Problem 1

a) Let us firstly show that (i) implies (iii). Denote the closure of B by \bar{B}. Consider the sequence $\left(f_{n}\right)$ such that $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$. Since \bar{B} is the closure of B we also have that $f_{n} \in D(\bar{B})$ and $\bar{B} f_{n}=B f_{n} \rightarrow g$. As \bar{B} is closed, $g=\bar{B} 0=0$, which completes the proof of this part.

Next we shall prove the implication $(i i i) \Rightarrow(i i)$. Suppose $(f, g),(f, h)$ belong to $\overline{\operatorname{graph} B}$. Then there exist sequences $\left(f_{n}, g_{n}\right)$ and $\left(\tilde{f}_{n}, h_{n}\right)$ in graph B such that $\left(f_{n}, g_{n}\right) \rightarrow(f, g)$ and $\left(\tilde{f}_{n}, h_{n}\right) \rightarrow(f, h)$. Note that $g_{n}=B f_{n}$ and $h_{n}=B \tilde{f}_{n}$ and thus $f_{n}-\tilde{f}_{n} \rightarrow 0$ and $B\left(f_{n}-\tilde{f}_{n}\right) \rightarrow g-h$. By (iii) this means that $g-h=0$ or $g=h$.

It remains to show that $(i i) \Rightarrow(i)$. To do this let us consider the operator A from (ii) and show that it is the closure of B, i.e., B is closable and $\bar{B}=A$. It is clear that $D(B) \subset D(A)$. If we have $f \in D(B)$ then $(f, A f)$ belongs to $\overline{\operatorname{graph} B}$. But $(f, B f)$ also belongs to $\overline{\operatorname{graph} B}$. By the statement of (ii) this yields $A f=B f$ for $f \in D(B)$. Thus $\left.A\right|_{D(B)}=B$. And so the proof of equivalence of the assertions is finished.
b) The operator A is closed and thus it is one of the closed extensions of B. Consider another closed extension S. Then graph $B \subset \operatorname{graph} S$ and so $\overline{\operatorname{graph} B} \subset$ $\overline{\operatorname{graph} S}$. But graph $A=\overline{\operatorname{graph} B}$ and as S is closed $\overline{\operatorname{graph} S}=\operatorname{graph} S$. Therefore graph $A \subset \operatorname{graph} S$. This means that A is the smallest extension of B.
c) Suppose B is closable. Then by a) if we have $f_{n} \in D(B)$ with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$, then $g=0$. To show that $\lambda-B$ for $\lambda \in \mathbb{R}$ is closable, in view of a), it is enough to prove that if we have $h_{n} \in D(\lambda-B)$ with $h_{n} \rightarrow 0$ and $(\lambda-B) h_{n} \rightarrow h$ then $h=0$. Clearly, $\lambda h_{n} \rightarrow 0$ and so $B h_{n} \rightarrow h$. Observing that $D(B)=D(\lambda-B)$ we immediately obtain that $h=0$. Thus $\lambda-B$ is closable. The reverse implication can be proved analogously.

To prove that $\overline{\lambda-B}=\lambda-\bar{B}$ observe first that

$$
D(\overline{\lambda-B})=\overline{D(\lambda-B)}=\overline{D(B)}=D(\bar{B})=D(\lambda-\bar{B}) .
$$

Then consider $f \in \overline{D(B)}$. Let $h=(\overline{\lambda-B}) f$ and $g=(\lambda-\bar{B}) f$. We have to show that $g=h$. There exist a sequence $\left(f_{n}\right)$ such that $f_{n} \in D(B)$ and $f_{n} \rightarrow f$. Then $(\lambda-B) f_{n} \rightarrow(\overline{\lambda-B}) f=h$. But also $(\lambda-B) f_{n}=\lambda f_{n}-B f_{n} \rightarrow(\lambda-\bar{B}) f=g$. Hence $g=h$ and so $\overline{\lambda-B}=\lambda-\bar{B}$.

Problem 2

Let us consider a finite sum:

$$
\begin{gathered}
\sum_{k=0}^{N} \frac{n^{k}}{k!}(n-k)^{2}=n^{2} \sum_{k=0}^{N} \frac{n^{k}}{k!}-2 n^{2} \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!}+\sum_{k=1}^{N} \frac{(k-1+1) n^{k}}{(k-1)!}= \\
n^{2} \sum_{k=0}^{N} \frac{n^{k}}{k!}-2 n^{2} \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!}+n^{2} \sum_{k=2}^{N} \frac{n^{k-2}}{(k-2)!}+n \sum_{k=1}^{N} \frac{n^{k-1}}{(k-1)!}
\end{gathered}
$$

Now, using that $\sum_{k=0}^{+\infty} \frac{n^{k}}{k!}=e^{n}$ and taking the limit $N \rightarrow+\infty$, we obtain that

$$
\sum_{k=0}^{+\infty} \frac{n^{k}}{k!}(n-k)^{2}=n e^{n}
$$

Problem 3

Suppose, contrary to our claim, that $R(\lambda)=R(\lambda, B)$ and $R(\mu)=R(\mu, \widetilde{B})$ for different operators B and \widetilde{B}. To be exact, assume that the operators $B:=$ $\lambda-R(\lambda)^{-1}$ and $\widetilde{B}:=\mu-R(\mu)^{-1}$ are different.

Since for $\lambda, \mu>\omega$ the resolvent identity

$$
R\left(\lambda, A_{n}\right)-R\left(\mu, A_{n}\right)=(\mu-\lambda) R\left(\lambda, A_{n}\right) R\left(\mu, A_{n}\right)
$$

holds, by passing to the limit we obtain the equality

$$
R(\lambda)-R(\mu)=(\mu-\lambda) R(\lambda) R(\mu)
$$

or after rewriting

$$
R(\lambda)=R(\mu)[1-(\mu-\lambda) R(\mu)]^{-1}=\left[R(\mu)^{-1}-\mu+\lambda\right]^{-1}
$$

From this it follows that

$$
B-\widetilde{B}=\lambda-R(\lambda)^{-1}-\mu+R(\mu)^{-1}=0 .
$$

Above contradiction completes the proof.

Problem 4

For each $n \in \mathbb{N}$ the operator A_{n} is acting on elements of l_{2} as follows

$$
A_{n} \mathbf{x}=\left(m_{1} x_{1}, \ldots m_{n} x_{n}, 0, \ldots\right)
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and a sequence $m=\left(m_{1}, m_{2}, \ldots\right) \subseteq \mathbb{C}$. Such operators generate semigroups T_{n} with the same type (M, ω) if $\operatorname{Re} m_{n}<\omega$ for all $n \in \mathbb{N}$ and the semigroup T_{n} generated by A_{n} is defined as follows

$$
T_{n}(t) \mathbf{x}=\left(e^{m_{1} t} x_{1}, \ldots, e^{m_{n} t} x_{n}, x_{n+1}, \ldots\right)
$$

Let us firstly check the assertion (i).
Consider the operator $A=M_{m}$. Then

$$
A \mathbf{x}-A_{n} \mathbf{x}=\left(0, \ldots 0, m_{n+1} x_{n+1}, \ldots\right)
$$

where the first n elements are zeros. Since $\mathbf{x} \in l_{2}, A_{n} \mathbf{x} \rightarrow A \mathbf{x}$ if there exists ω_{0} such that for all $n \in \mathbb{N},\left|m_{n}\right|<\omega_{0}$. In our case $D=X=l_{2}$. It is obvious that $(\lambda-A) D$ is X for $\lambda>\omega$.

To check (ii) note that

$$
R\left(\lambda, A_{n}\right) \mathbf{x}=\left(\left(\lambda-m_{1}\right)^{-1} x_{1}, \ldots,\left(\lambda-m_{n}\right)^{-1} x_{n}, \lambda^{-1} x_{n+1}, \ldots\right)
$$

and

$$
\left\|R\left(\lambda, A_{n}\right)\right\| \leq \frac{1}{\lambda-\omega}
$$

Let us show that the limit $\lim _{n \rightarrow \infty} R\left(\lambda, A_{n}\right) g$ for all $g \in X$ and it is equal to $R(\lambda) g=$ $R(\lambda, A) g$. For $g \in X$ we can find $f \in X$ such that $g=(\lambda-A) f$. Set $g_{n}=\left(\lambda-A_{n}\right) f_{n}$. By (i) we have $A_{n} f \rightarrow A f$ and so $g_{n} \rightarrow g$. Consider the following difference

$$
\begin{aligned}
R(\lambda, A) g-R\left(\lambda, A_{n}\right) g & =R(\lambda, A) g-R\left(\lambda, A_{n}\right)\left(g-g_{n}\right)-R\left(\lambda, A_{n}\right) g_{n} \\
& =f-R\left(\lambda, A_{n}\right)\left(g-g_{n}\right)-f=-R\left(\lambda, A_{n}\right)\left(g-g_{n}\right)
\end{aligned}
$$

Since $\left\|R\left(\lambda, A_{n}\right)\right\| \leq \frac{1}{\lambda-\omega}$ for all $n \in \mathbb{N}$ the last expression tends to zero as $n \rightarrow \infty$ and so

$$
R(\lambda, A) g=\lim _{n \rightarrow \infty} R\left(\lambda, A_{n}\right) g
$$

For $\lambda>\omega$ the operator $R(\lambda)=R(\lambda, A)$ has dense range.
It remains to check (iii). The semigroup T generated by A is defined in the following way

$$
T(t) \mathbf{x}=\left(e^{m_{1} t} x_{1}, e^{m_{2} t} x_{n}, \ldots\right)
$$

Let us fix an interval $\left[0, t_{0}\right]$. For $t \in\left[0, t_{0}\right]$

$$
T(t) \mathbf{x}-T_{n}(t) \mathbf{x}=\left(0, \ldots 0,\left(e^{m_{n+1} t}-1\right) x_{n+1}, \ldots\right) .
$$

Since $\left|e^{m_{k} t}-1\right| \leq 1+e^{\omega t_{0}}$ and $\mathbf{x} \in l_{2}$ for every $\varepsilon>0$ we can find N such that for all $n>N\left\|T(t) \mathbf{x}-T_{n}(t) \mathbf{x}\right\|<\varepsilon$. Thus (iii) holds.

L’viv Team: Oleksandr Chvartatskyi, Stepan Man’ko, Nataliya Pronska.

