
Lecture 5—Solutions

Voronezh Team: Polyakov Dmitry, Dikarev Yegor.

Exercise 1. Prove Proposition 5.2:

Proposition 5.2. For an operator B with domain D(B) the following

statements hold.

a) The assertions below are equivalent:

(i) Operator B is closable.

(ii) The closure of the graph of B

graphB :=
{
(f, Bf) : f ∈ D(B)

} ⊆ X ×X

(which is a closed subspace of X×X) is the graph of an operator A,

i.e., (f, g), (f, h) ∈ graphB implies g = h.

(iii) If fn ∈ D(B) with fn → 0 and Bfn → g, then g = 0.

b) If B is closable, let A be the operator from a). Then A is smallest closed

extension of B.

c) Operator B is closable if and only if λ − B is closable for λ ∈ R. We

have λ−B = λ−B.

Proof. a). Consider following proposition:

(*) (0, y) ∈ graphB =⇒ y = 0

and show that each of (i)—(iii) is equivalent to (*).

Remark. graphB is a graph of linear operator, i.e. (0, y) ∈ graphB
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⇒ y = 0.

Proof. Let (i) is true.

If graphB ⊂ graphA then (0, y) ∈ graphB ⇒ (0, y) ∈ graphA ⇒ y = 0.

Thus, (*) is true.

And now let (*) is true. Let (x, y1) ∈ graphB and (x, y2) ∈ graphB. Then

(because graphB is a linear subspace) (0, y1 − y2) ∈ graphB ⇒ y1 = y2.

Thus, graphB is a graph of the linear operator. Thus, (*) is true.

Thus, (i)⇔ (*).

(ii)⇔ (*) because (i)⇔ (*): condition (i) is more general.

(iii)⇒ (*): let fn ∈ D(B) with fn → 0 and Bfn → g. Then (0, g) ∈ graphB

and g = 0.

(*) ⇒ (iii): consider fn ∈ D(B) with fn → 0 and Bfn → g. By (*) we

obtain (0, g) ∈ graphB. By remark we have that g = 0.

b). This statement is incorrect .

Consider linear operator B with D(B) = {0}, i.e. B0 = 0. Clearly that B is

closed. Next, consider arbitrary closed linear operator A with D(A) 6= {0}.
Thus, we have that arbitrary A is closed extension of B.

c). Prove more general condition.

Proposition. Consider closable linear operator B and bounded linear operator

A. Then B + A is closable with graph(B + A) =
{(

x, (B + A)x
)

: x ∈
D(B + A)

} ⊆ X ×X.

Proof. Let fn → 0, such that Bfn + Afn → g, because A is bounded linear

operator, thus Afn → 0, and by (iii) we have Bfn → g ⇒ g = 0.

For A = λI, all statements hold.

Exercise 2. Prove the identity:
∞∑

k=0

nk

k!
(n− k)2 = nen
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needed in Lemma 5.7.

Proof. We consider following identity en =
∞∑

k=0

nk

k!
. Then

∞∑

k=0

nk

k!
(n−k)2 = n2

∞∑

k=0

nk

k!
−2n

∞∑

k=0

nk

k!
k+

∞∑

k=0

nk

k!
k2 = n2en−2n

∞∑

k=1

nk

(k − 1)!

+
∞∑

k=1

nk

(k − 1)!
k = n2en − 2n2

∞∑

k=1

nk−1

(k − 1)!
+ n +

∞∑

k=2

nk

(k − 1)!
(k − 1 + 1)

= n2en − 2n2en + n + n2
∞∑

k=2

nk−2

(k − 2)!
+ n

( ∞∑

k=1

nk−1

(k − 1)!
− 1

)

= −n2en + n + n2en + nen − n = nen.

Thus, we obtain our identity.

Exercise 3. Prove that in Proposition 5.5 for λ, µ > ω one has

R(λ) = R(λ,B) and R(µ) = R(µ,B) for the same operator B.

Proof. Consider operator B = λI − R(λ)−1, B : ImR(λ) ⊂ X → X,

and operator C = µI − R(µ)−1 (by proposition 5.5, this operators could be

represented in such form). Operator B is closed because R(λ)−1 is closed. By

resolvent identity we obtain

R(λ) = R(µ)
(
I + (µ− λ)R(λ)

)
,

then ImR(λ) ⊂ ImR(µ) and ImR(µ) ⊂ ImR(λ). Hence, D(B) = D(C).

Thus we consider next operator

B − C = λI −R(λ)−1 − µI + R(µ)−1.

For some y = R(λ)x using resolvent identity we have

(B − C)R(λ)x =
(
λI −R(λ)−1 − µI + R(µ)−1)R(λ)x

= (λ− µ)R(λ)x− x + R(µ)−1R(µ)
(
I + (µ− λ)R(λ)

)
x

= (λ− µ)R(λ)x + (µ− λ)R(λ)x = 0.
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Thus, B = C. Hence, R(λ) = R(λ,B) and R(µ) = R(µ,B) for the same

operator B.

Exercise 6. Do the twist in Proposition 5.8. More precisely, prove that if

F, Fn : [0, t0] → L(X) are strongly continuous functions that are uniformly

bounded, then the following assertions are equivalent.

(i) Fn(t)x → F (t)x uniformly on [0, t0] as n →∞ for each x ∈ X .

(ii) Fn(t)x → F (t)x uniformly on [0, t0] as n → ∞ for each x ∈ D from a

dense subspace D.

(iii) Fn(t)x → F (t)x uniformly on [0, t0] as n → ∞ for each compact set

K ⊆ X.

Proof. (ii) ⇒ (iii): D is compact ⇒ ∀ε > 0 exists finite
ε

2M
—net, where

M = sup
t>0

F (t), i.e. exists n0(ε) such that ‖x− xk‖ <
ε

2M
for all k > n0(ε).

Then ‖Fn(t)xk − Fn(t)x‖ 6 ε

2
. Then consider following inequality

‖Fn(t)xk − F (t)x‖ = ‖Fn(t)x− Fn(t)x + Fn(t)x− F (t)x‖
6 ‖Fn(t)xk − Fn(t)x‖+ ‖Fn(t)x− F (t)x‖ 6 ε

2
+

ε

2
= ε.

Because

‖Fn(t)xk − Fn(t)x‖ ≤ ‖Fn(t)‖‖xk − x‖ 6 M
ε

2M
=

ε

2
by the definition

of the net and Fn(t) is bounded functions;

‖Fn(t)x− F (t)x‖ 6 ε

2
, because Fn(t)x → F (t)x uniformly.

(iii) ⇒ (i) : x ∈ K ⊂ X ⇒ x ∈ X.

Then (i) holds because Fn(t)x → F (t)x uniformly on [0, t0] as n → ∞ for

each x ∈ K, then and for each x ∈ X.

(i) ⇒ (ii): each xn ∈ X is a limit of a convergent sequence of elements

from D. Thus, because D is dense in X, we have uniformly convergence inX.
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