Problem 1

a) Consider the sequence x_{n} in $D(A B)$ converging to x, such that $A B x_{n}$ converges to g. As B is bounded, the sequence $B x_{n}$ is also convergent with the limit $B x$. The elements x_{n} are from $D(A B)$, so $B x_{n}$ are from $D(A)$. Since A is closed, this yields that $B x$ also belongs to $D(A)$ and so x is from $D(A B)$. Moreover, $A B x_{n}$ converges to $A B x$, i.e., $g=A B x$, which completes the proof.

PROBLEM 2

Let $\left(m_{n}\right) \subseteq \mathbb{C}$ be a sequence. The operator M_{m} acts from l_{2} onto l_{2} iff $\exists K>0:\left|m_{n}\right| \leq K \forall n \in \mathbb{N}$. The inverse operator M_{m}^{-1} acts in the following way: $\forall\left(x_{n}\right) \in l_{2} M_{m}^{-1}\left(x_{n}\right)=\left(\frac{x_{n}}{m_{n}}\right)$ ant it acts from l_{2} onto l_{2} and is bounded iff $\exists K^{\prime}>0:\left|m_{n}\right| \geq K^{\prime}$. Thus, $0<K^{\prime} \leq\left|m_{n}\right| \leq K \forall n \in \mathbb{N}$.

Let us prove the following proposition:

Proposition

For operator M_{m} the following conditions are equivalent:

1. $(-\infty, 0] \subseteq \rho\left(M_{m}\right)$ and $\left\|R\left(\lambda, M_{m}\right)\right\| \leq \frac{M}{1+|\lambda|}$ for all $\lambda \leq 0$ and for some $M>0$.
2. $\exists C>0: K^{\prime} \geq C$ and $\forall m_{n}$ if $\operatorname{Re}\left(m_{n}\right)<0$ then $\left|\operatorname{Im}\left(m_{n}\right)\right| \geq C$

Prof.
Let us suppose that the condition 2 holds. Then $\forall \lambda \leq 0 \forall\left(x_{n}\right) \in l_{2}$

$$
\begin{aligned}
& \left\|R\left(\lambda, M_{m}\right)\left(x_{n}\right)\right\|_{l_{2}}^{2}=\sum_{n=1}^{+\infty} \frac{\left|x_{n}\right|^{2}}{\left|\lambda-x_{n}\right|^{2}}=\sum_{n=1}^{+\infty} \frac{\left|x_{n}\right|^{2}}{\left(\lambda-\operatorname{Re}\left(m_{n}\right)\right)^{2}+\left(\operatorname{Im}\left(m_{n}\right)\right)^{2}} \\
& \quad \leq \sum_{n=1}^{+\infty}\left|x_{n}\right|^{2} \max \left\{\frac{1}{\left(\lambda-\operatorname{Re}\left(m_{n}\right)\right)^{2}+C^{2}}, \frac{1}{\lambda^{2}+K^{\prime 2}}\right\}
\end{aligned}
$$

Now let us consider two cases:

1. $\lambda \leq-K$

Then
$\left\|R\left(\lambda, M_{m}\right)\left(x_{n}\right)\right\|_{l_{2}}^{2} \leq\left\|\left(x_{n}\right)\right\|_{l_{2}}^{2} \max \left\{\frac{1}{(\lambda+K)^{2}+C^{2}}, \frac{1}{\lambda^{2}+K^{\prime 2}}\right\}=\frac{\left\|\left(x_{n}\right)\right\|_{l_{2}}^{2}}{(\lambda+K)^{2}+C^{2}}$.
Thus, $\left\|R\left(\lambda, M_{m}\right)\right\| \leq \frac{1}{\sqrt{(\lambda+K)^{2}+C^{2}}}$
Using the fact, that $\sqrt{(\lambda+K)^{2}+C^{2}} \sim 1+|\lambda|, \lambda \rightarrow-\infty$, there is $\tilde{M}_{1}>$ 0 and $\tilde{K}>K>0: \forall \lambda<-\tilde{K}$ the inequality holds:

$$
\frac{1}{\sqrt{(\lambda+K)^{2}+C^{2}}} \leq \frac{\tilde{M}_{1}}{1+|\lambda|}
$$

On the other hand, $\forall \lambda:-\tilde{K} \leq \lambda \leq-K$ the function $\frac{1}{\sqrt{(\lambda+K)^{2}+C^{2}}}$ is bounded. I. e., there is $\tilde{M}_{2}>0$:

$$
\frac{1}{\sqrt{(\lambda+K)^{2}+C^{2}}} \leq \tilde{M}_{2} \leq \frac{\tilde{M}_{2}(1+\tilde{K})}{1+|\lambda|} \quad \forall \lambda:-\tilde{K} \leq \lambda \leq-K
$$

Let us denote: $M_{1}:=\max \left\{\tilde{M}_{1}, \tilde{M}_{2}(1+\tilde{K})\right\}$.
2. $\lambda>-K$

In this case

$$
\left\|R\left(\lambda, M_{m}\right)\right\| \leq \frac{1}{C} \leq \frac{1+K}{C(1+|\lambda|)}=\frac{M_{2}}{1+|\lambda|}
$$

where $M_{2}=\frac{1+K}{C}$. Thus,

$$
\left\|R\left(\lambda, M_{m}\right)\right\| \leq \frac{M}{1+|\lambda|}
$$

where $M=\max \left\{M_{1}, M_{2}\right\}$.
Now let us prove that condition 1 implies condition 2 . Suppose the contrary: there is a subsequence $m_{n_{k}}$ such that $\operatorname{Re}\left(m_{n_{k}}\right)<0$ and $\operatorname{Im}\left(m_{n_{k}}\right) \rightarrow$ $0, k \rightarrow+\infty$. From condition 1 we have that there is $M>0: \forall \lambda \leq 0$

$$
\left\|R\left(\lambda, M_{m}\right)\right\| \leq M
$$

Let $e_{n_{k}}=\left(x_{1}, x_{2}, \ldots\right)$ be the sequence from l_{2} such that $x_{j}=0, j \neq n_{k}$, $x_{n_{k}}=1$. Let us consider the following sequence: $\lambda_{k}=\operatorname{Re}\left(m_{n_{k}}\right)<0$. If there is $k \in \mathbb{N}: \operatorname{Im}\left(m_{n_{k}}\right)=0$, then $R\left(\lambda_{k}, M_{m}\right)$ is not correctly defined. Otherwise, if $\operatorname{Im}\left(m_{n_{k}}\right)>0 \forall k \in \mathbb{N}$, then $\left\|R\left(\lambda_{k}, M_{m}\right) e_{n_{k}}\right\|_{l_{2}} \rightarrow+\infty$. Thus, we come to the contradiction.

Picture 1.
The domain, which contains m_{n} is on the picture 1 . The radius of the bigger circle is K and radius of the smaller is K^{\prime}. Now, choosing $a>0$ and $\theta>0$ sufficiently small, we can construct admissible curve $\gamma=-\gamma_{1}+\gamma_{2}$, where $\gamma_{1}=s e^{i \theta}+a, \gamma_{2}=s e^{-i \theta}+a, s \in[0, \infty)$ and determine complex powers of M_{m} :

$$
M_{m}^{z}=\frac{1}{2 \pi i} \int_{\gamma} \lambda^{z} R\left(\lambda, M_{m}\right) d \lambda, \operatorname{Re}(z)<0
$$

Problem 4

Observe that $-1<\operatorname{Re}(\alpha-\beta)<0$. Therefore from (7.4) in Proposition 7.13 we have

$$
\begin{equation*}
A^{\alpha-\beta}=-\frac{\sin (\pi(\alpha-\beta))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta}(s+A)^{-1} f d s \tag{0.1}
\end{equation*}
$$

Since $s^{\alpha-\beta}(s+A)^{-1} f \in D(A)$ for every $s>0$ and so $s^{\alpha-\beta}(s+A)^{-1} f \in$ $D\left(A^{\beta}\right)$ and since

$$
\int_{0}^{\infty} s^{\alpha-\beta}(s+A)^{-1} A^{\beta} f d s
$$

is a convergent improper integral, the closedness of A^{β} (by Proposition 7.20 a)) implies that the right-hand side in (0.1) belongs to $D\left(A^{\beta}\right)$ and that

$$
\begin{aligned}
A^{\alpha-\beta} A^{\beta} f & =\frac{\sin (\pi(\beta-\alpha))}{\pi} \int_{0}^{\infty} s^{\alpha-\beta}(s+A)^{-1} A^{\beta} f d s \\
& =\frac{\sin (\pi(\beta-\alpha))}{\pi} A^{\beta} \int_{0}^{\infty} s^{\alpha-\beta}(s+A)^{-1} f d s
\end{aligned}
$$

By Proposition 7.19. a) we have $A^{\alpha}=A^{\alpha-\beta} A^{\beta}$ for all $f \in D\left(A^{\beta}\right)$, which completes the proof.

Problem 5

Let us consider $A: D(A) \rightarrow X$, where $D(A)$ is a dense subset of X and operator A. satisfies Assumption 7.3. Then,

$$
T(t):=A^{z t}:=\int_{\gamma} \lambda^{z} R(\lambda, A) d \lambda, \operatorname{Re} z<0
$$

is independent of γ by Lemma 7.8. Moreover, using Proposition 7.11, we obtain that for $z \in \mathbb{C}: \operatorname{Re} z<0, \forall s, t>0$

$$
A^{z t} A^{z s}=A^{z(t+s)}
$$

Now let us prove that for all $f \in X$ the mapping $t \rightarrow T(t) f$ is continuous. At first, let us check that the mapping is continuous in 0 . From the estimate

$$
A^{z t} f-f=\frac{\sin (\pi z t)}{\pi} \int_{0}^{\infty} s^{z t} R(-s, A) d s-\frac{\sin (\pi z t)}{\pi} \int_{0}^{\infty} s^{z t} R(-s, I)=
$$

4

$$
=\frac{\sin (\pi z t)}{\pi} \int_{0}^{\infty} \frac{s^{z t}}{1+s} R(-s, A)(I-A) f d s .
$$

we have that

$$
\begin{gathered}
\left\|A^{z t} f-f\right\| \leq \frac{|\sin (\pi z t)|}{\pi} \int_{0}^{\infty} \frac{\left|s^{z t}\right|}{1+s}\|R(-s, A) \mid\|\|(I-A) f\| d s \leq \\
\frac{|\sin (\pi z t)|}{\pi} \int_{0}^{\infty} \frac{1}{(1+s)^{2}} d s\|(I-A) f\| \rightarrow 0, t \searrow 0 .
\end{gathered}
$$

Using that for an arbitrary $t>0$ we have:

$$
A^{z(t+h)}-A^{z t}=A^{z t}\left(A^{z h}-1\right), h>0,
$$

it is clear that the mapping $t \rightarrow A^{z t} f$ is continuous. Thus, $T(t):=A^{z t}$ is a strongly continuous semigroup.

Problem 7

Observe first that A^{α} is closed by Proposition 7.20 a) and for any f from the domain of the operator $A^{\alpha} R(-\lambda, A)$ we have that $R(-\lambda, A) f$ belongs to to $D(A)$. Fix some β such that $\alpha<\beta<1$. Then $R(-\lambda, A) f \in D\left(A^{\beta}\right)$ and $D\left(A^{\beta}\right) \subseteq D\left(A^{\alpha}\right)$. Therefore by Corollary 7.26 b$)$ there exists $K_{0} \geq 0$ such that

$$
\left\|A^{\alpha} R(-\lambda, A) f\right\| \leq K_{0}\left(s^{\beta}\|R(-\lambda, A) f\|+s^{\beta-1}\|A R(-\lambda, A) f\|\right)
$$

holds for all $s>0$. As

$$
\|R(-\lambda, A)\| \leq \frac{M}{1+\lambda}
$$

we have

$$
\begin{aligned}
\left\|A^{\alpha} R(-\lambda, A) f\right\| & \leq K_{0}\left(s^{\beta}\|R(-\lambda, A) f\|+s^{\beta-1}\|(-\lambda R(-\lambda, A)-I) f\|\right) \\
& \leq K_{0}\left(\frac{s^{\beta} M}{1+\lambda}+s^{\beta-1}\left(\frac{M \lambda}{1+\lambda}+1\right)\right)\|f\| \\
& \leq K_{0}\left(\frac{s^{\beta} M}{\lambda}+s^{\beta-1}(M+1)\right)\|f\|
\end{aligned}
$$

Since this holds for all $s>0$ we can take $s_{0}>0$ such that $s_{0}^{\beta-1}<\frac{1}{2 K_{0}(M+1)}$ and then

$$
\left\|A^{\alpha} R(-\lambda, A) f\right\| \leq\left(K_{0} \frac{s_{0}^{\beta} M}{\lambda}+\frac{1}{2}\right)\|f\|
$$

Taking $\lambda>2 s_{0}^{\beta} K_{0} M$, we obtain the assertion.

Problem 8

First statement of Proposition 7.1 was in Problems of Lecture 4. We have to prove that the Banach spaces X_{n} are invariant under the semigroup T. Then, for operators $T_{n}(t):=\left.T(t)\right|_{X_{n}}$ all properties of semigroup are satisfied and we have only to check, that it is of type (M, ω).

We'll check that spaces X_{n} are invariant under $T(t)$ using induction. By Proposition 2.8 we have that $D(A)$ is invariant under semigroup $T(t)$. Assume that $D\left(A^{n}\right)$ is invariant under $T(t)$. By definition we have that $D\left(A^{n+1}\right):=\left\{f \in D\left(A^{n}\right): A f \in D(A)\right\}$. Consider an arbitrary $f \in$ $D\left(A^{n+1}\right)$. By assumption $T(t) f \in D\left(A^{n}\right)$. $T(t) A f=A T(t) f \in D\left(A^{n}\right)$. Thus, $X_{n}:=D\left(A^{n}\right)$ are invariant under $T(t)$. It remains to prove that semigroups T_{n} are of (M, w) type. It follows from the the density of X_{n} (Proposition 2.18) and definition of (M, w) type.

L'viv Team: Oleksandr Chvartatskyi, Stepan Man'ko, Nataliya Pronska.

