigroup.

References

- [EN00] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.
- [EN01] K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups, Springer, 2006.