
Solutions for Lecture 5

Exercise 1. Prove Proposition 5.2
Proof: a)
(i) =⇒ (ii)
Since B is closable there exists a closed operator A, such that

D(B) ⊆ D(A) and Ax = Bx for x ∈ D(B). Consider

(f, g), (f, h) ∈ graphB ⊆ X ×X.

Then there exist fn ∈ D(B), gn, hn such that

(fn, gn), (fn, hn) ∈ graphB, fn → f,

(fn, gn) → (f, g) ∈ graphB, (fn, hn) → (f, h) ∈ graphB.

D(B) ⊆ D(A) implies that fn ∈ D(A). Consequently

gn = Bfn = hn = Afn.

By the closedness of A we obtain that f ∈ D(A) and

Af = g = h.

(i) =⇒ (iii)
Consider fn ∈ D(B) with fn → 0 and Bfn → g. Closability of B

means that there exists a closed operator A, such that
D(B) ⊆ D(A) and Ax = Bx for x ∈ D(B). Hence fn ∈ D(A),
fn → 0, Afn = Bfn → g. Since A is closed and assuming that A is
homogeneous, we infer that 0 ∈ D(A) and

A(0) = 0 · A(0) = g = 0.

(iii) =⇒ (i)
To proove this we need the assumption that B is additive. De�ne

the operator A with

D(A) = {f ∈ X : ∃fn ∈ D(B) such that, if fn → f ∈ X then

∃h = lim
n

Bfn ∈ X}.

For f ∈ D(A) we set Af := h. We have that

D(B) ⊆ D(A) ⊆ D(B)
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and Ax = Bx for x ∈ D(B). It is su�cient to show that A is closed.
If we consider yn ∈ D(A) such that yn → y and Ayn → g then
y ∈ D(A). Now choose f ∈ D(B), fn ∈ D(B) with fn → f and
Bfn → h. Then (fn − f) → 0 and

A(fn − f) = B(fn − f) = Bfn − Af → h− Af.

Hence h = Af . Since D(B) ⊆ D(A) ⊆ D(B) we obtain that A is
closed.

(ii) =⇒ (i)
De�ne the operator A with

D(A) = {f ∈ X : ∃fn ∈ D(B) such that, if fn → f ∈ X then

∃h = lim
n

Bfn ∈ X}.

For f ∈ D(A) we set Af := h. We have that

D(B) ⊆ D(A) ⊆ D(B)

and Ax = Bx for x ∈ D(B). It remains to show that A is closed.
Choose fn ∈ D(A) such that fn → f and Afn → g. We can see, that
f ∈ D(A), (f, Af) ∈ graphB and (f, g) ∈ graphB. Then

Af = g.

b)
Suppose that there exists another closed extension Ã of the operator

B, that is less then A, i.e.,

D(B) ⊆ D(Ã) ⊂ D(A)

and Ãx = Bx for x ∈ D(B). For f ∈ D(Ã) we have that Af = Ãf.
Since A is a closed extension from a) we have that

D(B) ⊆ D(A) ⊆ D(B)

and

D(A) = {f ∈ X : ∃fn ∈ D(B) such that, if fn → f ∈ X then

∃h = lim
n

Bfn ∈ X}.

For f ∈ D(A) we have Af = h. Hence D(Ã) ⊂ D(A) ⊆ D(B). It
means that there exists y ∈ D(A) such that y /∈ D(Ã). Thats why we
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conclude that Ã is not closed, which contradicts to the assumption.
Indeed, if we consider fn ∈ D(Ã) with fn → y, Ãfn = Afn → g and
since A is closed, then we'll see that y ∈ D(A), Ay = g, but

y /∈ D(Ã).

c)
The proof of "if" part is obvious. It is su�cient to consider λ = 0.
"Only if" part: The closability of B means that there exists a

closed extension A of the operator B, i.e.,
D(B) ⊆ D(A) and Ax = Bx for x ∈ D(B). Then λ − A is a
closed extension of λ−B. Indeed,

D(λ−B) = D(B), D(λ− A) = D(A).

Hence D(λ − B) ⊆ D(λ − A). Clearly, for all
x ∈ D(λ−B) = D(B) we have, that

(λ− A)x = λx− Ax = λx−Bx = (λ−B)x.

λ−B = λ−B is obvious.

Exercise 2. Prove the identity:

∀n ∈ N
∞∑

k=0

nk

k!
(n− k)2 = nen.

Proof: Since the series

∞∑
k=0

nk

k!
,

∞∑
k=0

knk

k!
,

∞∑
k=0

k2nk

k!

are convergent, we can write

∞∑
k=0

nk

k!
(n− k)2 = n2

∞∑
k=0

nk

k!
− 2n

∞∑
k=0

knk

k!
+
∞∑

k=0

k2nk

k!
=

n2en − 2n
∞∑

k=0

knk

k!
+
∞∑

k=0

k2nk

k!
.
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∞∑
k=0

knk

k!
=
∞∑

k=1

nk

(k − 1)!
= n

∞∑
j=0

nj

j!
= nen.

Consequently,

∞∑
k=0

nk

k!
(n− k)2 =

∞∑
k=0

k2nk

k!
− n2en.

Since
∞∑

k=0

k2nk

k!
=
∞∑

k=1

knk

(k − 1)!
=
∞∑

k=0

nk+1(k + 1)

k!

and since all the series are convergent, we can obtain that

∞∑
k=0

k2nk

k!
−n2en =

∞∑
k=0

nk+1(k + 1)

k!
−
∞∑

k=0

n2nk

k!
=
∞∑

k=0

nk+1(k + 1− n)

k!
=

∞∑
k=0

nk+1k

k!
+
∞∑

k=0

nk+1(1− n)

k!
=
∞∑

k=1

nk+1

(k − 1)!
+
∞∑

k=0

nk+1(1− n)

k!
=

∞∑
k=0

nk+2

k!
+
∞∑

k=0

nk+1(1− n)

k!
=
∞∑

k=0

nk+2 + (1− n)nk+1

k!
= n

∞∑
k=0

nk

k!
= nen.
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