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1 Exercise 7.1 

a) Let            with      and        in   for some      . Then  

            

and since   is bounded, we have 

‖      ‖  ‖ ‖‖    ‖                         

i.e,       . On the other hand       , therefore         and      , since   is closed. So 

   is closed. 

b)    with            is closed if         . 

2 Exercise 7.2 

Let               be a strictly increasing sequence with         , and let    be the 

multiplication operator. Then    fulfills Assumption 7.3 

Given          , we form sequence           
 

    
   and compute 
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Since ‖  ‖   ‖ ‖       ‖ ‖   , then the operator associated to         is bounded and it is easily 

seen that this operator equals                 . In particular             . For   

              , we obtain 
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This show that    fulfills Assumption 7.3.  

 

4 Exercise 7.4 

Let         and      , then                    , we obtain from (7.4) in Proposition 

7.13: 
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Since                   , for every     and since  
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is a convergent improper integral, the closedness    implies that  
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By Proposition 7.19.a) we have          , hence the statement is proved. 

 

 

5 Exercise 7.5 
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which converges to 0 as    . 

8 Exercise 7.8 

Let          and                
. Then ‖      ‖  ‖     ‖      . 

 

 


