
Solutions to the Exercises of Lecture 5
Exercise 1

Exercise. Prove Proposition 5.2.

(a): (i) ⇒ (ii) : Let (f, g), (f, h) ∈ graphB. Then there exist sequences (fn, Bfn) ⊆
graphB and (ϕn, Bϕn) ⊆ graphB such that fn → f , Bfn → g, ϕn → f and
Bϕn → h as n →∞.
Let B be a closed extension of B, which exists by (i). Then we have Bfn = Bfn →
g and Bϕn = Bϕn → h as n → ∞. Since B is closed, we have f ∈ D(B) and
g = Bf = h.
(ii) ⇒ (iii) : Let (fn) ⊆ D(B) be a sequence with fn → 0 and Bfn → g as n →∞.
Since (fn, Bfn) ⊆ graphB, we thus have (0, g) ∈ graphB. Let A be the operator
whose graph is graphB, which exists by (ii). It then holds g = A0 = 0.
(iii) ⇒ (i) : Define an operator B by D(B) = {f ∈ X | ∃(fn) ⊆ D(B) : fn → f
and Bfn → g ∈ X as n →∞} and Bf := lim

n→∞
Bfn.

We show that B is well-defined. Let (fn), (f̃n) ⊆ D(B) with fn → f , f̃n → f ,
Bfn → Bf and Bf̃n → g as n → ∞. Then we have B(fn − f̃n) = Bfn − Bf̃n →
Bf − g as n →∞. Since fn − f̃n → 0 as n →∞, (iii) implies Bf − g = 0, which
is Bf = g. Hence B ist well-defined.
It is clear that B is an extension of B.
Finally we show that B is closed. For this let (fn) ⊆ D(B) with fn → f and Bfn →
g as n →∞. Without loss of generality let ‖fn− f‖ ≤ 1

2n
and ‖Bfn− g‖ ≤ 1

2n
for

all n ∈ N. Choose (ϕn) ⊆ D(B) such that ‖ϕn− fn‖ ≤ 1
2n

and ‖Bϕn−Bfn‖ ≤ 1
2n

for all n ∈ N, which is possible due to the definition of B. Then we have ‖ϕn−f‖ ≤
‖ϕn− fn‖+ ‖fn− f‖ ≤ 1

n
and ‖Bϕn− g‖ ≤ ‖Bϕn−Bfn‖+ ‖Bfn− g‖ ≤ 1

n
. This

means ϕn → f and Bϕn → g as n →∞. By the definiton of B we get f ∈ D(B).
Hence B is closed.

(b): Let Ã be a closed extension of B. For (f, g) ∈ graphB there is a sequence
(fn) ⊆ D(B) ⊆ D(Ã) such that fn → f and Ãfn = Bfn → g. Since Ã is closed, we
conclude f ∈ D(Ã) and Ãf = g. Therefore, (f, g) ∈ graphÃ. With the operator
A from (a) we thus get graphA = graphB ⊆ graphÃ and hence A ⊆ Ã. So A is
the smallest closed extension of B.

(c): Let B be closable and λ ∈ R. Let (fn) ⊆ D(λ−B) = D(B) with fn → 0 and
(λ − B)fn → g as n → ∞. Then we have Bfn → g as n → ∞ and hence, since
B is closable, by the implication (i) ⇒ (iii) of (a), g = 0. With the implication
(iii) ⇒ (i) of (a) we conclude that λ−B is closable.
Analogously we deduce from the closability of λ−B the closability of B.
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For f ∈ D(λ−B) we find a sequence (fn) ⊆ D(λ − B) such that fn → f and
(λ−B)fn → λ−Bf as n →∞. Hence it follows Bfn → λf − λ−Bf as n →∞
and therefore f ∈ D(B) and Bf = λf − λ−Bf since B is closed. We thus get
(λ − B)f = λ−Bf and conclude λ−B ⊆ λ − B. Analogously we get the other
inclusion and hence have λ−B = λ−B.

Exercise 2

Exercise. Prove the identity
∞∑

k=0

nk

k!
(n− k)2 = nen needed in Lemma 5.7.

For n ∈ N it holds
∞∑

k=0

nk

k!
(n− k)2

= n2 + n(n− 1)2 +
∞∑

k=2

nk

k!
(n2 − 2kn + k2)

= n2 + n(n− 1)2 +
∞∑

k=2

nk

k!
· n2 − 2 ·

∞∑
k=2

nk+1

(k − 1)!
+

∞∑
k=2

nk

(k − 2)!
+

∞∑
k=2

nk

(k − 1)!

= n2 + n(n− 1)2 + n2(en − 1− n)− 2n2(en − 1) + n2en + n(en − 1)

= nen.

Exercise 3

Exercise. Prove that in Proposition 5.5 for λ, µ > ω one has R(λ) = R(λ, B) and
R(µ) = R(µ, B) for the same operator B.

Let λ, µ > ω. Recall from page 53 that R(λ) and R(µ) are injective and have
a common range R. Let y ∈ R and set x = R(µ)−1y ∈ X. Beginning with the
resolvent identity we then conclude

R(λ)x−R(µ)x = (µ− λ)R(λ)R(µ)x

=⇒λR(λ)R(µ)x−R(µ)x = µR(λ)R(µ)x−R(λ)x

=⇒λR(λ)y − y = µR(λ)y −R(λ)R(µ)−1y

=⇒λy −R(λ)−1y = µy −R(µ)−1y.

So B is independent of which λ > ω you use in its definition. This shows the
assertion.
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Exercise 4

Exercise. Consider the Banach space X := `2 and recall that for a sequence
m ⊆ C the multiplication operator corresponding to m is denoted by Mm. Now for
n ∈ N denote by 1{1,2,...,n} the characteristic sequence of the set {1, 2, . . . , n}. For a
given sequence m ⊆ C define mn := m ·1{1,...,n} and An := Mmn the corresponding
multiplication operators. Check the various conditions of the second Trotter-Kato
theorem for this sequence of operators.

Let a sequence m = (y1, y2, . . . ) ⊂ C be given and mn = (y1, . . . , yn, 0, 0, . . . ). We
take a sequence An = Mmn of multiplication operators on X = `2 with D(An) =
X = `2. It is clear that An generates the strongly continuous semigroup Tn(t)
with Tn(t)x = (ety1x1, . . . , e

tynxn, xn+1, . . . ). We note that for the multiplication
operator A with D(A) = {x ∈ `2 : mx ∈ `2} and Ax = mx, we have that D(A) is
dense in X because it contains all the finite sequences.

To apply the second Trotter-Kato-Theorem, we need to ensure that all the semi-
groups are of the same type (M, ω), i.e. uniformly exponentially bounded, so for
the corresponding semigroups Tn(t) it holds ‖Tn(t)‖ ≤ Meωt (n ∈ N). It holds for
‖Tn‖:

‖Tn(t)‖ = sup
i∈{1,...,n}

‖Tn(t)ei‖ = sup
i∈{1,...,n}

|etyi| = sup
i∈{1,...,n}

et<(yi)

(with the standard basis of `2:{ei : i ∈ N}, ei = (0, . . . , 0, 1, 0, . . . ) at the i-th com-
ponent)
It is now obvious that the real part of the given sequence m needs to be bounded
for the stability condition on the semigroups, so supk <(yk) < ∞. Then all the
semigroups are uniformly bounded with exponent C = supk <(yk), i.e. are of type
(1, C).

For g ∈ X we have f := (λ − m)−1g ∈ X and (λ − m)f = g. So f ∈ D(A)
and λf − Af = g with λ > C, i.e. (λ − A)D(A) is dense in X. It is clear that
Anf → Af in X for f ∈ D(A).
So the requirements of Theorem 5.11a) are fullfilled.

Exercise 5

Exercise. Let A be the generator of a semigroup T of type (M, ω) for some M ≥ 1
and ω ∈ R on a Banach space (X, ‖ · ‖) and let B be a bounded linear operator on
X. Then A + B with D(A + B) = D(A) is a generator of a semigroup.
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Before we start the proof, we state the following lemma.

Lemma. Let (X, ‖·‖) be a Banach space and let A be the generator of a semigroup
T of type (M, ω) for some M ≥ 1 and ω ∈ R. Then there is an equivalent norm
||| · ||| on X such that T is of type (1, ω).

Proof. For x ∈ X we define |||x||| := sups>0 e−ωs‖T (s)x‖. Clearly ||| · ||| is a norm
on X and we have

|||x||| = sup
s>0

e−ωs‖T (s)x‖ ≤ sup
s>0

e−ωsMeωs‖x‖ = M‖x‖

for every x ∈ X. Since the function s 7→ e−ωs‖T (s)x‖ is continuous, we obtain

|||x||| ≥ ‖T (0)x‖ = ‖x‖

for every x ∈ X. Thus ‖ · ‖ and ||| · ||| are equivalent.

Finally we note that

|||e−ωtT (t)x||| = sup
s>0

e−ωse−ωt‖T (s)T (t)x‖

= sup
s>0

e−ω(s+t)‖T (s + t)x‖ ≤ sup
r>0

e−ωr‖T (r)x‖ = |||x|||

holds for all x ∈ X and t ≥ 0 so that we have

|||T (t)||| ≤ eωt for all t ≥ 0,

as asserted.

Now we return to the proof of Exercise 5. Our aim is to apply Chernoff’s product
formula as stated in Theorem 5.12.

Proof. As in the preceding lemma, we endow X with a norm ||| · ||| such that T is
of type (1, ω).

Next, we define F : [0,∞) → L(X) by

F (t) = etBT (t) for t ≥ 0,

where e·B is the semigroup of type (1, |||B|||) generated by B, see exercise 1 of
lecture 2. Note that the proof of the lemma also implies |||B||| ≤ M‖B‖.
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Then F (0) = I and we have

|||F (t)n||| = |||(etBT (t))n||| ≤ e(ω+|||B|||)nt, (1)

for all t ≥ 0 and n ∈ N.

Moreover, for all f ∈ D(A) it holds

F (h)f − f

h
=

ehBT (h)f − f

h
= ehB

(
T (h)f − f

h

)
+

ehBf − f

h
, h > 0.

When h tends to 0 from above, the second summand converges to Bf and we want
to show that the first summand converges to Af . In fact, for f ∈ D(A) and h > 0
we compute∣∣∣∣∣∣∣∣∣∣∣∣ehB

(
T (h)f − f

h

)
− Af

∣∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣∣ehB

(
T (h)f − f

h
− Af

)∣∣∣∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣ehBAf − Af

∣∣∣∣∣∣
≤ eh|||B|||

∣∣∣∣∣∣∣∣∣∣∣∣T (h)f − f

h
− Af

∣∣∣∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣ehBAf − Af

∣∣∣∣∣∣ .

Since A is the generator of T and e·B is strongly continous, the right hand side
tends to 0 as h tends to 0 from above. Hence we have shown that for all f ∈ D(A)
it holds

lim
h↘0

F (h)f − f

h
= Af + Bf.

For λ > ω + |||B||| Proposition 2.26c) yields

|||BR(λ, A)||| ≤ |||B|||
λ− ω

< 1.

By this and the closedness of A+B with D(A+B) = D(A) we have λ ∈ ρ(A+B),
where the resolvent is given by

R(λ, A + B) = R(λ, A)
∞∑

n=0

(BR(λ, A))n.

In particular (λ− (A + B))D(A) is dense in X. All assumptions of Theorem 5.12
are now satisfied and thus A + B generates a strongly continuous semigroup S.

It is given by
S(t)f = lim

n→∞
(F (t/n))nf
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for all f ∈ X and t ≥ 0. From (1) we see that S is of type (1, ω + |||B|||) in
(X, ||| · |||). Moreover we conclude from

‖S(t)f‖ ≤ |||S(t)f ||| ≤ e(ω+|||B|||)t|||f ||| ≤ Me(ω+M‖B‖)t‖f‖

for all f ∈ X that S is of type (M, ω + M‖B‖) in (X, ‖ · ‖).

Exercise 6

Exercise. Prove that if F, Fn : [0, t0] → L(X) are uniformly bounded functions,
then the following assertions are equaivalent.

1. Fn(t)x → F (t)x uniformly on [0, t0] as n →∞ for each x ∈ X.

2. Fn(t)x → F (t)x uniformly on [0, t0] as n →∞ for each x ∈ D from a dense
subspace D.

3. Fn(t)x → F (t)x uniformly on [0, t0] × K as n → ∞ for each compact set
K ⊆ X.

(i) ⇒ (ii) : This is trivial by choosing D = X.
(ii) ⇒ (iii) : Let M ≥ 0 be such that ‖F‖ ≤ M and ‖Fn‖ ≤ M for all n ∈ N. Let
D ⊆ X be a dense subspace with Fn(t)x → F (t)x uniformly on [0, t0] as n → ∞
for each x ∈ D. Let ε > 0. Set Bx := B(x, ε

3M
) for every x ∈ D. Since D is dense

in X, we have K ⊆ X ⊆
⋃

x∈D

Bx. The compactness of K and the openness of the

Bx deliver that we can choose finitely many x1, . . . , xd ∈ D with K ⊆
d⋃

i=1

Bxi
. The

uniform convergence on D gives us for all i ∈ {i, . . . , d} indices n1, . . . , nd ∈ N such
that ‖Fn(t)xi − F (t)xi‖ ≤ ε

3
for all n ≥ ni and all t ∈ [0, t0]. Set n0 := max

i=1,...,d
ni.

For every x ∈ K let x̃ be an element of {x1, . . . , xd} such that x ∈ Bx̃. Hence we
get for all n ≥ n0 and all t ∈ [0, t0]

sup
x∈K

‖Fn(t)x− F (t)x‖

≤ sup
x∈K

(
‖Fn(t)x− Fn(t)x̃‖+ ‖Fn(t)x̃− F (t)x̃‖+ ‖F (t)x̃− F (t)x‖

)
≤ sup

x∈K

(
M · ‖x− x̃‖+ ‖Fn(t)x̃− F (t)x̃‖+ M · ‖x̃− x‖

)
≤ sup

x∈K

(
M · ε

3M
+

ε

3
+ M · ε

3M

)
= ε.

This shows that Fn(t)x converges to F (t)x uniformly on [0, t0]×K as n →∞.
(iii) ⇒ (i) : For each x ∈ X choose Kx = {x}. Then Kx is compact and the
assertion follows.

6



Johannes Eilinghoff, Andreas Geyer-Schulz, Alexander Grimm and
Roland Schnaubelt

for the team of Karlsruhe

7


