Tübingen Team Arbeitsgemeinschaft Funktionalanalysis Tübingen University

Lecture 7

Exercise 1:

a) Let $A: D(A) \to X$ be closed, $B \in \mathcal{L}(X)$. Show that AB with $D(AB) = \{x \in X | Bx \in D(A)\}$ is closed. Let $(x_n) \subset D(AB)$ with

$$\begin{array}{l}
x_n \to x, \\
ABx_n \to y
\end{array}$$

Then it follows from $B \in \mathcal{L}(X)$ that

$$Bx_n \to Bx$$
$$A(Bx_n) \to y.$$

Since A is closed, we obtain $Bx \in D(A)$ and y = ABx and therefore AB is closed.

b) Take X = C[0, 1] with operators

$$Bf = \int_{0}^{1} f(x) \, dx$$
$$Af = f', \quad D(A) = C^{1}[0, 1].$$

Then we obtain that

$$f_n \to f$$
$$f_n = BAf_n \to g$$

and it does not follow that $f\in C^1[0,1]$ as $(C^1[0,1],\|.\|_\infty)$ is not closed. Martin \square

Exercise 3:

Prove that for $t \in \mathbb{R}$ and $f \in D(A^{it})$ we have $A^{it}f \in D(A^{-it})$ and $A^{-it}A^{it}f = f$. If we want to show that $A^{it}f \in D(A^{-it})$, we need to show that $A^{-it-1}A^{it}f \in D(A)$.

$$A^{-it-1}A^{it}f \stackrel{\text{proposition 7.19}}{=} A^{-1}f \in D(A)$$

where we used proposition 7.19 a) with z = -1 and w = it. We obtain $A^{it} f \in D(A^{-it})$.

It follows immediately that

$$AA^{-it-1}A^{it}f = AA^{-1}f = f.$$

Martin \square

Exercise 4:

We reformulate the proof of Proposition 7.21. We have

$$-1 < Re\alpha - Re\beta < 0.$$

$$A^{\alpha-\beta}x = \frac{\sin(\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) x \, \mathrm{d}s = -\frac{\sin(\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} (\alpha-\beta+A)^{-1} x \, \mathrm{d}s$$

$$\implies \frac{\sin(\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta} R(-\alpha+\beta, A) x \, \mathrm{d}s \in \overline{D(A)}^{\parallel \cdot \parallel_{A}} \stackrel{A \text{ closed}}{=} D(A) \stackrel{Re\beta \le 1\& \text{ Proposition 7.20}}{\subset} D(A^{\beta})$$

 $A^{\alpha}x \stackrel{\text{Proposition 7.19}}{=} A^{\beta}A^{\alpha-\beta}x = \frac{\sin(\pi(\alpha-\beta))}{\pi}A^{\beta}\int_{0}^{\infty} s^{\alpha-\beta}R(-\alpha+\beta,A)x\,\mathrm{d}s$ $= \frac{\sin(\pi(\alpha-\beta))}{\pi}\int_{0}^{\infty} s^{\alpha-\beta}R(-\alpha+\beta,A)A^{\beta}x\,\mathrm{d}s.$

Martin \square

Exercise 5:

Suppose A is densely defined, and take $z \in \mathbb{C}$ with Rez < 0. Prove that $T(t) := A^{zt}, t > 0$, and T(0) = I is a strongly continuous semigroup.

Consider Corollary 7.15. In order to obtain the result, we show that A^{-z} is densely defined.

 $D(A^{-z}) \stackrel{Def.7.17}{=} ran(A^z)$, and $ran(A^z)$ is X because A^z is bijective with inverse operator A^{-z} , and therefore surjective. So $D(A^{-z}) = X$, so A^{-z} is densely defined. Johannes \Box

Exercise 8:

In Exercise 1 of Lecture 4, we proved the equivalence of the given norms and each $X_n = D(A^n)$ is a Banach space. In Prop 4.14 we proved that $T(t)|_{X_n}$ is a semigroup of type (M, ω) . It remains to show that $D(A^n)$ is invariant under the semigroup T.

Take $f \in D(A^n)$, so $A^{n-1}f \in D(A)$. Then

$$A^{n}f = A\dot{A}^{n-1}f = \lim_{h \searrow 0} \frac{T(t+h)A^{n-1}f - T(t)A^{n-1}f}{h}$$

$$\stackrel{2.8b}{=} \lim_{h \searrow 0} \frac{A^{n-1}T(t+h)f - A^{n-1}T(t)f}{h}$$

$$= \lim_{h \searrow 0} \frac{T(h)A^{n-1}T(t)f - A^{n-1}T(t)f}{h}.$$

$$\Rightarrow A^{n-1}T(t)f \in D(A) \Rightarrow T(t)f \in D(A^n), \text{ so } D(A^n) \text{ is } T\text{-invariant.}$$

Johannes \Box