Problem 1

a) Let us firstly show that (i) implies (iii). Denote the closure of B by \overline{B} . Consider the sequence (f_n) such that $f_n \in D(B)$ with $f_n \to 0$ and $Bf_n \to g$. Since \overline{B} is the closure of B we also have that $f_n \in D(\overline{B})$ and $\overline{B}f_n = Bf_n \to g$. As \overline{B} is closed, $g = \overline{B}0 = 0$, which completes the proof of this part.

Next we shall prove the implication $(iii) \Rightarrow (ii)$. Suppose (f,g), (f,h) belong to graph \overline{B} . Then there exist sequences (f_n, g_n) and (\tilde{f}_n, h_n) in graph B such that $(f_n, g_n) \rightarrow (f, g)$ and $(\tilde{f}_n, h_n) \rightarrow (f, h)$. Note that $g_n = Bf_n$ and $h_n = B\tilde{f}_n$ and thus $f_n - \tilde{f}_n \rightarrow 0$ and $B(f_n - \tilde{f}_n) \rightarrow g - h$. By (*iii*) this means that g - h = 0or g = h.

It remains to show that $(ii) \Rightarrow (i)$. To do this let us consider the operator A from (ii) and show that it is the closure of B, i.e., B is closable and $\overline{B} = A$. It is clear that $D(B) \subset D(A)$. If we have $f \in D(B)$ then (f, Af) belongs to graph \overline{B} . But (f, Bf) also belongs to graph \overline{B} . By the statement of (ii) this yields Af = Bf for $f \in D(B)$. Thus $A|_{D(B)} = B$. And so the proof of equivalence of the assertions is finished.

b) The operator A is closed and thus it is one of the closed extensions of B. Consider another closed extension S. Then graph $B \subset \operatorname{graph} S$ and so $\operatorname{graph} B \subset \operatorname{graph} S$. But graph $A = \operatorname{graph} B$ and as S is closed $\operatorname{graph} S = \operatorname{graph} S$. Therefore graph $A \subset \operatorname{graph} S$. This means that A is the smallest extension of B.

c) Suppose B is closable. Then by a) if we have $f_n \in D(B)$ with $f_n \to 0$ and $Bf_n \to g$, then g = 0. To show that $\lambda - B$ for $\lambda \in \mathbb{R}$ is closable, in view of a), it is enough to prove that if we have $h_n \in D(\lambda - B)$ with $h_n \to 0$ and $(\lambda - B)h_n \to h$ then h = 0. Clearly, $\lambda h_n \to 0$ and so $Bh_n \to h$. Observing that $D(B) = D(\lambda - B)$ we immediately obtain that h = 0. Thus $\lambda - B$ is closable. The reverse implication can be proved analogously.

To prove that $\overline{\lambda - B} = \lambda - \overline{B}$ observe first that

$$D(\overline{\lambda - B}) = \overline{D(\lambda - B)} = \overline{D(B)} = D(\overline{B}) = D(\lambda - \overline{B}).$$

Then consider $f \in \overline{D(B)}$. Let $h = (\overline{\lambda - B})f$ and $g = (\lambda - \overline{B})f$. We have to show that g = h. There exist a sequence (f_n) such that $f_n \in D(B)$ and $f_n \to f$. Then $(\lambda - B)f_n \to (\overline{\lambda - B})f = h$. But also $(\lambda - B)f_n = \lambda f_n - Bf_n \to (\lambda - \overline{B})f = g$. Hence g = h and so $\overline{\lambda - B} = \lambda - \overline{B}$.

Problem 2

Let us consider a finite sum:

$$\sum_{k=0}^{N} \frac{n^{k}}{k!} (n-k)^{2} = n^{2} \sum_{k=0}^{N} \frac{n^{k}}{k!} - 2n^{2} \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!} + \sum_{k=1}^{N} \frac{(k-1+1)n^{k}}{(k-1)!} = n^{2} \sum_{k=0}^{N} \frac{n^{k}}{k!} - 2n^{2} \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!} + n^{2} \sum_{k=2}^{N} \frac{n^{k-2}}{(k-2)!} + n \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!}$$

Now, using that $\sum_{k=0}^{+\infty} \frac{n^k}{k!} = e^n$ and taking the limit $N \to +\infty$, we obtain that

$$\sum_{k=0}^{+\infty} \frac{n^k}{k!} (n-k)^2 = ne^n.$$

Problem 3

Suppose, contrary to our claim, that $R(\lambda) = R(\lambda, B)$ and $R(\mu) = R(\mu, B)$ for different operators B and \tilde{B} . To be exact, assume that the operators $B := \lambda - R(\lambda)^{-1}$ and $\tilde{B} := \mu - R(\mu)^{-1}$ are different.

Since for $\lambda, \mu > \omega$ the resolvent identity

$$R(\lambda, A_n) - R(\mu, A_n) = (\mu - \lambda)R(\lambda, A_n)R(\mu, A_n)$$

holds, by passing to the limit we obtain the equality

$$R(\lambda) - R(\mu) = (\mu - \lambda)R(\lambda)R(\mu)$$

or after rewriting

$$R(\lambda) = R(\mu) \left[1 - (\mu - \lambda) R(\mu) \right]^{-1} = \left[R(\mu)^{-1} - \mu + \lambda \right]^{-1}.$$

From this it follows that

$$B - \widetilde{B} = \lambda - R(\lambda)^{-1} - \mu + R(\mu)^{-1} = 0.$$

Above contradiction completes the proof.

Problem 4

For each $n \in \mathbb{N}$ the operator A_n is acting on elements of l_2 as follows

$$A_n \mathbf{x} = (m_1 x_1, \dots m_n x_n, 0, \dots)$$

where $\mathbf{x} = (x_1, x_2, ...)$ and a sequence $m = (m_1, m_2, ...) \subseteq \mathbb{C}$. Such operators generate semigroups T_n with the same type (M, ω) if $\operatorname{Re} m_n < \omega$ for all $n \in \mathbb{N}$ and the semigroup T_n generated by A_n is defined as follows

$$T_n(t)\mathbf{x} = (e^{m_1 t} x_1, \dots, e^{m_n t} x_n, x_{n+1}, \dots).$$

Let us firstly check the assertion (i).

Consider the operator $A = M_m$. Then

$$A\mathbf{x} - A_n\mathbf{x} = (0, \dots, 0, m_{n+1}x_{n+1}, \dots)_n$$

where the first *n* elements are zeros. Since $\mathbf{x} \in l_2$, $A_n \mathbf{x} \to A \mathbf{x}$ if there exists ω_0 such that for all $n \in \mathbb{N}$, $|m_n| < \omega_0$. In our case $D = X = l_2$. It is obvious that $(\lambda - A)D$ is X for $\lambda > \omega$.

To check (ii) note that

$$R(\lambda, A_n)\mathbf{x} = \left((\lambda - m_1)^{-1} x_1, \dots, (\lambda - m_n)^{-1} x_n, \lambda^{-1} x_{n+1}, \dots \right)$$

and

$$\|R(\lambda, A_n)\| \le \frac{1}{\lambda - \omega}$$

Let us show that the limit $\lim_{n\to\infty} R(\lambda, A_n)g$ for all $g \in X$ and it is equal to $R(\lambda)g = R(\lambda, A)g$. For $g \in X$ we can find $f \in X$ such that $g = (\lambda - A)f$. Set $g_n = (\lambda - A_n)f_n$. By (i) we have $A_n f \to Af$ and so $g_n \to g$. Consider the following difference

$$R(\lambda, A)g - R(\lambda, A_n)g = R(\lambda, A)g - R(\lambda, A_n)(g - g_n) - R(\lambda, A_n)g_n$$

= $f - R(\lambda, A_n)(g - g_n) - f = -R(\lambda, A_n)(g - g_n).$

Since $||R(\lambda, A_n)|| \leq \frac{1}{\lambda - \omega}$ for all $n \in \mathbb{N}$ the last expression tends to zero as $n \to \infty$ and so

$$R(\lambda, A)g = \lim_{n \to \infty} R(\lambda, A_n)g.$$

For $\lambda > \omega$ the operator $R(\lambda) = R(\lambda, A)$ has dense range.

It remains to check (*iii*). The semigroup T generated by A is defined in the following way

$$T(t)\mathbf{x} = (e^{m_1 t} x_1, e^{m_2 t} x_n, \dots).$$

Let us fix an interval $[0, t_0]$. For $t \in [0, t_0]$

$$T(t)\mathbf{x} - T_n(t)\mathbf{x} = (0, \dots, (e^{m_{n+1}t} - 1)x_{n+1}, \dots)$$

Since $|e^{m_k t} - 1| \le 1 + e^{\omega t_0}$ and $\mathbf{x} \in l_2$ for every $\varepsilon > 0$ we can find N such that for all $n > N ||T(t)\mathbf{x} - T_n(t)\mathbf{x}|| < \varepsilon$. Thus *(iii)* holds.

L'viv Team: Oleksandr Chvartatskyi, Stepan Man'ko, Nataliya Pronska.