Solutions for Lecture 5

Exercise 1. Prove Proposition 5.2

Proof: a)
(i) \Longrightarrow (ii)

Since B is closable there exists a closed operator A, such that $D(B) \subseteq D(A)$ and $A x=B x$ for $x \in D(B)$. Consider

$$
(f, g),(f, h) \in \overline{\text { graph } B} \subseteq X \times X
$$

Then there exist $f_{n} \in D(B), g_{n}, h_{n}$ such that

$$
\begin{gathered}
\left(f_{n}, g_{n}\right),\left(f_{n}, h_{n}\right) \in \operatorname{graph} B, \quad f_{n} \rightarrow f, \\
\left(f_{n}, g_{n}\right) \rightarrow(f, g) \in \overline{\operatorname{graph} B}, \quad\left(f_{n}, h_{n}\right) \rightarrow(f, h) \in \overline{\operatorname{graph} B} . \\
D(B) \subseteq D(A) \text { implies that } f_{n} \in D(A) . \text { Consequently }
\end{gathered}
$$

$$
g_{n}=B f_{n}=h_{n}=A f_{n} .
$$

By the closedness of A we obtain that $f \in D(A)$ and

$$
A f=g=h .
$$

(i) \Longrightarrow (iii)

Consider $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$. Closability of B means that there exists a closed operator A, such that $D(B) \subseteq D(A)$ and $A x=B x$ for $x \in D(B)$. Hence $f_{n} \in D(A)$, $f_{n} \rightarrow 0, A f_{n}=B f_{n} \rightarrow g$. Since A is closed and assuming that A is homogeneous, we infer that $0 \in D(A)$ and

$$
A(0)=0 \cdot A(0)=g=0 .
$$

(iii) \Longrightarrow (i)

To proove this we need the assumption that B is additive. Define the operator A with

$$
\begin{aligned}
& D(A)=\left\{f \in X: \exists f_{n} \in D(B) \text { such that, if } f_{n} \rightarrow f \in X\right. \text { then } \\
& \left.\exists h=\lim _{n} B f_{n} \in X\right\} .
\end{aligned}
$$

For $f \in D(A)$ we set $A f:=h$. We have that

$$
D(B) \subseteq D(A) \subseteq \overline{D(B)}
$$

and $A x=B x$ for $x \in D(B)$. It is sufficient to show that A is closed. If we consider $y_{n} \in D(A)$ such that $y_{n} \rightarrow y$ and $A y_{n} \rightarrow g$ then $y \in D(A)$. Now choose $f \in D(B), f_{n} \in D(B)$ with $f_{n} \rightarrow f$ and $B f_{n} \rightarrow h$. Then $\left(f_{n}-f\right) \rightarrow 0$ and

$$
A\left(f_{n}-f\right)=B\left(f_{n}-f\right)=B f_{n}-A f \rightarrow h-A f .
$$

Hence $h=A f$. Since $D(B) \subseteq D(A) \subseteq \overline{D(B)}$ we obtain that A is closed.
(ii) \Longrightarrow (i)

Define the operator A with

$$
\begin{gathered}
D(A)=\left\{f \in X: \exists f_{n} \in D(B) \text { such that, if } f_{n} \rightarrow f \in X\right. \text { then } \\
\left.\exists h=\lim _{n} B f_{n} \in X\right\} .
\end{gathered}
$$

For $f \in D(A)$ we set $A f:=h$. We have that

$$
D(B) \subseteq D(A) \subseteq \overline{D(B)}
$$

and $A x=B x$ for $x \in D(B)$. It remains to show that A is closed. Choose $f_{n} \in D(A)$ such that $f_{n} \rightarrow f$ and $A f_{n} \rightarrow g$. We can see, that $f \in D(A),(f, A f) \in \overline{\text { graph } B}$ and $(f, g) \in \overline{\text { graphB }}$. Then

$$
A f=g .
$$

b)

Suppose that there exists another closed extension \tilde{A} of the operator B, that is less then A, i.e.,

$$
D(B) \subseteq D(\tilde{A}) \subset D(A)
$$

and $\tilde{A} x=B x$ for $x \in D(B)$. For $f \in D(\tilde{A})$ we have that $A f=\tilde{A} f$. Since A is a closed extension from a) we have that

$$
D(B) \subseteq D(A) \subseteq \overline{D(B)}
$$

and

$$
\begin{aligned}
& D(A)=\left\{f \in X: \exists f_{n} \in D(B) \text { such that, if } f_{n} \rightarrow f \in X\right. \text { then } \\
& \left.\exists h=\lim _{n} B f_{n} \in X\right\} .
\end{aligned}
$$

For $f \in D(A)$ we have $A f=h$. Hence $D(\tilde{A}) \subset D_{\tilde{A}}(A) \subseteq \overline{D(B)}$. It means that there exists $y \in D(A)$ such that $y \notin D(\tilde{A})$. Thats why we
conclude that \tilde{A} is not closed, which contradicts to the assumption. Indeed, if we consider $f_{n} \in D(\tilde{A})$ with $f_{n} \rightarrow y, \tilde{A} f_{n}=A f_{n} \rightarrow g$ and since A is closed, then we'll see that $y \in D(A), A y=g$, but

$$
y \notin D(\tilde{A}) .
$$

c)

The proof of "if" part is obvious. It is sufficient to consider $\lambda=0$.
"Only if" part: The closability of B means that there exists a closed extension A of the operator B, i.e., $D(B) \subseteq D(A)$ and $A x=B x$ for $x \in D(B)$. Then $\lambda-A$ is a closed extension of $\lambda-B$. Indeed,

$$
D(\lambda-B)=D(B), \quad D(\lambda-A)=D(A) .
$$

Hence $D(\lambda-B) \subseteq D(\lambda-A)$. Clearly, for all $x \in D(\lambda-B)=D(B)$ we have, that

$$
(\lambda-A) x=\lambda x-A x=\lambda x-B x=(\lambda-B) x .
$$

$\overline{\lambda-B}=\lambda-\bar{B}$ is obvious.

Exercise 2. Prove the identity:

$$
\forall n \in \mathbb{N} \quad \sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=n e^{n} .
$$

Proof: Since the series

$$
\sum_{k=0}^{\infty} \frac{n^{k}}{k!}, \quad \sum_{k=0}^{\infty} \frac{k n^{k}}{k!}, \quad \sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!}
$$

are convergent, we can write

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=n^{2} \sum_{k=0}^{\infty} \frac{n^{k}}{k!}-2 n \sum_{k=0}^{\infty} \frac{k n^{k}}{k!}+\sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!}= \\
n^{2} e^{n}-2 n \sum_{k=0}^{\infty} \frac{k n^{k}}{k!}+\sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!} .
\end{gathered}
$$

$$
\sum_{k=0}^{\infty} \frac{k n^{k}}{k!}=\sum_{k=1}^{\infty} \frac{n^{k}}{(k-1)!}=n \sum_{j=0}^{\infty} \frac{n^{j}}{j!}=n e^{n} .
$$

Consequently,

$$
\sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=\sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!}-n^{2} e^{n} .
$$

Since

$$
\sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!}=\sum_{k=1}^{\infty} \frac{k n^{k}}{(k-1)!}=\sum_{k=0}^{\infty} \frac{n^{k+1}(k+1)}{k!}
$$

and since all the series are convergent, we can obtain that

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{k^{2} n^{k}}{k!}-n^{2} e^{n}=\sum_{k=0}^{\infty} \frac{n^{k+1}(k+1)}{k!}-\sum_{k=0}^{\infty} \frac{n^{2} n^{k}}{k!}=\sum_{k=0}^{\infty} \frac{n^{k+1}(k+1-n)}{k!}= \\
& \sum_{k=0}^{\infty} \frac{n^{k+1} k}{k!}+\sum_{k=0}^{\infty} \frac{n^{k+1}(1-n)}{k!}=\sum_{k=1}^{\infty} \frac{n^{k+1}}{(k-1)!}+\sum_{k=0}^{\infty} \frac{n^{k+1}(1-n)}{k!}= \\
& \sum_{k=0}^{\infty} \frac{n^{k+2}}{k!}+\sum_{k=0}^{\infty} \frac{n^{k+1}(1-n)}{k!}=\sum_{k=0}^{\infty} \frac{n^{k+2}+(1-n) n^{k+1}}{k!}=n \sum_{k=0}^{\infty} \frac{n^{k}}{k!}=n e^{n} .
\end{aligned}
$$

Vitaliy Marchenko

