Tübingen Team Arbeitsgemeinschaft Funktionalanalysis Tübingen University

## Lecture 7

## Exercise 1:

a) Let $A: D(A) \rightarrow X$ be closed, $B \in \mathcal{L}(X)$. Show that $A B$ with $D(A B)=$ $\{x \in X \mid B x \in D(A)\}$ is closed.
Let $\left(x_{n}\right) \subset D(A B)$ with

$$
\begin{aligned}
& x_{n} \rightarrow x, \\
& A B x_{n} \rightarrow y .
\end{aligned}
$$

Then it follows from $B \in \mathcal{L}(X)$ that

$$
\begin{aligned}
& B x_{n} \rightarrow B x \\
& A\left(B x_{n}\right) \rightarrow y .
\end{aligned}
$$

Since $A$ is closed, we obtain $B x \in D(A)$ and $y=A B x$ and therefore $A B$ is closed.
b) Take $X=C[0,1]$ with operators

$$
\begin{aligned}
B f & =\int_{0}^{1} f(x) \mathrm{d} x \\
A f & =f^{\prime}, \quad D(A)=C^{1}[0,1]
\end{aligned}
$$

Then we obtain that

$$
\begin{gathered}
f_{n} \rightarrow f \\
f_{n}=B A f_{n} \rightarrow g
\end{gathered}
$$

and it does not follow that $f \in C^{1}[0,1]$ as $\left(C^{1}[0,1],\|\cdot\|_{\infty}\right)$ is not closed.
Martin

## Exercise 3:

Prove that for $t \in \mathbb{R}$ and $f \in D\left(A^{i t}\right)$ we have $A^{i t} f \in D\left(A^{-i t}\right)$ and $A^{-i t} A^{i t} f=f$. If we want to show that $A^{i t} f \in D\left(A^{-i t}\right)$, we need to show that $A^{-i t-1} A^{i t} f \in$ $D(A)$.

$$
A^{-i t-1} A^{i t} f \stackrel{\text { proposition } 7.19}{=} A^{-1} f \in D(A)
$$

where we used proposition 7.19 a) with $z=-1$ and $w=i t$. We obtain $A^{i t} f \in$ $D\left(A^{-i t}\right)$.
It follows immediately that

$$
A A^{-i t-1} A^{i t} f=A A^{-1} f=f
$$

Martin

## Exercise 4:

We reformulate the proof of Proposition 7.21. We have
$-1<\operatorname{Re} \alpha-\operatorname{Re} \beta<0$.
$A^{\alpha-\beta} x=\frac{\sin (\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) x \mathrm{~d} s=-\frac{\sin (\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta}(\alpha-\beta+A)^{-1} x \mathrm{~d} s$
$\Longrightarrow \frac{\sin (\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) x \mathrm{~d} s \in \overline{D(A)}\|\cdot\|_{A} A \stackrel{\text { closed }}{=} D(A) \stackrel{\text { Re } \beta \leq 1 \& \text { Proposition } 7.20}{C} D\left(A^{\beta}\right)$
$A^{\alpha} x \stackrel{\text { Proposition }}{=}{ }^{7.19} A^{\beta} A^{\alpha-\beta} x=\frac{\sin (\pi(\alpha-\beta))}{\pi} A^{\beta} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) x \mathrm{~d} s$
$=\frac{\sin (\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) A^{\beta} x \mathrm{~d} s$.

## Exercise 5:

Suppose A is densely defined, and take $z \in \mathbb{C}$ with $\operatorname{Rez}<0$. Prove that $T(t):=$ $A^{z t}, t>0$, and $T(0)=I$ is a strongly continuous semigroup.

Consider Corollary 7.15. In order to obtain the result, we show that $A^{-z}$ is densely defined.
$D\left(A^{-z}\right) \stackrel{\text { Def. } 7.17}{=} \operatorname{ran}\left(A^{z}\right)$, and $\operatorname{ran}\left(A^{z}\right)$ is X because $A^{z}$ is bijective with inverse operator $A^{-z}$, and therefore surjective. So $D\left(A^{-z}\right)=X$, so $A^{-z}$ is densely defined.

Johannes

## Exercise 8:

In Exercise 1 of Lecture 4, we proved the equivalence of the given norms and each $X_{n}=D\left(A^{n}\right)$ is a Banach space. In Prop 4.14 we proved that $\left.T(t)\right|_{X_{n}}$ is a semigroup of type $(M, \omega)$. It remains to show that $D\left(A^{n}\right)$ is invariant under the semigroup T .

Take $f \in D\left(A^{n}\right)$, so $A^{n-1} f \in D(A)$. Then

$$
\begin{aligned}
A^{n} f=A \dot{A}^{n-1} f & =\lim _{h \backslash 0} \frac{T(t+h) A^{n-1} f-T(t) A^{n-1} f}{h} \\
& \stackrel{2.8 b)}{=} \lim _{h \searrow 0} \frac{A^{n-1} T(t+h) f-A^{n-1} T(t) f}{h} \\
& =\lim _{h \searrow 0} \frac{T(h) A^{n-1} T(t) f-A^{n-1} T(t) f}{h} .
\end{aligned}
$$

$$
\Rightarrow A^{n-1} T(t) f \in D(A)
$$

$\Rightarrow T(t) f \in D\left(A^{n}\right)$, so $D\left(A^{n}\right)$ is $T$-invariant.
Johannes

