PROBLEM 1

a) Consider the sequence z,, in D(AB) converging to z, such that ABz,
converges to g. As B is bounded, the sequence Bx,, is also convergent with
the limit Bx. The elements x,, are from D(AB), so Bz, are from D(A).
Since A is closed, this yields that Bz also belongs to D(A) and so z is
from D(AB). Moreover, ABx, converges to ABx, i.e., g = ABz, which
completes the proof.

PROBLEM 2

Let (m,) C C be a sequence. The operator M, acts from ls onto I iff
3K > 0: |m,| < K ¥n € N. The inverse operator M,,;! acts in the following
way: V(x,) € lo M, () = ( -) ant it acts from Iy onto /o and is bounded
iff 3K > 0: |my,| > K’. Thus, 0 < K’ < |m,| < K Vn € N.

Let us prove the following proposition:

Proposition

For operator M, the following conditions are equivalent:

1. (—00,0] C p(My,) and ||R(A, My,)|| < HJY‘I)\' for all A <0 and for some
M > 0.

2. 3C > 0: K’ > C and Vm,, if Re(m,,) < 0 then |Im(m,,)| > C
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Let us suppose that the condition 2 holds. Then VA <0 V(zy,) € Iz
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[|R(A, My,) $n||z2 Z — 2, Z()\ Re(my))? 4+ (Im(my,))?
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Now let us consider two cases:
1. A< -K
Then
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Thus, ||R(\, My)|| < m

Using the fact, that /(A + K)? + C? ~ 1 4 |A|, A = —oo0, there is M >
0 and K > K > 0: YA < —K the inequality holds:

1 - M,
A+ K)2+C2 7 1+ A
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On the other hand, VA : —K < A < —K the function YT IETe is

bounded. I. e., there is My > 0:

1 - My(1+K B
<< MUAE) o ko< K
A+ K)2+C2 L+ [Al
Let us denote: M; := max{M;, My(1 + K)}.

2. A> —K
In this case

1 1+ K M.
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where My = % Thus,

where M = max{M;, Ms}.

Now let us prove that condition 1 implies condition 2. Suppose the con-
trary: there is a subsequence m,,, such that Re(my,,) < 0 and Im(m,, ) —
0, £k — +o00. From condition 1 we have that there is M > 0: VA <0

1R, M)l < M

Let e, = (x1,%2,...) be the sequence from Iy such that z; = 0, j # ny,
Zp, = 1. Let us consider the following sequence: A\, = Re(m,,, ) < 0. If there
is k € N: Im(my,, ) = 0, then R(\g, M,,) is not correctly defined. Otherwise,
if Im(my,, ) > 0 Vk € N, then ||R(\g, My, )en, |1, = +00. Thus, we come to
the contradiction. [J

¥

Picture 1.

The domain, which contains m,, is on the picture 1. The radius of the
bigger circle is K and radius of the smaller is K’. Now, choosing a > 0 and
f > 0 sufficiently small, we can construct admissible curve v = —vy; + s,
where 1 = se? +a, v9 = se™® +a, s € [0,00) and determine complex
powers of M,,:



M7 = — / N R(X, My,)dA, Re(z) < 0.
ol

PROBLEM 4

Observe that —1 < Re(a — ) < 0. Therefore from (7.4) in Proposition
7.13 we have
/ s P(s+ A)~Lfds.
0

Since s*#(s 4+ A)~1f € D(A) for every s > 0 and so s* F(s+ A)"1f €
D(AP) and since

(0.1) po-s — _Snlm

/ s B(s+ A)"1 AP fds
0

is a convergent improper integral, the closedness of A? (by Proposition 7.20
a)) implies that the right-hand side in (0.1) belongs to D(A®) and that

AP f = —Sin(”(ﬁ =) / 520 (s + A) VAP fds
0
— —Sin(ﬁ(i _ a))Aﬁ /so‘_ﬁ(s +A)"! fds
0

By Proposition 7.19. a) we have A% = A* B AP for all f € D(AP), which
completes the proof.

PROBLEM 5

Let us consider A : D(A) — X, where D(A) is a dense subset of X and
operator A. satisfies Assumption 7.3. Then,

T(t) := A* .= / N R(A, A)d\, Rez < 0
ol

is independent of v by Lemma 7.8. Moreover, using Proposition 7.11, we
obtain that for z € C: Rez < 0, Vs,t >0

AztAzs — Az(t-{—s).

Now let us prove that for all f € X the mapping ¢t — T'(¢)f is continuous.
At first, let us check that the mapping is continuous in 0. From the estimate

A sin (mzt) /sZtR( 5, A)ds _ sin(wzt) /sZtR
T
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sm 7th S
/1+8 —s,A)(I — A)fds.
0
we have that
. sin (7wzt 5%t
laf — g < 15in(mz) ’ s, A~ ) fi1as <
0
t
|Sm = |/ eslll = fl 0.6 0

Using that for an arbltrary t > 0 we have:
Az(t+h) _ A%t — Azt(Azh o 1), h> 0,

it is clear that the mapping ¢t — A*'f is continuous. Thus, T'(t) := A% is a
strongly continuous semigroup.

PROBLEM 7

Observe first that A is closed by Proposition 7.20 a) and for any f from
the domain of the operator A*R(—\, A) we have that R(—\, A)f belongs
to to D(A). Fix some § such that a < 8 < 1. Then R(—\, A)f € D(AP)
and D(AP) C D(A®). Therefore by Corollary 7.26 b) there exists Ky > 0
such that

JAR(-X, A)f]| < Ko (SPIR(-A, A)f]| + 57~ AR(-, A)1])
holds for all s > 0. As
M
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we have

JAR(-X, A)fI| < Ko (SIR(-N, )]+ 57 HI(-AR(-, 4) = D))
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Since this holds for all s > 0 we can take sy > 0 such that sg BPS Ko (MFT)

and then
B
o soM 1
[A“R(=X, A) f|| < <K 0 +§> I £1I-

A

Taking A > 230 KoM, we obtain the assertion.



PROBLEM 8

First statement of Proposition 7.1 was in Problems of Lecture 4. We have
to prove that the Banach spaces X, are invariant under the semigroup T
Then, for operators T, (t) := T'(t)|x,, all properties of semigroup are satisfied
and we have only to check, that it is of type (M, w).

We'll check that spaces X,, are invariant under 7'(¢) using induction.
By Proposition 2.8 we have that D(A) is invariant under semigroup T'(t).
Assume that D(A") is invariant under T'(t). By definition we have that
D(A™) .= {f € D(A") : Af € D(A)}. Consider an arbitrary f €
D(A™1). By assumption T(t)f € D(A"). T(t)Af = AT(t)f € D(A").
Thus, X,, := D(A™) are invariant under 7'(¢). It remains to prove that
semigroups T, are of (M,w) type. It follows from the the density of X,
(Proposition 2.18) and definition of (M, w) type.
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