Solutions of the Exercises to Lecture 6 Team of Dresden

Exercise 1

Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded, A the operator in $L_{2}(\Omega)$ defined by

$$
\begin{gathered}
D(A)=\left\{f \in C^{2}(\Omega) ; \operatorname{spt} f \text { compact }\right\} \\
A f=\Delta f \quad(f \in D(A))
\end{gathered}
$$

For $f \in D(A)$ the inequality

$$
\langle A f, f\rangle=\int_{\Omega} \Delta f \bar{f}=-\int_{\Omega} \nabla f \overline{\nabla f}=-\|\nabla f\|_{2} \leq 0
$$

holds, therefore A is dissipative (Proposition 6.5).
For $f: \Omega \rightarrow \mathbb{C}$ defined by $f\left(x_{1}, \ldots, x_{n}\right):=e^{x_{1}}$ one has $f \in L_{2}(\Omega) \cap C^{2}(\Omega)$, and for all $g \in D(A)$ one obtains

$$
\langle A g, f\rangle=\int_{\Omega} \Delta g f=-\int_{\Omega} \nabla g \nabla f=\int_{\Omega} g \Delta f=\int_{\Omega} g f=\langle g, f\rangle .
$$

It follows that $f \perp \operatorname{ran}(I-A)$, therefore $\operatorname{ran}(I-A)^{\perp} \neq\{0\}, \overline{\operatorname{ran}(I-A)} \neq L_{2}(\Omega)$. The Lumer-Phillips theorem (Theorem 6.3) implies that the closure of A does not generate a contraction semigroup.

Exercise 2

Let $X=C[-1,0], n \in \mathbb{N}, 0<\tau_{1}<\tau_{2}<\ldots<\tau_{n}=1$ and $c_{k} \in \mathbb{C}$ for $k \in\{1, \ldots, n\}$. Define the operator A in X by

$$
D(A):=\left\{f \in C^{1}[-1,0] ; f^{\prime}(0)=\sum_{k=1}^{n} c_{k} f\left(-\tau_{k}\right)\right\}
$$

and $A f:=f^{\prime}$ for all $f \in D(A)$.
We show that A is quasi-dissipative. Let $f \in D(A)$ and assume that $x \mapsto|f(x)|$ attains its maximum at $s \in[-1,0]$. By Example 6.8, 1. the functional $\overline{f(s)} \delta_{s}$ is an element of $J(f)$. Consider the function $g:[-1,0] \ni t \mapsto \operatorname{Re}(\overline{f(s)} f(t))$. Then g attains its maximum in $s, g \in C^{1}[-1,0]$ and

$$
g^{\prime}(s)=\operatorname{Re}\left(\overline{f(s)} f^{\prime}(s)\right)=\operatorname{Re}\left\langle A f, \overline{f(s)} \delta_{s}\right\rangle
$$

Defininig $\alpha:=\sum_{k=1}^{n}\left|c_{k}\right|$, we will show that $g^{\prime}(s) \leq \alpha\|f\|_{\infty}^{2}$. We have the following cases:

- $s \in(-1,0)$. Then $g^{\prime}(s)=0$.
- $s=-1$. Then g is not increasing in -1 and thus $g^{\prime}(-1) \leq 0$ follows.
- $s=0$. Since $f \in D(A)$, we can estimate

$$
\begin{aligned}
g^{\prime}(0) & =\operatorname{Re}\left(\overline{f(0)} f^{\prime}(0)\right) \\
& =\operatorname{Re}\left(\overline{f(0)} \sum_{k=1}^{n} c_{k} f\left(-\tau_{k}\right)\right) \\
& \leq \sum_{k=1}^{n}\left|c_{k}\right|\left|\overline{f(0)} f\left(-\tau_{k}\right)\right| \\
& \leq \alpha\|f\|_{\infty}^{2}
\end{aligned}
$$

The proof is completed.
As an add-on, we will show that A is even a generator of a C_{0}-semigroup. We want to apply Theorem 6.3. Firstly, we show that A is densely defined. Consider the linear functional

$$
\delta_{0}^{\prime}:\left(C^{1}[-1,0],\|\cdot\|_{\infty}\right) \rightarrow \mathbb{C}: f \mapsto f^{\prime}(0)
$$

It is easy to see that δ_{0}^{\prime} is not continuous. Consequently, the linear functional

$$
\delta_{0}^{\prime}-\sum_{k=1}^{n} c_{k} \delta_{-\tau_{k}}:\left(C^{1}[-1,0],\|\cdot\|_{\infty}\right) \rightarrow \mathbb{C}
$$

is not continuous, because of the continuity of $\sum_{k=1}^{n} c_{k} \delta_{-\tau_{k}}$. Thus, the kernel of $\delta_{0}^{\prime}-$ $\sum_{k=1}^{n} c_{k} \delta_{-\tau_{k}}$ is dense in $\left(C^{1}[-1,0],\|\cdot\|_{\infty}\right)$ and hence in $C[-1,0]$, by the density of $C^{1}[-1,0]$ in $C[-1,0]$. But note that $D(A)=\operatorname{ker}\left(\delta_{0}^{\prime}-\sum_{k=1}^{n} c_{k} \delta_{-\tau_{k}}\right)$. Therefore A is densely defined.

Now we want to check condition (ii) in the Lumer-Phillips theorem. To this end, let $\alpha^{\prime}>\alpha$. We show that $\alpha^{\prime}-A$ is surjective. Let $g \in X$. We have to find $f \in D(A)$ such that

$$
\alpha^{\prime} f-A f=g
$$

The variation of constants formula gives the 'general solution' to the corresponding differential equation:

$$
f(x)=c e^{\alpha^{\prime} x}-e^{\alpha^{\prime} x} \int_{-1}^{x} e^{-\alpha^{\prime} \xi} g(\xi) d \xi
$$

for some $c \in \mathbb{R}$. Consider the derivative of f in 0 :

$$
f^{\prime}(0)=\alpha^{\prime} c-\alpha^{\prime} \int_{-1}^{0} e^{-\alpha^{\prime} \xi} g(\xi) d \xi-g(0)
$$

Now, $f \in D(A)$ if and only if the following equality holds

$$
\begin{aligned}
f^{\prime}(0) & =\sum_{k=1}^{n} c_{k} f\left(-\tau_{k}\right) \\
& =\sum_{k=1}^{n} c_{k}\left(c e^{-\alpha^{\prime} \tau_{k}}-e^{-\alpha^{\prime} \tau_{k}} \int_{-1}^{-\tau_{k}} e^{-\alpha^{\prime} \xi} g(\xi) d \xi\right) .
\end{aligned}
$$

This leads to the equivalent condition

$$
\begin{equation*}
\alpha^{\prime} c-\alpha^{\prime} \int_{-1}^{0} e^{-\alpha^{\prime} \xi} g(\xi) d \xi-g(0)=c \sum_{k=1}^{n} c_{k} e^{-\alpha^{\prime} \tau_{k}}-\sum_{k=1}^{n} c_{k}\left(e^{-\alpha^{\prime} \tau_{k}} \int_{-1}^{-\tau_{k}} e^{-\alpha^{\prime} \xi} g(\xi) d \xi\right) . \tag{*}
\end{equation*}
$$

Since

$$
\left|\sum_{k=1}^{n} c_{k} e^{-\alpha^{\prime} \tau_{k}}\right| \leq \sum_{k=1}^{n}\left|c_{k}\right|=\alpha<\alpha^{\prime}
$$

Equation $(*)$ has a unique solution $c \in \mathbb{R}$. For this choice of c, we conclude that $f \in D(A)$. Summarizing, we get that $\left(\alpha^{\prime}-\alpha\right)-(A-\alpha)=\alpha^{\prime}-A$ is onto. Thus, by Theorem 6.3, the dissipative operator $A-\alpha$ generates a contraction semigroup and thus by rescaling, we have that A is indeed a generator of a C_{0}-semigroup.

Exercise 3

We assume $(\Omega, \mathcal{A}, \mu)$ to be a σ-finite measure space and $p \in[1, \infty)$. For $m: \Omega \rightarrow \mathbb{C}$ measurable let

$$
D\left(M_{m}\right):=\left\{f \in L_{p}(\mu) \mid m f \in L_{p}(\mu)\right\}
$$

and

$$
M_{m} f:=m f \quad\left(f \in D\left(M_{m}\right)\right)
$$

Lemma 1. If M_{m} is dissipative then M_{m} generates a contraction semigroup.
Proof. Since M_{m} is densely defined and closed, it suffices to check that $R\left(1-M_{m}\right)$ is dense in $L_{p}(\mu)$. Since by the dissipativity of M_{m} the operator $1-M_{m}$ is injective, we conclude that

$$
\mu(\{s \in \Omega \mid m(s)=1\})=0
$$

For $n \in \mathbb{N}$ we define

$$
\Omega_{n}:=\left\{s \in \Omega| | m(s)-1 \mid>n^{-1}\right\} .
$$

Then for each $g \in L_{p}(\mu)$ it follows that $g \chi_{\Omega_{n}} \rightarrow g$ in $L_{p}(\mu)$ as $n \rightarrow \infty$. We set

$$
f_{n}(s):= \begin{cases}\frac{1}{1-m(s)} g(s) & \text { if } s \in \Omega_{n} \\ 0 & \text { otherwise }\end{cases}
$$

and conclude that $f_{n} \in D\left(M_{m}\right)$ with $\left(1-M_{m}\right) f_{n}=g \chi_{\Omega_{n}}$ for each $n \in \mathbb{N}$. This shows the density of $R\left(1-M_{m}\right)$.

Proposition 2. M_{m} is dissipative if and only if $\operatorname{Re} m \leq 0$ a.e.
Proof. Let us first assume that Re $m \leq 0$ a.e. For $f \in D\left(M_{m}\right)$ we set

$$
g(s):= \begin{cases}\overline{f(s)}|f(s)|^{p-2}\|f\|_{L_{p}(\mu)}^{2-p} & \text { if } f(s) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

for $s \in \Omega$ and get $g \in J(f)$. Then

$$
\begin{aligned}
\operatorname{Re}\left\langle M_{m} f, g\right\rangle & =\operatorname{Re} \int_{\Omega} m(s) f(s) g(s) \mathrm{d} \mu(s) \\
& =\|f\|_{L_{p}(\mu)}^{2-p} \operatorname{Re} \int_{\Omega} m(s)|f(s)|^{p} \mathrm{~d} \mu(s) \\
& =\|f\|_{L_{p}(\mu)}^{2-p} \int_{\Omega} \operatorname{Re} m(s)|f(s)|^{p} \mathrm{~d} \mu(s) \\
& \leq 0
\end{aligned}
$$

and hence M_{m} is dissipative.
Assume now that M_{m} is dissipative. According to Lemma 1 and Proposition 6.6, we get

$$
\forall f \in D\left(M_{m}\right), \phi \in J(f): \operatorname{Re}\left\langle M_{m} f, \phi\right\rangle \leq 0
$$

We take sets $E_{k} \in \mathcal{A}$ for $k \in \mathbb{N}$ with $\mu\left(E_{k}\right)<\infty$ for each $k \in \mathbb{N}$ and

$$
\Omega=\bigcup_{k \in \mathbb{N}} E_{k}
$$

Let $k \in \mathbb{N}$ and consider the set

$$
\Omega_{k, n}:=\left\{s \in E_{k}| | m(s) \mid \leq n, \operatorname{Re} m \geq n^{-1}\right\}
$$

for $n \in \mathbb{N}$. Then $\chi_{\Omega_{k, n}} \in D\left(M_{m}\right)$ and we define

$$
g_{k, n}:=\chi_{\Omega_{k, n}} \mu\left(\Omega_{k, n}\right)^{\frac{2-p}{p}} \in J\left(\chi_{\Omega_{k, n}}\right)
$$

Thus

$$
\begin{aligned}
0 & \geq \operatorname{Re}\left\langle M_{m} \chi_{\Omega_{k, n}}, g_{k, n}\right\rangle \\
& =\mu\left(\Omega_{k, n}\right)^{\frac{2-p}{p}} \operatorname{Re} \int_{\Omega_{k, n}} m(s) \mathrm{d} \mu(s) \\
& \geq \frac{1}{n} \mu\left(\Omega_{k, n}\right)^{\frac{2}{p}}
\end{aligned}
$$

and hence we conclude that $\mu\left(\Omega_{k, n}\right)=0$ for each $k, n \in \mathbb{N}$. From this we get

$$
\mu(\{s \in \Omega \mid \operatorname{Re} m(s)>0\}) \leq \sum_{k, n \in \mathbb{N}} \mu\left(\Omega_{k, n}\right)=0
$$

which shows Re $m \leq 0$ a.e. This completes the proof.

Exercise 4

Let X be a Banach space, A a generator of a contraction C_{0}-semigroup on X, and B an operator in X satisfying $D(A) \subseteq D(B)$ and

$$
\|B x\| \leq a\|A x\|+b\|x\| \quad(x \in D(A))
$$

for some $a \in\left[0, \frac{1}{2}\right)$ and $b \in(0, \infty)$.
Then there exists $\lambda_{0}>0$ such that $\|B R(\lambda, A)\|<1$ holds for all $\lambda>\lambda_{0}$.

Proof. Since A generates a contraction C_{0}-semigroup, it follows that

$$
\|R(\lambda, A)\| \leq \frac{1}{\lambda}
$$

and therefore

$$
\|A R(\lambda, A)\|=\|\lambda R(\lambda, A)-I\| \leq \lambda\|R(\lambda, A)\|+1 \leq 2
$$

for all $\lambda>0$.
Then the assumption gives

$$
\|B R(\lambda, A) x\| \leq a\|A R(\lambda, A) x\|+b\|R(\lambda, A) x\| \leq\left(2 a+\frac{b}{\lambda}\right)\|x\| \quad(x \in X)
$$

and so

$$
\|B R(\lambda, A)\| \leq 2 a+\frac{b}{\lambda}
$$

for all $\lambda>0$.
To finish the proof set $\lambda_{0}:=\frac{b}{1-2 a}>0$.

Exercise 5

Let $X=C_{0}(\mathbb{R})$ (with the sup-norm) and $A f=f^{\prime \prime}+f^{\prime}$ with $D(A)=\left\{f \in C^{2}(\mathbb{R}) \cap X ; f^{\prime \prime}+\right.$ $\left.f^{\prime} \in X\right\}$. Show that A generates a contraction semigroup.

Solution: (i) Define the operators B and C in X by

$$
\begin{aligned}
& D(B):=\left\{f \in C^{2}(\mathbb{R}) \cap X ; B f:=f^{\prime \prime} \in X\right\} \\
& D(C):=\left\{f \in C^{1}(\mathbb{R}) \cap X ; C f:=f^{\prime} \in X\right\}
\end{aligned}
$$

The dissipativity of B and C is shown as in Examples 6.11 and 6.12 , respectively, and the dissipativity of A is shown analogously.
(ii) In this step we show that B generates a contraction semigroup. In view of the dissipativity of B, Proposition 6.2 and Theorem 6.3 it is sufficient to show that $\operatorname{ran}(I-B)=$ X.

Let $g \in X$. We have to find $f \in D(B)$ such that $f-B f=g$. In order to find f we solve the differential equation

$$
f-f^{\prime \prime}=g
$$

The associated homogeneous equation

$$
f-f^{\prime \prime}=0
$$

has the 'general solution'

$$
f(x)=c_{1} e^{x}+c_{2} e^{-x} .
$$

Applying the 'variation of constants method' one obtains $c_{1}^{\prime}=-\frac{1}{2} e^{-x} g(x), c_{2}^{\prime}=\frac{1}{2} e^{x} g(x)$ and the 'general solution' of the inhomogenous equation

$$
f(x)=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2} e^{x} \int_{x}^{\infty} e^{-y} g(y) d y+\frac{1}{2} e^{-x} \int_{-\infty}^{x} e^{y} g(y) d y
$$

In order to obtain that $f \in C_{0}(\mathbb{R})$ one chooses $c_{1}=c_{2}=0$ and finally obtains

$$
\begin{aligned}
f(x) & =\frac{1}{2} e^{x} \int_{x}^{\infty} e^{-y} g(y) d y+\frac{1}{2} e^{-x} \int_{-\infty}^{x} e^{y} g(y) d y \\
& =\frac{1}{2} \int_{\mathbb{R}} e^{-|x-y|} g(y) d y \\
& =\frac{1}{2} \int_{\mathbb{R}} e^{-|y|} g(x-y) d y
\end{aligned}
$$

Applying the dominated convergence theorem in the last expression we obtain that $f(x) \rightarrow$ 0 as $x \rightarrow \pm \infty$. This means that we have shown that $f \in D(B)$ and $(I-B) f=g$.
(We note that in fact the operator B generates the heat semigroup on $C_{0}(\mathbb{R})$. Showing this, however, is lengthier. Also, it is instructive to compute the resolvent of a differential operator, anyway.)
(iii) We show that $D(B) \subseteq D(C)$ and that there exist $a \in[0,1 / 2), b>0$ such that

$$
\|C f\| \leq a\|B f\|+b\|f\|
$$

for all $f \in D(B)$.
Let $f \in D(B)$. For $x \in \mathbb{R}, c>0$ we compute

$$
\begin{aligned}
f(x+c)-f(x) & =\int_{x}^{x+c} f^{\prime}(y) d y \\
& =f^{\prime}(y)(y-(x+c)){ }_{x}^{x+c}-\int_{x}^{x+c} f^{\prime \prime}(y)(y-(x+c)) d y \\
& =-f^{\prime}(x)(-c)-\int_{0}^{c} f^{\prime \prime}(x+y)(y-c) d y
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{f(x+c)-f(x)}{c}+\frac{1}{c} \int_{0}^{c} f^{\prime \prime}(x+y)(y-c) d y
$$

The last expression shows that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$; hence $f \in D(C)$. It also shows that

$$
\left\|f^{\prime}\right\| \leq \frac{2}{c}\|f\|+\frac{1}{c}\left|\int_{0}^{c}(y-c) d y\right|\left\|f^{\prime \prime}\right\|=\frac{2}{c}\|f\|+\frac{c}{2}\left\|f^{\prime \prime}\right\| .
$$

Choosing $c=1 / 2$ we obtain $\|C f\| \leq \frac{1}{4}\|B f\|+4\|f\|$.
(iv) Using that B generates a contraction semigroup and combining part (iii), Exercise 4 and Theorem 6.14 we obtain that $B+C$ generates a contraction semigroup. From the definition of A one obtaines that $A \supseteq B+C$, and therefore

$$
I-A \supseteq I-(B+C)
$$

The dissipativity of A implies that $I-A$ is injective, and $(0, \infty) \subseteq \rho(B+C)$ implies that $I-(B+C)$ is surjective; hence $I-A=I-(B+C)$, and $A=B+C$ generates a contraction semigroup.

