Lecture 7 - Solutions

Voronezh Team
 Polyakov Dmitry, Karpikova Alina, Dikarev Yegor.

Exercise 1. Suppose $A: D(A) \rightarrow X$ is closed and $B \in \mathcal{L}(X)$ is bounded. a) Prove that the product $A B$ with

$$
D(A B)=\{f \in X: B x \in D(A)\} .
$$

is closed. b) Give an example for A and B such that $B A$ with $D(B A)=D(A)$ is not closed.

Proof. $A: D(A) \rightarrow X$ is closed, so we have

$$
x_{n} \in D(A), x_{n} \rightarrow x, A x_{n} \rightarrow y \Rightarrow x \in D(A), A x=y .
$$

To prove that the product $A B$ is closed we have to prove that

$$
x_{n} \in D(A B), x_{n} \rightarrow x, A B x_{n} \rightarrow y \Rightarrow x \in D(A B), A B x=y .
$$

The fact $x_{n} \in D(A B)$ implies that

$$
\begin{equation*}
B x_{n} \in D(A) . \tag{1}
\end{equation*}
$$

B is linear bounded operator, therefore B is continuous. $x_{n} \rightarrow x$ implies

$$
\begin{equation*}
B x_{n} \rightarrow B x . \tag{2}
\end{equation*}
$$

Thus, from (1), (2) using $A B x_{n} \rightarrow y$ we obtain that the product $A B$ is closed.
Exercise 5. Suppose A is densely defined, and take $z \in \mathbb{C}$ with $\operatorname{Re} z<0$. Prove that $T(t):=A^{z t}, t>0$ and $T(0)=I$ defines a strongly continuous semigroup.

Proof. Proving properties of the strongly continuous semigroup.

1) Let $t_{1}, t_{2}>0$. For two admissible curves γ and $\widetilde{\gamma}$ such that γ lies to the left of $\widetilde{\gamma}$ we have

$$
\begin{aligned}
& T\left(t_{1}+t_{2}\right)=A^{z\left(t_{1}+t_{2}\right)}=A^{z t_{1}+z t_{2}} \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\tilde{\gamma}} \lambda^{z t_{1}+z t_{2}} R(\lambda, A) \mathrm{d} \lambda=\frac{1}{2 \pi \mathrm{i}} \int_{\tilde{\gamma}} \lambda^{z t_{1}} \lambda^{z t_{2}} R(\lambda, A) \mathrm{d} \lambda-0 \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\tilde{\gamma}} R(\lambda, A) \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mu^{z t_{1}} \lambda^{z t_{2}}}{\mu-\lambda} \mathrm{d} \mu \mathrm{~d} \lambda-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} R(\mu, A) \frac{1}{2 \pi i} \int_{\tilde{\gamma}} \frac{\mu^{z t_{1}} \lambda^{z t_{2}}}{\mu-\lambda} \mathrm{d} \lambda \mathrm{~d} \mu
\end{aligned}
$$

by the resolvent identity and by Fubini's theorem we have

$$
\begin{aligned}
& =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\tilde{\gamma}} \int_{\gamma} \frac{\mu^{z t_{1}} \lambda^{z t_{2}}}{\mu-\lambda}(R(\lambda, A)-R(\mu, A)) \mathrm{d} \mu \mathrm{~d} \lambda \\
& \quad=\frac{1}{(2 \pi i)^{2}} \int_{\tilde{\gamma}} \int_{\gamma} \mu^{z t_{1}} \lambda^{z t_{2}} R(\lambda, A) R(\mu, A) \mathrm{d} \mu \mathrm{~d} \lambda=A^{z t_{1}} A^{z t_{2}}=T\left(t_{1}\right) T\left(t_{2}\right)
\end{aligned}
$$

2) Proving following properties of semigroup.

$$
T(0)=A^{z 0}=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \lambda^{0} R(\lambda, A) \mathrm{d} \lambda=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} R(\lambda, A) \mathrm{d} \lambda=\frac{1}{2 \pi \mathrm{i}} 2 \pi \mathrm{i}=I .
$$

$T(t)$ is bounded, because

$$
\|T(t) x\|=\left\|A^{z t} x\right\| \leqslant \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \lambda^{z t}\|R(\lambda, A) x\| \mathrm{d} \lambda \leqslant \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{M \lambda^{z t}}{1+|\lambda|} \mathrm{d} \lambda\|x\| \leqslant C\|x\|,
$$

where C is a constant(integral converges for $z \rightarrow 0$. Finally, for the element $x \in \mathrm{D}(A)$ it suffices the strong continuity at 0 the dense subspace $\mathrm{D}(A)$. We
have

$$
\begin{aligned}
\|T(t) x-x\| & =\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \lambda^{z t} R(\lambda, A) x-x\right\| \\
& =\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \lambda^{z t} R(\lambda, A) x \mathrm{~d} \lambda-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} R(\lambda, A) x \mathrm{~d} \lambda\right\| \\
& \leqslant \frac{1}{2 \pi \mathrm{i}} \int_{\gamma}\left|\lambda^{z t}-1\right|\|R(\lambda, A)\| \mathrm{d} \lambda \leqslant \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{M}{1+|\lambda|}\left|\lambda^{z t}-1\right| \mathrm{d} \lambda
\end{aligned}
$$

which converges to 0 as $z \rightarrow 0$. Hence, $T(t)$ is a strongly continuous semigroup. Exercise 7. Let $\alpha \in(0,1)$. Prove that for all $\lambda>0$ sufficiently large we have

$$
\left\|A^{\alpha} R(-\lambda, A)\right\|<1
$$

Compare this to Exercise 6.5.
Proof. By Proposition 7.9. for the sufficiently large fixed λ_{0} we have

$$
\begin{aligned}
& \left\|A^{\alpha} R\left(-\lambda_{0}, A\right)\right\|=\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \lambda^{\alpha} R(\lambda, A) R\left(-\lambda_{0}, A\right) \mathrm{d} \lambda\right\| \\
& =\left\|\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda+\lambda_{0}}\left(R\left(-\lambda_{0}, A\right)-R(\lambda, A)\right) \mathrm{d} \lambda\right\| \\
& \leqslant \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda}\left\|R\left(-\lambda_{0}, A\right)\right\| \mathrm{d} \lambda+\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda}\|R(\lambda, A)\| \mathrm{d} \lambda \\
& \leqslant \frac{\left\|R\left(-\lambda_{0}, A\right)\right\|}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda} \mathrm{d} \lambda+\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda}\|R(\lambda, A)\| \mathrm{d} \lambda \\
& \leqslant \frac{\left\|R\left(-\lambda_{0}, A\right)\right\|}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda} \mathrm{d} \lambda+\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\lambda^{\alpha}}{\lambda_{0}+\lambda} \cdot \frac{M}{1+|\lambda|} \mathrm{d} \lambda
\end{aligned}
$$

Now in the first integral the integrand is an analytic function, so the first integral is equal to zero. By Assumption 7.3 we have that the resolvent is
bounded, so by choosing λ_{0} we can make integrand lesser than ε for all $\varepsilon>0$. Thus, $\left\|A^{\alpha} R(-\lambda, A)\right\|<1$.

