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Exercise 1:
We have Ω = (0, π)× (0, π) and A is the operator on L2(Ω) given by

Af = ∆f, D(A) := {f ∈ C2(Ω) : the support of f is compact}.
By Theorem 6.3, if A is dissipative and densely defined then its closure

generates a contraction semigroup.
There is a compact area Ω1 ⊆ Ω with f = 0 on Ω \ Ω1, hence on Γ the

boundary of Ω.

< Af, f > =
∫

Ω1

∆f(x1, x2)f(x1, x2)d(x1, x2)

Green=
∫

Γ

(
∂f

∂x1
+

∂f

∂x2
)f(x1, x2)n1dσ −

∫
Ω1

∂f

∂x1

∂f

∂x1
+

∂f

∂x2

∂f

∂x2
d(x1, x2)

= −‖ ∂f
∂x1
‖2 − ‖ ∂f

∂x2
‖2 ≤ 0,

So A is dissipative.
The operator A is densely defined since D(A) is dense in L2(Ω).
By the Lumer Phillips Theorem, the closure of A generates a contraction

semigroup. Johannes and Manuel 2

Exercise 2:
Let X = C[−1, 0] and 0 < τ1 < τ2 < · · · < τn = 1. Consider the operator
Af := f ′ with

D(A) :=

{
f ∈ C1[−1, 0] : f ′(0) =

n∑
i=1

cif(−τi)

}

where ci ∈ C. Show that A is quasi-dissipative.

By Proposition 6.6 and Remark 6.7 we have to show that for every f ∈ D(A)
there exists j(f) ∈ J(f) such that

Re〈Af, j(f)〉 ≤ ω

for some ω ≥ 0.
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Similarly to Example 6.11 we take f ∈ D(A) and s0 ∈ [−1, 0] such that
|f(s0)| = ‖f‖. Then we have f(s0)δs0 ∈ J(f) and define for x ∈ [−1, 0]

g(x) := Re(f(s0)f(x)).

Clearly, g ∈ C1[−1, 0],

g(x) = Re(f(s0)f(x)) ≤ |f(s0)||f(x)|

≤ |f(s0)| ‖f‖ |x|

≤ |f(s0)||f(s0)|
= |f(s0)|2

= g(s0) ∀x ∈ [−1, 0].

Hence g takes its maximum at x = s0.

If s0 ∈ (−1, 0) and j(f) = f(s0)δs0 , then

Re〈Af, j(f)〉 = Re〈f ′, j(f)〉 = (Ref(s0)f)′(s0) = g′(s0) = 0.

If s0 = −1 and j(f) = f(s0)δs0 , then

Re〈Af, j(f)〉 = Re〈f ′, j(f)〉 = (Ref(s0)f)′(s0) = g′(−1) ≤ 0.

If s0 = 0 and j(f) = f(s0)δs0 , then

Re〈Af, j(f)〉 = Re(f(s0)f ′(s0))
f∈D(A)

= Re(f(s0)
n∑
k=1

ckf(−τk))

with ck ∈ C and 0 < τ1 < τ2 < · · · < τn = 1. Now we define

h(x) = Im(f(s0)f(x)) (0.1)

and notice that h ∈ C1[−1, 0] and

−h(x) = −Im(f(s0)f(x))

≤ |f(s0)||f(x)|

≤ |f(s0)| ‖f‖ |x|

≤ |f(s0)||f(s0)|
= g(so)

for all x ∈ [−1, 0].
Furthermore we see with ck = ak + ibk that

Re(f(s0)
n∑
k=1

ckf(−τk)) =
n∑
k=1

Re(ckf(s0)f(−τk))
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=
n∑
k=1

Re((ak + ibk)f(s0)f(−τk))

=
n∑
k=1

Re(akf(s0)f(−τk) + ibkf(s0)f(−τk))

=
n∑
k=1

akRe(f(s0)f(−τk)) +
n∑
k=1

Re(ibkf(s0)f(−τk))

=
n∑
k=1

akg(−τk) +
n∑
k=1

bkRe(if(s0)f(−τk))

≤ n ·max
k

(|Re(ck)|) · g(0) +
n∑
k=1

bk · −Im(f(s0)f(−τk))

≤ n ·max
k

(|Re(ck)|) · g(0) +
n∑
k=1

|bk| · g(0)

≤ n · g(0)(max
k

(|Re(ck)|) + max
k

(|Im(ck)|)) := ω <∞.

Hence,

Re〈Af, j(f)〉 ≤ ω ∀x ∈ [−1, 0].
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Exercise 4:
Let A be the generator of a contraction semigroup, B a linear operator, D(A) ⊂
D(B) and

‖Bx‖ ≤ a ‖Ax‖+ b ‖x‖ a ∈
[
0,

1
2

)
, b > 0 ∀x ∈ D(A).

Show that for large λ > 0 one has

‖BR(λ,A)‖ < 1.
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Let x ∈ X :

∥∥∥∥∥∥∥BR(λ,A)x︸ ︷︷ ︸
∈D(A)

∥∥∥∥∥∥∥ ≤ a ‖AR(λ,A)x‖+ b ‖R(λ,A)x‖

≤ a ‖AR(λ,A)x‖+
b

λ
‖x‖

resolvent equation
= a ‖AR(1, A)x+ (1− λ)AR(1, A)R(λ,A)x‖+

b

λ
‖x‖

= a ‖AR(1, A)x‖+ a(1− λ) ‖AR(1, A)R(λ,A)x‖︸ ︷︷ ︸
≤ 1
λ‖AR(1,A)x‖

+
b

λ
‖x‖

≤ ‖AR(1, A)x‖︸ ︷︷ ︸
≤2‖x‖

[
a+

a(1− λ)
λ︸ ︷︷ ︸

= 2a
λ

]
+
b

λ
‖x‖

≤ ‖x‖
[2a+ b

λ

]
︸ ︷︷ ︸

<1 for λ big enough

.
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