
Problem 1

a) Consider the sequence xn in D(AB) converging to x, such that ABxn
converges to g. As B is bounded, the sequence Bxn is also convergent with
the limit Bx. The elements xn are from D(AB), so Bxn are from D(A).
Since A is closed, this yields that Bx also belongs to D(A) and so x is
from D(AB). Moreover, ABxn converges to ABx, i.e., g = ABx, which
completes the proof.

Problem 2

Let (mn) ⊆ C be a sequence. The operator Mm acts from l2 onto l2 iff
∃K > 0: |mn| ≤ K ∀n ∈ N. The inverse operator M−1

m acts in the following
way: ∀(xn) ∈ l2 M−1

m (xn) = ( xn

mn
) ant it acts from l2 onto l2 and is bounded

iff ∃K ′ > 0: |mn| ≥ K ′. Thus, 0 < K ′ ≤ |mn| ≤ K ∀n ∈ N.
Let us prove the following proposition:
Proposition

For operator Mm the following conditions are equivalent:
1. (−∞, 0] ⊆ ρ(Mm) and ||R(λ,Mm)|| ≤ M

1+|λ| for all λ ≤ 0 and for some

M > 0.
2. ∃C > 0: K ′ ≥ C and ∀mn if Re(mn) < 0 then |Im(mn)| ≥ C

Prof.
Let us suppose that the condition 2 holds. Then ∀λ ≤ 0 ∀(xn) ∈ l2

||R(λ,Mm)(xn)||2l2 =
+∞
∑

n=1

|xn|2
|λ− xn|2

=
+∞
∑

n=1

|xn|2
(λ− Re(mn))2 + (Im(mn))2

≤
+∞
∑

n=1

|xn|2 max

{

1

(λ− Re(mn))2 + C2
,

1

λ2 +K ′2

}

.

Now let us consider two cases:
1. λ ≤ −K

Then

||R(λ,Mm)(xn)||2l2 ≤ ||(xn)||2l2 max

{

1

(λ+K)2 + C2
,

1

λ2 +K ′2

}

=
||(xn)||2l2

(λ+K)2 + C2
.

Thus, ||R(λ,Mm)|| ≤ 1√
(λ+K)2+C2

Using the fact, that
√

(λ+K)2 + C2 ∼ 1 + |λ|, λ → −∞, there is M̃1 >

0 and K̃ > K > 0: ∀λ < −K̃ the inequality holds:

1
√

(λ+K)2 + C2
≤ M̃1

1 + |λ| .
1
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On the other hand, ∀λ : −K̃ ≤ λ ≤ −K the function 1√
(λ+K)2+C2

is

bounded. I. e., there is M̃2 > 0:

1
√

(λ+K)2 + C2
≤ M̃2 ≤

M̃2(1 + K̃)

1 + |λ| ∀λ : −K̃ ≤ λ ≤ −K.

Let us denote: M1 := max{M̃1, M̃2(1 + K̃)}.
2. λ > −K

In this case

||R(λ,Mm)|| ≤ 1

C
≤ 1 +K

C(1 + |λ|) =
M2

1 + |λ| ,

where M2 =
1+K
C

. Thus,

||R(λ,Mm)|| ≤ M

1 + |λ| ,

where M = max{M1,M2}.
Now let us prove that condition 1 implies condition 2. Suppose the con-

trary: there is a subsequence mnk
such that Re(mnk

) < 0 and Im(mnk
) →

0, k → +∞. From condition 1 we have that there is M > 0: ∀λ ≤ 0

||R(λ,Mm)|| ≤ M

Let enk
= (x1, x2, . . .) be the sequence from l2 such that xj = 0, j 6= nk,

xnk
= 1. Let us consider the following sequence: λk = Re(mnk

) < 0. If there
is k ∈ N: Im(mnk

) = 0, then R(λk,Mm) is not correctly defined. Otherwise,
if Im(mnk

) > 0 ∀k ∈ N, then ||R(λk,Mm)enk
||l2 → +∞. Thus, we come to

the contradiction. �

Picture 1.

The domain, which contains mn is on the picture 1. The radius of the
bigger circle is K and radius of the smaller is K ′. Now, choosing a > 0 and
θ > 0 sufficiently small, we can construct admissible curve γ = −γ1 + γ2,
where γ1 = seiθ + a, γ2 = se−iθ + a, s ∈ [0,∞) and determine complex
powers of Mm:
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Mz
m =

1

2πi

∫

γ

λzR(λ,Mm)dλ, Re(z) < 0.

Problem 4

Observe that −1 < Re(α − β) < 0. Therefore from (7.4) in Proposition
7.13 we have

(0.1) Aα−β = −sin(π(α− β))

π

∞
∫

0

sα−β(s+A)−1fds.

Since sα−β(s + A)−1f ∈ D(A) for every s > 0 and so sα−β(s + A)−1f ∈
D(Aβ) and since

∞
∫

0

sα−β(s+A)−1Aβfds

is a convergent improper integral, the closedness of Aβ (by Proposition 7.20
a)) implies that the right-hand side in (0.1) belongs to D(Aβ) and that

Aα−βAβf =
sin(π(β − α))

π

∞
∫

0

sα−β(s +A)−1Aβfds

=
sin(π(β − α))

π
Aβ

∞
∫

0

sα−β(s+A)−1fds

By Proposition 7.19. a) we have Aα = Aα−βAβ for all f ∈ D(Aβ), which
completes the proof.

Problem 5

Let us consider A : D(A) → X, where D(A) is a dense subset of X and
operator A. satisfies Assumption 7.3. Then,

T (t) := Azt :=

∫

γ

λzR(λ,A)dλ, Rez < 0

is independent of γ by Lemma 7.8. Moreover, using Proposition 7.11, we
obtain that for z ∈ C: Rez < 0, ∀s, t > 0

AztAzs = Az(t+s).

Now let us prove that for all f ∈ X the mapping t → T (t)f is continuous.
At first, let us check that the mapping is continuous in 0. From the estimate

Aztf − f =
sin (πzt)

π

∞
∫

0

sztR(−s,A)ds − sin(πzt)

π

∞
∫

0

sztR(−s, I) =
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=
sin (πzt)

π

∞
∫

0

szt

1 + s
R(−s,A)(I −A)fds.

we have that

||Aztf − f || ≤ | sin (πzt)|
π

∞
∫

0

|szt|
1 + s

||R(−s,A)||||(I −A)f ||ds ≤

| sin (πzt)|
π

∞
∫

0

1

(1 + s)2
ds||(I −A)f || → 0, t ց 0.

Using that for an arbitrary t > 0 we have:

Az(t+h) −Azt = Azt(Azh − 1), h > 0,

it is clear that the mapping t → Aztf is continuous. Thus, T (t) := Azt is a
strongly continuous semigroup.

Problem 7

Observe first that Aα is closed by Proposition 7.20 a) and for any f from
the domain of the operator AαR(−λ,A) we have that R(−λ,A)f belongs
to to D(A). Fix some β such that α < β < 1. Then R(−λ,A)f ∈ D(Aβ)
and D(Aβ) ⊆ D(Aα). Therefore by Corollary 7.26 b) there exists K0 ≥ 0
such that

‖AαR(−λ,A)f‖ ≤ K0

(

sβ‖R(−λ,A)f‖+ sβ−1‖AR(−λ,A)f‖
)

holds for all s > 0. As

‖R(−λ,A)‖ ≤ M

1 + λ

we have

‖AαR(−λ,A)f‖ ≤ K0

(

sβ‖R(−λ,A)f‖ + sβ−1‖(−λR(−λ,A) − I)f‖
)

≤ K0

(

sβM

1 + λ
+ sβ−1

(

Mλ

1 + λ
+ 1

))

‖f‖

≤ K0

(

sβM

λ
+ sβ−1 (M + 1)

)

‖f‖

Since this holds for all s > 0 we can take s0 > 0 such that sβ−1
0 < 1

2K0(M+1)

and then

‖AαR(−λ,A)f‖ ≤
(

K0
s
β
0M

λ
+

1

2

)

‖f‖.

Taking λ > 2sβ0K0M , we obtain the assertion.
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Problem 8

First statement of Proposition 7.1 was in Problems of Lecture 4. We have
to prove that the Banach spaces Xn are invariant under the semigroup T .
Then, for operators Tn(t) := T (t)|Xn

all properties of semigroup are satisfied
and we have only to check, that it is of type (M,ω).

We’ll check that spaces Xn are invariant under T (t) using induction.
By Proposition 2.8 we have that D(A) is invariant under semigroup T (t).
Assume that D(An) is invariant under T (t). By definition we have that
D(An+1) := {f ∈ D(An) : Af ∈ D(A)}. Consider an arbitrary f ∈
D(An+1). By assumption T (t)f ∈ D(An). T (t)Af = AT (t)f ∈ D(An).
Thus, Xn := D(An) are invariant under T (t). It remains to prove that
semigroups Tn are of (M,w) type. It follows from the the density of Xn

(Proposition 2.18) and definition of (M,w) type.
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