Lecture 7 — Solutions
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Exercise 1. Suppose A : D(A) — X is closed and B € £(X) is bounded.
a) Prove that the product AB with

D(AB)={f e X :Bxe D(A)}.

is closed. b) Give an example for A and B such that BA with D(BA) = D(A)
is not closed.

Proof. A: D(A) — X is closed, so we have
x, € D(A),z, — x,Ax, > y=x € D(A), Az = y.
To prove that the product AB is closed we have to prove that
z, € D(AB),x, — x,ABx, —y = x € D(AB), ABx = y.

The fact z,, € D(AB) implies that
Bz, € D(A). (1)

B is linear bounded operator, therefore B is continuous. x,, — x implies
Bz, — Bz. (2)

Thus, from (1),(2) using ABx, — y we obtain that the product AB is closed.
Exercise 5. Suppose A is densely defined, and take z € C with Rez < 0.
Prove that T'(t) := A*,t > 0 and T'(0) = I defines a strongly continuous

semigroup.



Proof. Proving properties of the strongly continuous semigroup.
1) Let t1,ty > 0. For two admissible curves v and 7 such that 7 lies to the
left of 7 we have

T(tl + t2) = Az(t1+t2) — Attt
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by the resolvent identity and by Fubini’s theorem we have
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2) Proving following properties of semigroup.
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T'(t) is bounded, because
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where C' is a constant(integral converges for z — 0. Finally, for the element

x € D(A) it suffices the strong continuity at 0 the dense subspace D(A). We



have
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which converges to 0 as z — 0. Hence, T'(¢) is a strongly continuous semigroup.
Exercise 7. Let a € (0,1). Prove that for all A > 0 sufficiently large we

have
JA°R(=, A)]| < 1.

Compare this to Exercise 6.5.

Proof. By Proposition 7.9. for the sufficiently large fixed Ay we have
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Now in the first integral the integrand is an analytic function, so the first

integral is equal to zero. By Assumption 7.3 we have that the resolvent is
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bounded, so by choosing Ao we can make integrand lesser than e for all € > 0.

Thus, | A°R(—, A)|| < 1.



