Lecture 5-Solutions

Voronezh Team: Polyakov Dmitry, Dikarev Yegor.

Exercise 1. Prove Proposition 5.2:
Proposition 5.2. For an operator B with domain $D(B)$ the following statements hold.
a) The assertions below are equivalent:
(i) Operator B is closable.
(ii) The closure of the graph of B

$$
\overline{\operatorname{graph} B}:=\overline{\{(f, B f): f \in D(B)\}} \subseteq X \times X
$$

(which is a closed subspace of $X \times X$) is the graph of an operator A, i.e., $(f, g),(f, h) \in \overline{\operatorname{graph} B}$ implies $g=h$.
(iii) If $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$, then $g=0$.
b) If B is closable, let A be the operator from a). Then A is smallest closed extension of B.
c) Operator B is closable if and only if $\lambda-B$ is closable for $\lambda \in \mathbb{R}$. We have $\overline{\lambda-B}=\lambda-\bar{B}$.

Proof. a). Consider following proposition:
$\left.{ }^{*}\right) \quad(0, y) \in \overline{\operatorname{graph} B} \Longrightarrow y=0$
and show that each of (i)-(iii) is equivalent to $\left(^{*}\right.$).
Remark. $\overline{\operatorname{graph} B}$ is a graph of linear operator, i.e. $(0, y) \in \overline{\operatorname{graph} B}$
$\Rightarrow y=0$.
Proof. Let (i) is true.
If $\overline{\operatorname{graph} B} \subset \overline{\operatorname{graph} A}$ then $(0, y) \in \overline{\operatorname{graph} B} \Rightarrow(0, y) \in \overline{\operatorname{graph} A} \Rightarrow y=0$. Thus, (*) is true.

And now let $\left(^{*}\right)$ is true. Let $\left(x, y_{1}\right) \in \overline{\operatorname{graph} B}$ and $\left(x, y_{2}\right) \in \overline{\operatorname{graph} B}$. Then (because $\overline{\operatorname{graph} B}$ is a linear subspace) $\left(0, y_{1}-y_{2}\right) \in \overline{\operatorname{graph} B} \Rightarrow y_{1}=y_{2}$. Thus, $\overline{\operatorname{graph} B}$ is a graph of the linear operator. Thus, $\left({ }^{*}\right)$ is true.

Thus, (i) $\Leftrightarrow\left({ }^{*}\right)$.
(ii) $\Leftrightarrow\left(^{*}\right)$ because (i) $\Leftrightarrow\left({ }^{*}\right)$: condition (i) is more general.
(iii) $\Rightarrow\left(^{*}\right)$: let $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$. Then $(0, g) \in \overline{\operatorname{graph} B}$ and $g=0$.
$\left(^{*}\right) \Rightarrow($ iii $)$: consider $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$. By $\left(^{*}\right)$ we obtain $(0, g) \in \overline{\operatorname{graph} B}$. By remark we have that $g=0$.
b). This statement is incorrect.

Consider linear operator B with $D(B)=\{0\}$, i.e. $B 0=0$. Clearly that B is closed. Next, consider arbitrary closed linear operator A with $D(A) \neq\{0\}$. Thus, we have that arbitrary A is closed extension of B.
c). Prove more general condition.

Proposition. Consider closable linear operator B and bounded linear operator
A. Then $B+A$ is closable with $\operatorname{graph}(B+A)=\{(x,(B+A) x): x \in$ $D(B+A)\} \subseteq X \times X$.
Proof. Let $f_{n} \rightarrow 0$, such that $B f_{n}+A f_{n} \rightarrow g$, because A is bounded linear operator, thus $A f_{n} \rightarrow 0$, and by (iii) we have $B f_{n} \rightarrow g \Rightarrow g=0$.
For $A=\lambda I$, all statements hold.
Exercise 2. Prove the identity:

$$
\sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=n \mathrm{e}^{n}
$$

needed in Lemma 5.7.
Proof. We consider following identity $\mathrm{e}^{n}=\sum_{k=0}^{\infty} \frac{n^{k}}{k!}$. Then

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=n^{2} \sum_{k=0}^{\infty} \frac{n^{k}}{k!}-2 n \sum_{k=0}^{\infty} \frac{n^{k}}{k!} k+\sum_{k=0}^{\infty} \frac{n^{k}}{k!} k^{2}=n^{2} \mathrm{e}^{n}-2 n \sum_{k=1}^{\infty} \frac{n^{k}}{(k-1)!} \\
+\sum_{k=1}^{\infty} \frac{n^{k}}{(k-1)!} k=n^{2} \mathrm{e}^{n}-2 n^{2} \sum_{k=1}^{\infty} \frac{n^{k-1}}{(k-1)!}+n+\sum_{k=2}^{\infty} \frac{n^{k}}{(k-1)!}(k-1+1) \\
=n^{2} \mathrm{e}^{n}-2 n^{2} \mathrm{e}^{n}+n+n^{2} \sum_{k=2}^{\infty} \frac{n^{k-2}}{(k-2)!}+n\left(\sum_{k=1}^{\infty} \frac{n^{k-1}}{(k-1)!}-1\right) \\
=-n^{2} \mathrm{e}^{n}+n+n^{2} \mathrm{e}^{n}+n \mathrm{e}^{n}-n=n \mathrm{e}^{n} .
\end{gathered}
$$

Thus, we obtain our identity.
Exercise 3. Prove that in Proposition 5.5 for $\lambda, \mu>\omega$ one has $R(\lambda)=R(\lambda, B)$ and $R(\mu)=R(\mu, B)$ for the same operator B.
Proof. Consider operator $B=\lambda I-R(\lambda)^{-1}, \quad B: \operatorname{Im} R(\lambda) \subset X \rightarrow X$, and operator $C=\mu I-R(\mu)^{-1}$ (by proposition 5.5, this operators could be represented in such form). Operator B is closed because $R(\lambda)^{-1}$ is closed. By resolvent identity we obtain

$$
R(\lambda)=R(\mu)(I+(\mu-\lambda) R(\lambda))
$$

then $\operatorname{Im} R(\lambda) \subset \operatorname{Im} R(\mu)$ and $\operatorname{Im} R(\mu) \subset \operatorname{Im} R(\lambda)$. Hence, $\mathrm{D}(B)=\mathrm{D}(C)$.
Thus we consider next operator

$$
B-C=\lambda I-R(\lambda)^{-1}-\mu I+R(\mu)^{-1} .
$$

For some $y=R(\lambda) x$ using resolvent identity we have

$$
\begin{aligned}
& (B-C) R(\lambda) x=\left(\lambda I-R(\lambda)^{-1}-\mu I+R(\mu)^{-1}\right) R(\lambda) x \\
& =(\lambda-\mu) R(\lambda) x-x+R(\mu)^{-1} R(\mu)(I+(\mu-\lambda) R(\lambda)) x \\
& \quad=(\lambda-\mu) R(\lambda) x+(\mu-\lambda) R(\lambda) x=0 .
\end{aligned}
$$

Thus, $B=C$. Hence, $R(\lambda)=R(\lambda, B)$ and $R(\mu)=R(\mu, B)$ for the same operator B.
Exercise 6. Do the twist in Proposition 5.8. More precisely, prove that if $F, F_{n}:\left[0, t_{0}\right] \rightarrow \mathcal{L}(X)$ are strongly continuous functions that are uniformly bounded, then the following assertions are equivalent.
(i) $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in X$.
(ii) $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in D$ from a dense subspace D.
(iii) $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each compact set $K \subseteq X$.

Proof. $(i i) \Rightarrow(i i i): D$ is compact $\Rightarrow \forall \varepsilon>0$ exists finite $\frac{\varepsilon}{2 M}$-net, where $M=\sup _{t \geqslant 0} F(t)$, i.e. exists $n_{0}(\varepsilon)$ such that $\left\|x-x_{k}\right\|<\frac{\varepsilon}{2 M}$ for all $k>n_{0}(\varepsilon)$. Then $\left\|F_{n}(t) x_{k}-F_{n}(t) x\right\| \leqslant \frac{\varepsilon}{2}$. Then consider following inequality

$$
\begin{aligned}
& \left\|F_{n}(t) x_{k}-F(t) x\right\|=\left\|F_{n}(t) x-F_{n}(t) x+F_{n}(t) x-F(t) x\right\| \\
& \leqslant\left\|F_{n}(t) x_{k}-F_{n}(t) x\right\|+\left\|F_{n}(t) x-F(t) x\right\| \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Because
$\left\|F_{n}(t) x_{k}-F_{n}(t) x\right\| \leq\left\|F_{n}(t)\right\|\left\|x_{k}-x\right\| \leqslant M \frac{\varepsilon}{2 M}=\frac{\varepsilon}{2}$ by the definition of the net and $F_{n}(t)$ is bounded functions;
$\left\|F_{n}(t) x-F(t) x\right\| \leqslant \frac{\varepsilon}{2}$, because $F_{n}(t) x \rightarrow F(t) x$ uniformly.
(iii) $\Rightarrow(i): x \in K \subset X \Rightarrow x \in X$.

Then (i) holds because $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in K$, then and for each $x \in X$.
$(i) \Rightarrow(i i):$ each $x_{n} \in X$ is a limit of a convergent sequence of elements from D. Thus, because D is dense in X, we have uniformly convergence in X.

