Solutions to the Exercises of Lecture b

Exercise 1

Exercise. Prove Proposition 5.2.

graphB and (¢,, By,) C graphB such that f, — f, Bf, — g, ¢, — [ and
By, — h as n — oo.

Let B be a closed extension of B, which exists by (i). Then we have Bf, = Bf, —
g and By, = By, — h as n — oo. Since B is closed, we have f € D(B) and
g=Bf=nh.

(i1) = (uii) : Let (f,) € D(B) be a sequence with f,, — 0 and Bf, — gasn — oo.
Since (f,, Bf,) C graphB, we thus have (0, g) € graphB. Let A be the operator
whose graph is graphB, which exists by (ii). It then holds g = A0 = 0.

(iii) = (i) : Define an operator B by D(B) = {f € X | 3(f,) € D(B): f. — f
and Bf, — g€ X asn — oo} and Bf = nh_)rgoBfn

We show that B is well-defined. Let (f,), (f,) € D(B) with f, — f, fo — f,
Bfn, — Bf and Bf, — g as n — co. Then we have B(f, — fn) Bf, — Bf, —
Bf —gasn — oo. Since f, — fo, — 0 as n — o0, (iii) implies Bf — g = 0, which
is Bf = g. Hence B ist well-defined.

It is clear that B is an extension of B.

Finally we show that B is closed. For this let (f,) C D(F) with f, — fand B fn

g as n — oo. Without loss of generality let || f, — f|| < & and ||Bf, —g|| < & for
all n € N. Choose (¢,) C D(B) such that ||¢, — f,|| < =~ and || By, — Bfn|| § o
for all n € N, which is possible due to the definition of B. Then we have [|¢, — f|| <
len = fall +11fn = fIl < 5 and [|Bon — gl < | Bewn — Bfall +1|Bfa —gll < 5. This
means ¢, — f and By, — g as n — oco. By the definiton of B we get f € D(B).
Hence B is closed.

(a): (i) = (i7) : Let (f, g), (f, h) € graphB. Then there exist sequences ( f,,, Bf,,) C

(b): Let A be a closed extension of B. For (f,9) € graphB there is a sequence
(fn) €S D(B) C D(A) such that f, — f and Af, = Bf, — g. Since A is closed, we
conclude f € D(A) and Af = g. Therefore, (f,g) € graphA. With the operator
A from (a) we thus get graphA = graphB C graphA and hence A C A. So A is
the smallest closed extension of B.

(c): Let B be closable and A € R. Let (f,) € D(A— B) = D(B) with f, — 0 and
(A= B)f, — g as n — oco. Then we have Bf,, — g as n — oo and hence, since
B is closable, by the implication (i) = (iii) of (a), g = 0. With the implication
(13i) = (i) of (a) we conclude that A — B is closable.

Analogously we deduce from the closability of A — B the closability of B.



For f € D(A — B) we find a sequence (f,) € D(\ — B) such that f, — f and
(A= B)f, — A — Bf as n — oco. Hence it follows Bf,, = A\f — A — Bf asn — oo
and therefore f € D(B) and Bf = A\f — A — Bf since B is closed. We thus get
(A= B)f = A — Bf and conclude A — B C A\ — B. Analogously we get the other
inclusion and hence have A — B = A — B.

Exercise 2

Exercise. Prove the identity T;C—’,c(n — k)? = ne" needed in Lemma 5.7.
k=0

For n € N it holds

= nk
an=h
k=0
—n2+n(n—1)2+in—k(n2—2kn+k2)
— 2
=n’+n(n Z; —2; +Z k—2)! +Z K1)
=n’+n(n—1)>+n*" —1—n)—2n*(e" —1)—|—ne + n(e” —1)

= ne".

Exercise 3

Exercise. Prove that in Proposition 5.5 for A\, u > w one has R(\) = R(\, B) and
R(n) = R(u, B) for the same operator B.

Let A\, > w. Recall from page 53 that R(\) and R(u) are injective and have
a common range R. Let y € R and set * = R(u) 'y € X. Beginning with the
resolvent identity we then conclude

RO - R(u)z = (1 — \ROVR()a
== AR(N)R(u)z — R(p)x = pRA)R(p)x — R(A)x
== AR(A\)y —y = pR(\)y — ROR(1) ™'y

— Ay — RO\ ly = py — R(p) 'y

So B is independent of which A > w you use in its definition. This shows the
assertion.



Exercise 4

Exercise. Consider the Banach space X := (? and recall that for a sequence
m C C the multiplication operator corresponding to m is denoted by M,,. Now for
n € N denote by 141 ... n) the characteristic sequence of the set {1,2,...,n}. Fora
giwen sequence m C C define m,, :=m -1y .,y and A, := M,,, the corresponding
multiplication operators. Check the various conditions of the second Trotter-Kato
theorem for this sequence of operators.

Let a sequence m = (y1,¥a,...) C C be given and m,, = (y1,...,9,,0,0,...). We
take a sequence A, = M,,, of multiplication operators on X = ¢* with D(A,)
X = (% Tt is clear that A, generates the strongly continuous semigroup T, (t)
with T,,(t)x = (e"'aq,...,e""x,, x,41,...). We note that for the multiplication
operator A with D(A) = {z € (* : mx € (*} and Az = mz, we have that D(A) is
dense in X because it contains all the finite sequences.

To apply the second Trotter-Kato-Theorem, we need to ensure that all the semi-
groups are of the same type (M,w), i.e. uniformly exponentially bounded, so for
the corresponding semigroups 7T, (t) it holds ||7,,(¢)|| < Me** (n € N). It holds for
1T

1T = sup [Tu(teill= sup [e™]= sup F)

1€{1,...,n} 1e{1,...,n} ie{l,...,n}

(with the standard basis of ¢*:{¢; : 1 € N},e; = (0,...,0,1,0,...) at the i-th com-
ponent)

It is now obvious that the real part of the given sequence m needs to be bounded
for the stability condition on the semigroups, so sup, ®(yx) < oo. Then all the
semigroups are uniformly bounded with exponent C' = sup, R(yx), i.e. are of type

(1,0).

For g € X we have f := (A—=m)'g € X and (A —m)f = g. So f € D(A)
and \f — Af = g with A > C, i.e. (A— A)D(A) is dense in X. It is clear that
A,f — Af in X for f € D(A).

So the requirements of Theorem 5.11a) are fullfilled.

Exercise 5

Exercise. Let A be the generator of a semigroup T of type (M,w) for some M > 1
and w € R on a Banach space (X, || -||) and let B be a bounded linear operator on
X. Then A+ B with D(A+ B) = D(A) is a generator of a semigroup.



Before we start the proof, we state the following lemma.

Lemma. Let (X,||-]|) be a Banach space and let A be the generator of a semigroup
T of type (M,w) for some M > 1 and w € R. Then there is an equivalent norm
Il - |l on X such that T is of type (1,w).

Proof. For x € X we define |||z]| := sup,qe **||T(s)x||. Clearly ||| - ||| is a norm
on X and we have

lzll] = supe™*||T'(s)z|| < supe™*Me**||lz[| = M||z|
s>0 s>0

for every x € X. Since the function s +— e “*||T(s)z|| is continuous, we obtain
il = [T (0)2]] = ll]]
for every x € X. Thus || - | and ||| - ||| are equivalent.
Finally we note that
lle™* T (t)[l| = Sup e e | T (s)T (t)x||

= supe T[T (s + t)a|| < supe (| T(r)z|| = |||
s>0 r>0

holds for all x € X and ¢t > 0 so that we have
IIT@)]| < et forallt >0,

as asserted. O

Now we return to the proof of Exercise 5. Our aim is to apply Chernoff’s product
formula as stated in Theorem 5.12.

Proof. As in the preceding lemma, we endow X with a norm ||| - ||| such that T" is
of type (1,w).

Next, we define F': [0,00) — L(X) by
F(t)=ePT(t) fort>0,

where e® is the semigroup of type (1, [||B]|) generated by B, see exercise 1 of
lecture 2. Note that the proof of the lemma also implies ||| B]|| < M||B]].



Then F(0) = I and we have
E@" = T )| < et HiEhm, (1)
forall t > 0 and n € N.

Moreover, for all f € D(A) it holds

P =f TN =] _ o (TS =0) & s

h B h h h

When h tends to 0 from above, the second summand converges to B f and we want
to show that the first summand converges to Af. In fact, for f € D(A) and h > 0
we compute

()]

h
<l (= - ar) s

f-
H I )h — Af||| + ||[e"PAf — Af]]| -
Since A is the generator of T and e? is strongly continous, the right hand side
tends to 0 as h tends to 0 from above. Hence we have shown that for all f € D(A)
it holds
L F()F =1
im ———
AN h

< MBI

= Af + Bf.

For A > w + ||| B||| Proposition 2.26¢) yields
1Bl
BRM\A)|| < ——<1
I8RO ) < LEL

By this and the closedness of A+ B with D(A+ B) = D(A) we have A € p(A+ B),
where the resolvent is given by

R(\, A+ B) A)> (BR(), A))
n=0
In particular (A — (A+ B))D(A) is dense in X. All assumptions of Theorem 5.12
are now satisfied and thus A + B generates a strongly continuous semigroup S.
It is given by

S(#)f = lim (F(t/n))"f

n—oo



for all f € X and ¢t > 0. From (1) we see that S is of type (1,w + ||B]|]) in
(X, ||| - IN- Moreover we conclude from

IS < MS@FIN < “HIEDYfI| < prelr BN g
for all f € X that S is of type (M,w + M||B|) in (X, || - || O
Exercise 6

Exercise. Prove that if F, F,: [0,t)] — L(X) are uniformly bounded functions,
then the following assertions are equaivalent.

1. F,(t)x — F(t)x uniformly on [0,tg] as n — oo for each x € X.

2. F,(t)xr — F(t)x uniformly on [0,t] as n — oo for each x € D from a dense
subspace D.

3. F,(t)x — F(t)x uniformly on [0,ty] x K as n — oo for each compact set
K CX.

(i) = (i7) : This is trivial by choosing D = X.

(77) = (i7i) : Let M > 0 be such that ||F|| < M and || F,|| < M for all n € N. Let

D C X be a dense subspace with F,,(t)z — F(t)z uniformly on [0, ty] as n — oo

for each # € D. Let € > 0. Set B, := B(x, 55;) for every x € D. Since D is dense

in X, we have K C X C J B,. The compactness of K and the openness of the
zeD

d
B, deliver that we can choose finitely many z1,...,24 € D with K C |J B,,. The

=1
uniform convergence on D gives us for all ¢ € {i,...,d} indices nq,...,ny € N such
that || F,(t)z; — F(t)z;|| < § for all n > n; and all ¢ € [0,%o]. Set ng := max n;.
i=1,...,
For every x € K let Z be an element of {z,...,x4} such that € B;. Hence we

get for all n > ng and all ¢t € [0, to]
sup||Fy,(t)x — F(t)x||
zeK
< Sg}g(lan(t)x — F(0)2|| + [|[Fa(t)2 — F(t)Z|| + [|F(6)2 — F(t)z])

=< SUE(M o = &) + | Fa(t)E — F()a]| + M - [|7 — )
kS

e € 3

<sup (Moo o+ Moo ) =
<sup (M- gy +5+ M g57) =

This shows that F,,(t)z converges to F(t)z uniformly on [0, %] x K as n — oc.

(1ii) = (i) : For each x € X choose K, = {z}. Then K, is compact and the

assertion follows.
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