Lecture 5-Solutions

Voronezh Team: Polyakov Dmitry, Dikarev Yegor.

Exercise 1. Prove Proposition 5.2:

Proposition 5.2. For an operator B with domain D(B) the following statements hold.

- a) The assertions below are equivalent:
 - (i) Operator B is closable.
 - (ii) The closure of the graph of B

$$\overline{\operatorname{graph}B} := \overline{\left\{ (f, Bf) : f \in D(B) \right\}} \subseteq X \times X$$

(which is a closed subspace of $X \times X$) is the graph of an operator A, i.e., (f,g), $(f,h) \in \overline{\text{graph}B}$ implies g = h.

(iii) If $f_n \in D(B)$ with $f_n \to 0$ and $Bf_n \to g$, then g = 0.

- b) If B is closable, let A be the operator from a). Then A is smallest closed extension of B.
- c) Operator B is closable if and only if λB is closable for $\lambda \in \mathbb{R}$. We have $\overline{\lambda B} = \lambda \overline{B}$.

Proof. a). Consider following proposition:

$$(*) \qquad (0,y) \in \overline{\mathrm{graph}B} \Longrightarrow y = 0$$

and show that each of (i)-(iii) is equivalent to (*). **Remark.** graph \overline{B} is a graph of linear operator, i.e. $(0, y) \in \overline{\operatorname{graph}B}$ $\Rightarrow y = 0.$

Proof. Let (i) is true.

If $\overline{\text{graph}B} \subset \overline{\text{graph}A}$ then $(0, y) \in \overline{\text{graph}B} \Rightarrow (0, y) \in \overline{\text{graph}A} \Rightarrow y = 0$. Thus, (*) is true.

And now let (*) is true. Let $(x, y_1) \in \overline{\text{graph}B}$ and $(x, y_2) \in \overline{\text{graph}B}$. Then (because $\overline{\text{graph}B}$ is a linear subspace) $(0, y_1 - y_2) \in \overline{\text{graph}B} \Rightarrow y_1 = y_2$. Thus, $\overline{\text{graph}B}$ is a graph of the linear operator. Thus, (*) is true. Thus, $(i) \Leftrightarrow (*)$.

 $(ii) \Leftrightarrow (*)$ because $(i) \Leftrightarrow (*)$: condition (i) is more general.

 $(iii) \Rightarrow (*): \text{let } f_n \in D(B) \text{ with } f_n \to 0 \text{ and } Bf_n \to g. \text{ Then } (0,g) \in \overline{\text{graph}B}$ and g = 0.

 $(*) \Rightarrow (iii)$: consider $f_n \in D(B)$ with $f_n \to 0$ and $Bf_n \to g$. By (*) we obtain $(0,g) \in \overline{\text{graph}B}$. By remark we have that g = 0.

b). This statement is *incorrect*.

Consider linear operator B with $D(B) = \{0\}$, i.e. B0 = 0. Clearly that B is closed. Next, consider arbitrary closed linear operator A with $D(A) \neq \{0\}$. Thus, we have that *arbitrary* A is closed extension of B.

c). Prove more general condition.

Proposition. Consider closable linear operator B and bounded linear operator A. Then B + A is closable with graph $(B + A) = \{(x, (B + A)x) : x \in D(B + A)\} \subseteq X \times X$.

Proof. Let $f_n \to 0$, such that $Bf_n + Af_n \to g$, because A is bounded linear operator, thus $Af_n \to 0$, and by *(iii)* we have $Bf_n \to g \Rightarrow g = 0$.

For $A = \lambda I$, all statements hold.

Exercise 2. Prove the identity:

$$\sum_{k=0}^{\infty} \frac{n^k}{k!} (n-k)^2 = n \mathrm{e}^n$$

needed in Lemma 5.7.

Proof. We consider following identity $e^n = \sum_{k=0}^{\infty} \frac{n^k}{k!}$. Then

$$\begin{split} \sum_{k=0}^{\infty} \frac{n^k}{k!} (n-k)^2 &= n^2 \sum_{k=0}^{\infty} \frac{n^k}{k!} - 2n \sum_{k=0}^{\infty} \frac{n^k}{k!} k + \sum_{k=0}^{\infty} \frac{n^k}{k!} k^2 = n^2 \mathrm{e}^n - 2n \sum_{k=1}^{\infty} \frac{n^k}{(k-1)!} \\ &+ \sum_{k=1}^{\infty} \frac{n^k}{(k-1)!} k = n^2 \mathrm{e}^n - 2n^2 \sum_{k=1}^{\infty} \frac{n^{k-1}}{(k-1)!} + n + \sum_{k=2}^{\infty} \frac{n^k}{(k-1)!} (k-1+1) \\ &= n^2 \mathrm{e}^n - 2n^2 \mathrm{e}^n + n + n^2 \sum_{k=2}^{\infty} \frac{n^{k-2}}{(k-2)!} + n \left(\sum_{k=1}^{\infty} \frac{n^{k-1}}{(k-1)!} - 1 \right) \\ &= -n^2 \mathrm{e}^n + n + n^2 \mathrm{e}^n + n \mathrm{e}^n - n = n \mathrm{e}^n. \end{split}$$

Thus, we obtain our identity.

Exercise 3. Prove that in Proposition 5.5 for $\lambda, \mu > \omega$ one has $R(\lambda) = R(\lambda, B)$ and $R(\mu) = R(\mu, B)$ for the same operator B. **Proof.** Consider operator $B = \lambda I - R(\lambda)^{-1}$, $B : ImR(\lambda) \subset X \to X$, and operator $C = \mu I - R(\mu)^{-1}$ (by proposition 5.5, this operators could be represented in such form). Operator B is closed because $R(\lambda)^{-1}$ is closed. By resolvent identity we obtain

$$R(\lambda) = R(\mu) \big(I + (\mu - \lambda) R(\lambda) \big),$$

then $ImR(\lambda) \subset ImR(\mu)$ and $ImR(\mu) \subset ImR(\lambda)$. Hence, D(B) = D(C). Thus we consider next operator

$$B - C = \lambda I - R(\lambda)^{-1} - \mu I + R(\mu)^{-1}.$$

For some $y = R(\lambda)x$ using resolvent identity we have

$$(B-C)R(\lambda)x = (\lambda I - R(\lambda)^{-1} - \mu I + R(\mu)^{-1})R(\lambda)x$$
$$= (\lambda - \mu)R(\lambda)x - x + R(\mu)^{-1}R(\mu)(I + (\mu - \lambda)R(\lambda))x$$
$$= (\lambda - \mu)R(\lambda)x + (\mu - \lambda)R(\lambda)x = 0.$$

Thus, B = C. Hence, $R(\lambda) = R(\lambda, B)$ and $R(\mu) = R(\mu, B)$ for the same operator B.

Exercise 6. Do the twist in Proposition 5.8. More precisely, prove that if $F, F_n : [0, t_0] \to \mathcal{L}(X)$ are strongly continuous functions that are uniformly bounded, then the following assertions are equivalent.

- (i) $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in X$.
- (ii) $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in D$ from a dense subspace D.
- (iii) $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each compact set $K \subseteq X$.

Proof. (*ii*) \Rightarrow (*iii*): *D* is compact $\Rightarrow \forall \varepsilon > 0$ exists finite $\frac{\varepsilon}{2M}$ -net, where $M = \sup_{t \ge 0} F(t)$, i.e. exists $n_0(\varepsilon)$ such that $||x - x_k|| < \frac{\varepsilon}{2M}$ for all $k > n_0(\varepsilon)$. Then $||F_n(t)x_k - F_n(t)x|| \le \frac{\varepsilon}{2}$. Then consider following inequality

$$\|F_n(t)x_k - F(t)x\| = \|F_n(t)x - F_n(t)x + F_n(t)x - F(t)x\|$$

$$\leqslant \|F_n(t)x_k - F_n(t)x\| + \|F_n(t)x - F(t)x\| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Because

 $||F_n(t)x_k - F_n(t)x|| \le ||F_n(t)|| ||x_k - x|| \le M \frac{\varepsilon}{2M} = \frac{\varepsilon}{2}$ by the definition of the net and $F_n(t)$ is bounded functions;

 $||F_n(t)x - F(t)x|| \leq \frac{\varepsilon}{2}, \text{ because } F_n(t)x \to F(t)x \text{ uniformly.}$ (*iii*) \Rightarrow (*i*) : $x \in K \subset X \Rightarrow x \in X.$

Then (i) holds because $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in K$, then and for each $x \in X$.

 $(i) \Rightarrow (ii)$: each $x_n \in X$ is a limit of a convergent sequence of elements from D. Thus, because D is dense in X, we have uniformly convergence in X.