Solutions for Lecture 6

Exercise 2.

According to Example 6.11, consider $f \in D(A) \backslash\{0\}$ and $s_{0} \in[-1,0]$ such that $\left|f\left(s_{0}\right)\right|=$ $\|f\|$. Then, by Example 6.8.1, we have that

$$
\overline{f\left(s_{0}\right)} \cdot \delta_{s_{0}} \in J(f)
$$

Consider the real-valued function

$$
g(x)=\operatorname{Re}\left(\overline{f\left(s_{0}\right)} f(x)\right) .
$$

Since $g(x)$ takes its maximum at $x=s_{0}$, it follows that, if $s_{0} \in(-1,0)$, then

$$
\operatorname{Re}<A f, j(f)>=\operatorname{Re}<f^{\prime}, \overline{f\left(s_{0}\right)} \cdot \delta_{s_{0}}>=\left(\operatorname{Re}\left(\overline{f\left(s_{0}\right)} f\right)\right)^{\prime}\left(s_{0}\right)=g^{\prime}\left(s_{0}\right)=0
$$

If $s_{0}=-1$, then $g(x)$ takes its maximum at $s_{0}=-1$. So, $g^{\prime}(-1) \leq 0$. If $s_{0}=0$, then

$$
\operatorname{Re}<A f, j(f)>=\operatorname{Re}<f^{\prime}, \overline{f(0)} \cdot \delta_{0}>=(\operatorname{Re}(\overline{f(0)} f))^{\prime}(0)=g^{\prime}(0) .
$$

$f \in D(A)$ implies that

$$
\begin{gathered}
g^{\prime}(0)=\operatorname{Re}\left(\overline{f(0)} \sum_{i=1}^{n} c_{i} f\left(-\tau_{i}\right)\right) \leq\left|\overline{f(0)} \sum_{i=1}^{n} c_{i} f\left(-\tau_{i}\right)\right| \leq \\
\sum_{i=1}^{n}\left|\overline{f(0)}\left\|c_{i}| | f\left(-\tau_{i}\right)\left|\leq n\|f\| \max _{1 \leq i \leq n}\right| c_{i}\left|\|f\|=n \max _{1 \leq i \leq n}\right| c_{i} \mid\right\| f \|^{2} .\right.
\end{gathered}
$$

Hence, the operator A is quasi-dissipative with

$$
\omega=n \max _{1 \leq i \leq n}\left|c_{i}\right| .
$$

Exercise 3.

First of all we set $D\left(M_{m}\right)=L_{p}(\Omega)$. For $f \in D\left(M_{m}\right) \backslash\{0\}$ define

$$
\phi(s)=\left\{\begin{array}{l}
\overline{f(s)} \cdot|f(s)|^{p-2} \cdot\|f\|^{2-p}, \text { if } f(s) \neq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

Then, by Example 6.8.2, $\phi \in J(f) \subset L_{q}(\Omega)=L_{p}^{*}(\Omega)$, where $\frac{1}{p}+\frac{1}{q}=1$. Therefore,

$$
\begin{gathered}
\operatorname{Re}<A f, j(f)>=\operatorname{Re}<A f, \phi>=\operatorname{Re} \int_{\Omega} f(s) \cdot m(s) \cdot \phi(s) d s= \\
\operatorname{Re} \int_{\Omega \backslash\{s: f(s)=0\}} f(s) m(s) \overline{f(s)}|f(s)|^{p-2}\|f\|^{2-p} d s=\|f\|^{2-p} \int_{\Omega \backslash\{s: f(s)=0\}}|f(s)|^{p} R e(m(s)) d s .
\end{gathered}
$$

Since $f \in D\left(M_{m}\right) \backslash\{0\}$ can be chosen arbitrarily, operator M_{m} is dissipative if and only if $\operatorname{Re}(m(s)) \leq 0$ almost everywhere with respect to Ω.

Exercise 4.

Since the operator A generates a contraction semigroup $T(t), t \geq 0$, the resolvent of A can be estimated for $\lambda>0$ as follows

$$
\|R(\lambda, A)\| \leq \frac{1}{\lambda}
$$

Proposition 2.9 and Proposition 2.26 yields, that for any $x \in D(A)$

$$
\begin{gathered}
A R(\lambda, A) x=R(\lambda, A) A x \quad \text { and } \\
A R(\lambda, A) x=\lambda R(\lambda, A) x-x
\end{gathered}
$$

Consequently, for every $x \in X$ and $\lambda>0$ we have that

$$
R(\lambda, A) x \in D(A)
$$

and, since $D(A) \subseteq D(B)$,

$$
R(\lambda, A) x \in D(B)
$$

Hence, for every $x \in X$

$$
\begin{gathered}
\|B R(\lambda, A) x\| \leq a\|A R(\lambda, A) x\|+b\|R(\lambda, A) x\| \leq \\
a\|\lambda R(\lambda, A) x-x\|+\frac{b}{\lambda}\|x\| \leq\left(2 a+\frac{b}{\lambda}\right)\|x\| .
\end{gathered}
$$

Choosing $\lambda>\frac{b}{1-2 a}$, we see, that $\|B R(\lambda, A)\|<1$.

Exercise 5.

Define the following operators

$$
\begin{gathered}
\forall f \in D(B)=\left\{f \in C^{1}(\mathbb{R}) \cap X: f^{\prime} \in X\right\} \quad B f=f^{\prime}, \\
\forall f \in D(H)=\left\{f \in C^{2}(\mathbb{R}) \cap X: f^{\prime}+f^{\prime \prime} \in X\right\} \quad H f=f^{\prime \prime} .
\end{gathered}
$$

Then $D(H) \subset D(B)$ and $A=H+B$ with $D(H+B)=D(H)=D(A)$. In order to show, that the operator A generates a contraction, we will use Theorem 6.14.

The operator B is dissipative. Indeed, if we suppose, that $f \in D(B) \backslash\{0\}$ reaches its norm at $s_{0} \in(-\infty, \infty)$, i.e., $\left|f\left(s_{0}\right)\right|=\|f\|$, and consider a real-valued function

$$
g(x)=\operatorname{Re}\left(\overline{f\left(s_{0}\right)} f(x)\right)
$$

then, by Example 6.8.1,

$$
\operatorname{Re}<B f, j(f)>=\operatorname{Re}<f^{\prime}, \overline{f\left(s_{0}\right)} \cdot \delta_{s_{0}}>=\left(\operatorname{Re}\left(\overline{f\left(s_{0}\right)} f\right)\right)^{\prime}\left(s_{0}\right)=g^{\prime}\left(s_{0}\right)=0
$$

Function $f \in C_{0}(\mathbb{R})$ reaches its norm at ∞ or at $-\infty$ if and only if $f=0$.
Consider the Gaussian semigroup T, defined on $C_{0}(\mathbb{R})$,

$$
\begin{gathered}
(T(t) f)(x)=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{4 t}} f(y) d y, \quad \text { for } t>0 \\
(T(0) f)(x)=f(x)
\end{gathered}
$$

Then T is a strongly continuous contraction semigroup on $C_{0}(\mathbb{R})$ with generator H. ([Dun], p. 681) Since $B^{2}=H$ and B generates a strongly continuous group, for $\lambda>0$ the following holds

$$
R(\lambda, H)=R\left(\lambda, B^{2}\right)=-R(\sqrt{\lambda}, B) R(-\sqrt{\lambda}, B) .
$$

([Dun], Theorem VII.9.5) Consequently, for every $f \in D(B)$

$$
B R(\lambda, H) f=R(\lambda, H) B f
$$

Choose $f \in C_{0}(\mathbb{R})$ arbitrarily.
Then, for any $\lambda>0$

$$
\begin{aligned}
\|B R(\lambda, H) f\|=\|R(\lambda, H) B f\|= & \max _{x \in \mathbb{R}}\left|\int_{0}^{\infty} e^{-\lambda t}\left(\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{4 t}} f^{\prime}(y) d y\right) d t\right| \leq \\
& \left\|f^{\prime}\right\| \int_{0}^{\infty} e^{-\lambda t} d t,
\end{aligned}
$$

since

$$
\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^{2}}{4 t}} d y=1 .
$$

Clearly,

$$
\int_{0}^{\infty} e^{-\lambda t} d t=\lambda^{-1}
$$

Therefore,

$$
\|B R(\lambda, H) f\|<1
$$

for

$$
\lambda>\left\|f^{\prime}\right\| .
$$

Applying Theorem 6.14, we infer, that $A=H+B$ generates a contraction semigroup.
[Dun] N. Dunford, J.T. Schwartz - Linear Operators, General Theory (Rus), Publishers of Foreign Literature, Moscow, 1962.

