
Solutions of the Exercises to Lecture 6

Team of Dresden

Exercise 1

Let Ω ⊆ Rn be open and bounded, A the operator in L2(Ω) defined by

D(A) = {f ∈ C2(Ω); spt f compact},
Af = ∆f (f ∈ D(A)).

For f ∈ D(A) the inequality

〈Af, f〉 =

ˆ
Ω

∆f f̄ = −
ˆ

Ω

∇f ∇f = −‖∇f‖2 ≤ 0

holds, therefore A is dissipative (Proposition 6.5).
For f : Ω → C defined by f(x1, . . . , xn) := ex1 one has f ∈ L2(Ω) ∩ C2(Ω), and for all

g ∈ D(A) one obtains

〈Ag, f〉 =

ˆ
Ω

∆g f = −
ˆ

Ω

∇g∇f =

ˆ
Ω

g∆f =

ˆ
Ω

gf = 〈g, f〉.

It follows that f⊥ ran(I − A), therefore ran(I − A)⊥ 6= {0}, ran(I − A) 6= L2(Ω). The
Lumer-Phillips theorem (Theorem 6.3) implies that the closure of A does not generate a
contraction semigroup.

Exercise 2

Let X = C[−1, 0], n ∈ N, 0 < τ1 < τ2 < . . . < τn = 1 and ck ∈ C for k ∈ {1, . . . , n}.
Define the operator A in X by

D(A) := {f ∈ C1[−1, 0]; f ′(0) =
n∑
k=1

ckf(−τk)}

and Af := f ′ for all f ∈ D(A).
We show that A is quasi-dissipative. Let f ∈ D(A) and assume that x 7→ |f(x)| attains

its maximum at s ∈ [−1, 0]. By Example 6.8, 1. the functional f(s)δs is an element of
J(f). Consider the function g : [−1, 0] 3 t 7→ Re(f(s)f(t)). Then g attains its maximum
in s, g ∈ C1[−1, 0] and

g′(s) = Re(f(s)f ′(s)) = Re〈Af, f(s)δs〉.

Defininig α :=
∑n

k=1 |ck|, we will show that g′(s) ≤ α ‖f‖2
∞. We have the following cases:

• s ∈ (−1, 0). Then g′(s) = 0.
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• s = −1. Then g is not increasing in −1 and thus g′(−1) ≤ 0 follows.

• s = 0. Since f ∈ D(A), we can estimate

g′(0) = Re(f(0)f ′(0))

= Re(f(0)
n∑
k=1

ckf(−τk))

≤
n∑
k=1

|ck|
∣∣∣f(0)f(−τk)

∣∣∣
≤ α ‖f‖2

∞

The proof is completed.
As an add-on, we will show that A is even a generator of a C0-semigroup. We want

to apply Theorem 6.3. Firstly, we show that A is densely defined. Consider the linear
functional

δ′0 : (C1[−1, 0], ‖·‖∞)→ C : f 7→ f ′(0).

It is easy to see that δ′0 is not continuous. Consequently, the linear functional

δ′0 −
n∑
k=1

ckδ−τk : (C1[−1, 0], ‖·‖∞)→ C

is not continuous, because of the continuity of
∑n

k=1 ckδ−τk . Thus, the kernel of δ′0 −∑n
k=1 ckδ−τk is dense in (C1[−1, 0], ‖·‖∞) and hence in C[−1, 0], by the density of C1[−1, 0]

in C[−1, 0]. But note that D(A) = ker(δ′0 −
∑n

k=1 ckδ−τk). Therefore A is densely defined.
Now we want to check condition (ii) in the Lumer-Phillips theorem. To this end, let

α′ > α. We show that α′ − A is surjective. Let g ∈ X. We have to find f ∈ D(A) such
that

α′f − Af = g.

The variation of constants formula gives the ’general solution’ to the corresponding differ-
ential equation:

f(x) = ceα
′x − eα′x

ˆ x

−1

e−α
′ξg(ξ)dξ,

for some c ∈ R. Consider the derivative of f in 0:

f ′(0) = α′c− α′
ˆ 0

−1

e−α
′ξg(ξ)dξ − g(0).

Now, f ∈ D(A) if and only if the following equality holds

f ′(0) =
n∑
k=1

ckf(−τk)

=
n∑
k=1

ck

(
ce−α

′τk − e−α′τk
ˆ −τk
−1

e−α
′ξg(ξ)dξ

)
.
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This leads to the equivalent condition

α′c− α′
ˆ 0

−1

e−α
′ξg(ξ)dξ − g(0) = c

n∑
k=1

cke
−α′τk −

n∑
k=1

ck

(
e−α

′τk

ˆ −τk
−1

e−α
′ξg(ξ)dξ

)
. (∗)

Since ∣∣∣∣∣
n∑
k=1

cke
−α′τk

∣∣∣∣∣ ≤
n∑
k=1

|ck| = α < α′,

Equation (∗) has a unique solution c ∈ R. For this choice of c, we conclude that f ∈ D(A).
Summarizing, we get that (α′ − α) − (A − α) = α′ − A is onto. Thus, by Theorem 6.3,
the dissipative operator A − α generates a contraction semigroup and thus by rescaling,
we have that A is indeed a generator of a C0-semigroup.

Exercise 3

We assume (Ω,A, µ) to be a σ−finite measure space and p ∈ [1,∞). For m : Ω → C
measurable let

D(Mm) := {f ∈ Lp(µ) |mf ∈ Lp(µ)}
and

Mmf := mf (f ∈ D(Mm)).

Lemma 1. If Mm is dissipative then Mm generates a contraction semigroup.

Proof. Since Mm is densely defined and closed, it suffices to check that R(1−Mm) is dense
in Lp(µ). Since by the dissipativity of Mm the operator 1 −Mm is injective, we conclude
that

µ({s ∈ Ω |m(s) = 1}) = 0.

For n ∈ N we define
Ωn := {s ∈ Ω | |m(s)− 1| > n−1}.

Then for each g ∈ Lp(µ) it follows that gχΩn → g in Lp(µ) as n→∞. We set

fn(s) :=

{
1

1−m(s)
g(s) if s ∈ Ωn,

0 otherwise

and conclude that fn ∈ D(Mm) with (1−Mm)fn = gχΩn for each n ∈ N. This shows the
density of R(1−Mm).

Proposition 2. Mm is dissipative if and only if Re m ≤ 0 a.e.

Proof. Let us first assume that Re m ≤ 0 a.e. For f ∈ D(Mm) we set

g(s) :=

{
f(s)|f(s)|p−2‖f‖2−p

Lp(µ) if f(s) 6= 0,

0 otherwise
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for s ∈ Ω and get g ∈ J(f). Then

Re〈Mmf, g〉 = Re

ˆ

Ω

m(s)f(s)g(s) dµ(s)

= ‖f‖2−p
Lp(µ) Re

ˆ

Ω

m(s)|f(s)|p dµ(s)

= ‖f‖2−p
Lp(µ)

ˆ

Ω

Re m(s)|f(s)|p dµ(s)

≤ 0

and hence Mm is dissipative.
Assume now that Mm is dissipative. According to Lemma 1 and Proposition 6.6, we get

∀f ∈ D(Mm), φ ∈ J(f) : Re〈Mmf, φ〉 ≤ 0.

We take sets Ek ∈ A for k ∈ N with µ(Ek) <∞ for each k ∈ N and

Ω =
⋃
k∈N

Ek.

Let k ∈ N and consider the set

Ωk,n := {s ∈ Ek | |m(s)| ≤ n,Re m ≥ n−1}

for n ∈ N. Then χΩk,n
∈ D(Mm) and we define

gk,n := χΩk,n
µ(Ωk,n)

2−p
p ∈ J(χΩk,n

).

Thus

0 ≥ Re〈MmχΩk,n
, gk,n〉

= µ(Ωk,n)
2−p
p Re

ˆ

Ωk,n

m(s) dµ(s)

≥ 1

n
µ(Ωk,n)

2
p

and hence we conclude that µ(Ωk,n) = 0 for each k, n ∈ N. From this we get

µ({s ∈ Ω | Re m(s) > 0}) ≤
∑
k,n∈N

µ(Ωk,n) = 0,

which shows Re m ≤ 0 a.e. This completes the proof.
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Exercise 4

Let X be a Banach space, A a generator of a contraction C0-semigroup on X, and B an
operator in X satisfying D(A) ⊆ D(B) and

‖Bx‖ ≤ a‖Ax‖+ b‖x‖ (x ∈ D(A))

for some a ∈
[
0, 1

2

)
and b ∈ (0,∞).

Then there exists λ0 > 0 such that ‖BR(λ,A)‖ < 1 holds for all λ > λ0.

Proof. Since A generates a contraction C0-semigroup, it follows that

‖R(λ,A)‖ ≤ 1

λ

and therefore

‖AR(λ,A)‖ = ‖λR(λ,A)− I‖ ≤ λ‖R(λ,A)‖+ 1 ≤ 2

for all λ > 0.
Then the assumption gives

‖BR(λ,A)x‖ ≤ a‖AR(λ,A)x‖+ b‖R(λ,A)x‖ ≤

(
2a+

b

λ

)
‖x‖ (x ∈ X)

and so

‖BR(λ,A)‖ ≤ 2a+
b

λ

for all λ > 0.
To finish the proof set λ0 := b

1−2a
> 0.

Exercise 5

Let X = C0(R) (with the sup-norm) and Af = f ′′+f ′ with D(A) =
{
f ∈ C2(R)∩X; f ′′+

f ′ ∈ X
}

. Show that A generates a contraction semigroup.

Solution: (i) Define the operators B and C in X by

D(B) :=
{
f ∈ C2(R) ∩X; Bf := f ′′ ∈ X

}
,

D(C) :=
{
f ∈ C1(R) ∩X; Cf := f ′ ∈ X

}
.

The dissipativity of B and C is shown as in Examples 6.11 and 6.12, respectively, and the
dissipativity of A is shown analogously.
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(ii) In this step we show that B generates a contraction semigroup. In view of the
dissipativity of B, Proposition 6.2 and Theorem 6.3 it is sufficient to show that ran(I−B) =
X.

Let g ∈ X. We have to find f ∈ D(B) such that f − Bf = g. In order to find f we
solve the differential equation

f − f ′′ = g.

The associated homogeneous equation

f − f ′′ = 0

has the ‘general solution’
f(x) = c1e

x + c2e
−x.

Applying the ‘variation of constants method’ one obtains c′1 = −1
2
e−xg(x), c′2 = 1

2
exg(x)

and the ‘general solution’ of the inhomogenous equation

f(x) = c1e
x + c2e

−x + 1
2
ex
ˆ ∞
x

e−yg(y) dy + 1
2
e−x
ˆ x

−∞
eyg(y) dy.

In order to obtain that f ∈ C0(R) one chooses c1 = c2 = 0 and finally obtains

f(x) = 1
2
ex
ˆ ∞
x

e−yg(y) dy + 1
2
e−x
ˆ x

−∞
eyg(y) dy

= 1
2

ˆ
R
e−|x−y|g(y) dy

= 1
2

ˆ
R
e−|y|g(x− y) dy.

Applying the dominated convergence theorem in the last expression we obtain that f(x)→
0 as x→ ±∞. This means that we have shown that f ∈ D(B) and (I −B)f = g.

(We note that in fact the operator B generates the heat semigroup on C0(R). Showing
this, however, is lengthier. Also, it is instructive to compute the resolvent of a differential
operator, anyway.)

(iii) We show that D(B) ⊆ D(C) and that there exist a ∈ [0, 1/2), b > 0 such that

‖Cf‖ ≤ a‖Bf‖+ b‖f‖

for all f ∈ D(B).
Let f ∈ D(B). For x ∈ R, c > 0 we compute

f(x+ c)− f(x) =

ˆ x+c

x

f ′(y) dy

= f ′(y)(y − (x+ c))x+c
x −

ˆ x+c

x

f ′′(y)(y − (x+ c)) dy

= −f ′(x)(−c)−
ˆ c

0

f ′′(x+ y)(y − c) dy,
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f ′(x) =
f(x+ c)− f(x)

c
+

1

c

ˆ c

0

f ′′(x+ y)(y − c) dy.

The last expression shows that f ′(x)→ 0 as x→ ±∞; hence f ∈ D(C). It also shows that

‖f ′‖ ≤ 2
c
‖f‖+ 1

c

∣∣∣ˆ c

0

(y − c) dy
∣∣∣‖f ′′‖ = 2

c
‖f‖+ c

2
‖f ′′‖.

Choosing c = 1/2 we obtain ‖Cf‖ ≤ 1
4
‖Bf‖+ 4‖f‖.

(iv) Using that B generates a contraction semigroup and combining part (iii), Exercise 4
and Theorem 6.14 we obtain that B + C generates a contraction semigroup. From the
definition of A one obtaines that A ⊇ B + C, and therefore

I − A ⊇ I − (B + C).

The dissipativity of A implies that I −A is injective, and (0,∞) ⊆ ρ(B +C) implies that
I−(B+C) is surjective; hence I−A = I−(B+C), and A = B+C generates a contraction
semigroup.

7


