Solutions to the Exercises of Lecture 5

Exercise 1

Exercise. Prove Proposition 5.2.

(a): $(i) \Rightarrow (ii)$: Let $(f, g), (f, h) \in \overline{\text{graph}B}$. Then there exist sequences $(f_n, Bf_n) \subseteq \text{graph}B$ and $(\varphi_n, B\varphi_n) \subseteq \text{graph}B$ such that $f_n \to f, Bf_n \to g, \varphi_n \to f$ and $B\varphi_n \to h$ as $n \to \infty$.

Let \overline{B} be a closed extension of B, which exists by (i). Then we have $\overline{B}f_n = Bf_n \to g$ and $\overline{B}\varphi_n = B\varphi_n \to h$ as $n \to \infty$. Since \overline{B} is closed, we have $f \in D(\overline{B})$ and $g = \overline{B}f = h$.

 $(ii) \Rightarrow (iii)$: Let $(f_n) \subseteq D(B)$ be a sequence with $f_n \to 0$ and $Bf_n \to g$ as $n \to \infty$. Since $(f_n, Bf_n) \subseteq \text{graph}B$, we thus have $(0, g) \in \overline{\text{graph}B}$. Let A be the operator whose graph is $\overline{\text{graph}B}$, which exists by (ii). It then holds g = A0 = 0.

 $(iii) \Rightarrow (i)$: Define an operator \overline{B} by $D(\overline{B}) = \{f \in X \mid \exists (f_n) \subseteq D(B) : f_n \to f$ and $Bf_n \to g \in X$ as $n \to \infty\}$ and $\overline{B}f := \lim_{n \to \infty} Bf_n$.

We show that \overline{B} is well-defined. Let $(f_n), (\tilde{f}_n) \subseteq D(B)$ with $f_n \to f, \tilde{f}_n \to f,$ $Bf_n \to \overline{B}f$ and $B\tilde{f}_n \to g$ as $n \to \infty$. Then we have $B(f_n - \tilde{f}_n) = Bf_n - B\tilde{f}_n \to \overline{B}f - g$ as $n \to \infty$. Since $f_n - \tilde{f}_n \to 0$ as $n \to \infty$, (iii) implies $\overline{B}f - g = 0$, which is $\overline{B}f = g$. Hence \overline{B} ist well-defined.

It is clear that B is an extension of B.

Finally we show that \overline{B} is closed. For this let $(f_n) \subseteq D(\overline{B})$ with $f_n \to f$ and $\overline{B}f_n \to g$ as $n \to \infty$. Without loss of generality let $||f_n - f|| \leq \frac{1}{2n}$ and $||\overline{B}f_n - g|| \leq \frac{1}{2n}$ for all $n \in \mathbb{N}$. Choose $(\varphi_n) \subseteq D(B)$ such that $||\varphi_n - f_n|| \leq \frac{1}{2n}$ and $||B\varphi_n - \overline{B}f_n|| \leq \frac{1}{2n}$ for all $n \in \mathbb{N}$, which is possible due to the definition of \overline{B} . Then we have $||\varphi_n - f|| \leq ||\varphi_n - f_n|| + ||f_n - f|| \leq \frac{1}{n}$ and $||\overline{B}\varphi_n - g|| \leq ||B\varphi_n - \overline{B}f_n|| + ||\overline{B}f_n - g|| \leq \frac{1}{n}$. This means $\varphi_n \to f$ and $\overline{B}\varphi_n \to g$ as $n \to \infty$. By the definition of \overline{B} we get $f \in D(\overline{B})$. Hence \overline{B} is closed.

(b): Let \tilde{A} be a closed extension of B. For $(f,g) \in \overline{\operatorname{graph}B}$ there is a sequence $(f_n) \subseteq D(B) \subseteq D(\tilde{A})$ such that $f_n \to f$ and $\tilde{A}f_n = Bf_n \to g$. Since \tilde{A} is closed, we conclude $f \in D(\tilde{A})$ and $\tilde{A}f = g$. Therefore, $(f,g) \in \operatorname{graph}\tilde{A}$. With the operator A from (a) we thus get $\operatorname{graph}A = \overline{\operatorname{graph}B} \subseteq \operatorname{graph}\tilde{A}$ and hence $A \subseteq \tilde{A}$. So A is the smallest closed extension of B.

(c): Let B be closable and $\lambda \in \mathbb{R}$. Let $(f_n) \subseteq D(\lambda - B) = D(B)$ with $f_n \to 0$ and $(\lambda - B)f_n \to g$ as $n \to \infty$. Then we have $Bf_n \to g$ as $n \to \infty$ and hence, since B is closable, by the implication $(i) \Rightarrow (iii)$ of (a), g = 0. With the implication $(iii) \Rightarrow (i)$ of (a) we conclude that $\lambda - B$ is closable.

Analogously we deduce from the closability of $\lambda - B$ the closability of B.

For $f \in D(\overline{\lambda - B})$ we find a sequence $(f_n) \subseteq D(\lambda - B)$ such that $f_n \to f$ and $(\lambda - B)f_n \to \overline{\lambda - B}f$ as $n \to \infty$. Hence it follows $Bf_n \to \lambda f - \overline{\lambda - B}f$ as $n \to \infty$ and therefore $f \in D(\overline{B})$ and $\overline{B}f = \lambda f - \overline{\lambda - B}f$ since \overline{B} is closed. We thus get $(\lambda - \overline{B})f = \overline{\lambda - B}f$ and conclude $\overline{\lambda - B} \subseteq \lambda - \overline{B}$. Analogously we get the other inclusion and hence have $\overline{\lambda - B} = \lambda - \overline{B}$.

Exercise 2

Exercise. Prove the identity $\sum_{k=0}^{\infty} \frac{n^k}{k!} (n-k)^2 = ne^n$ needed in Lemma 5.7.

For $n \in \mathbb{N}$ it holds

$$\begin{split} &\sum_{k=0}^{\infty} \frac{n^k}{k!} (n-k)^2 \\ &= n^2 + n(n-1)^2 + \sum_{k=2}^{\infty} \frac{n^k}{k!} (n^2 - 2kn + k^2) \\ &= n^2 + n(n-1)^2 + \sum_{k=2}^{\infty} \frac{n^k}{k!} \cdot n^2 - 2 \cdot \sum_{k=2}^{\infty} \frac{n^{k+1}}{(k-1)!} + \sum_{k=2}^{\infty} \frac{n^k}{(k-2)!} + \sum_{k=2}^{\infty} \frac{n^k}{(k-1)!} \\ &= n^2 + n(n-1)^2 + n^2(e^n - 1 - n) - 2n^2(e^n - 1) + n^2e^n + n(e^n - 1) \\ &= ne^n. \end{split}$$

Exercise 3

Exercise. Prove that in Proposition 5.5 for $\lambda, \mu > \omega$ one has $R(\lambda) = R(\lambda, B)$ and $R(\mu) = R(\mu, B)$ for the same operator B.

Let $\lambda, \mu > \omega$. Recall from page 53 that $R(\lambda)$ and $R(\mu)$ are injective and have a common range R. Let $y \in R$ and set $x = R(\mu)^{-1}y \in X$. Beginning with the resolvent identity we then conclude

$$R(\lambda)x - R(\mu)x = (\mu - \lambda)R(\lambda)R(\mu)x$$

$$\Longrightarrow \lambda R(\lambda)R(\mu)x - R(\mu)x = \mu R(\lambda)R(\mu)x - R(\lambda)x$$

$$\Longrightarrow \lambda R(\lambda)y - y = \mu R(\lambda)y - R(\lambda)R(\mu)^{-1}y$$

$$\Longrightarrow \lambda y - R(\lambda)^{-1}y = \mu y - R(\mu)^{-1}y.$$

So B is independent of which $\lambda > \omega$ you use in its definition. This shows the assertion.

Exercise 4

Exercise. Consider the Banach space $X := \ell^2$ and recall that for a sequence $m \subseteq \mathbb{C}$ the multiplication operator corresponding to m is denoted by M_m . Now for $n \in \mathbb{N}$ denote by $\mathbb{1}_{\{1,2,\dots,n\}}$ the characteristic sequence of the set $\{1,2,\dots,n\}$. For a given sequence $m \subseteq \mathbb{C}$ define $m_n := m \cdot \mathbb{1}_{\{1,\dots,n\}}$ and $A_n := M_{m_n}$ the corresponding multiplication operators. Check the various conditions of the second Trotter-Kato theorem for this sequence of operators.

Let a sequence $m = (y_1, y_2, ...) \subset \mathbb{C}$ be given and $m_n = (y_1, ..., y_n, 0, 0, ...)$. We take a sequence $A_n = M_{m_n}$ of multiplication operators on $X = \ell^2$ with $D(A_n) = X = \ell^2$. It is clear that A_n generates the strongly continuous semigroup $T_n(t)$ with $T_n(t)x = (e^{ty_1}x_1, ..., e^{ty_n}x_n, x_{n+1}, ...)$. We note that for the multiplication operator A with $D(A) = \{x \in \ell^2 : mx \in \ell^2\}$ and Ax = mx, we have that D(A) is dense in X because it contains all the finite sequences.

To apply the second Trotter-Kato-Theorem, we need to ensure that all the semigroups are of the same type (M, ω) , i.e. uniformly exponentially bounded, so for the corresponding semigroups $T_n(t)$ it holds $||T_n(t)|| \leq Me^{\omega t}$ $(n \in \mathbb{N})$. It holds for $||T_n||$:

$$||T_n(t)|| = \sup_{i \in \{1,\dots,n\}} ||T_n(t)e_i|| = \sup_{i \in \{1,\dots,n\}} |e^{ty_i}| = \sup_{i \in \{1,\dots,n\}} e^{t\Re(y_i)}$$

(with the standard basis of ℓ^2 : $\{e_i : i \in \mathbb{N}\}, e_i = (0, \dots, 0, 1, 0, \dots)$ at the i-th component)

It is now obvious that the real part of the given sequence m needs to be bounded for the stability condition on the semigroups, so $\sup_k \Re(y_k) < \infty$. Then all the semigroups are uniformly bounded with exponent $C = \sup_k \Re(y_k)$, i.e. are of type (1, C).

For $g \in X$ we have $f := (\lambda - m)^{-1}g \in X$ and $(\lambda - m)f = g$. So $f \in D(A)$ and $\lambda f - Af = g$ with $\lambda > C$, i.e. $(\lambda - A)D(A)$ is dense in X. It is clear that $A_n f \to Af$ in X for $f \in D(A)$.

So the requirements of Theorem 5.11a) are fullfilled.

Exercise 5

Exercise. Let A be the generator of a semigroup T of type (M, ω) for some $M \ge 1$ and $\omega \in \mathbb{R}$ on a Banach space $(X, \|\cdot\|)$ and let B be a bounded linear operator on X. Then A + B with D(A + B) = D(A) is a generator of a semigroup. Before we start the proof, we state the following lemma.

Lemma. Let $(X, \|\cdot\|)$ be a Banach space and let A be the generator of a semigroup T of type (M, ω) for some $M \ge 1$ and $\omega \in \mathbb{R}$. Then there is an equivalent norm $\|\|\cdot\|\|$ on X such that T is of type $(1, \omega)$.

Proof. For $x \in X$ we define $|||x||| := \sup_{s>0} e^{-\omega s} ||T(s)x||$. Clearly $||| \cdot |||$ is a norm on X and we have

$$|||x||| = \sup_{s>0} e^{-\omega s} ||T(s)x|| \le \sup_{s>0} e^{-\omega s} M e^{\omega s} ||x|| = M ||x||$$

for every $x \in X$. Since the function $s \mapsto e^{-\omega s} ||T(s)x||$ is continuous, we obtain

$$|||x||| \ge ||T(0)x|| = ||x||$$

for every $x \in X$. Thus $\|\cdot\|$ and $\|\cdot\|$ are equivalent.

Finally we note that

$$\|\|e^{-\omega t}T(t)x\|\| = \sup_{s>0} e^{-\omega s} e^{-\omega t} \|T(s)T(t)x\|$$
$$= \sup_{s>0} e^{-\omega(s+t)} \|T(s+t)x\| \le \sup_{r>0} e^{-\omega r} \|T(r)x\| = \|\|x\|\|$$

holds for all $x \in X$ and $t \ge 0$ so that we have

$$|||T(t)||| \le e^{\omega t} \quad \text{for all } t \ge 0,$$

as asserted.

Now we return to the proof of Exercise 5. Our aim is to apply Chernoff's product formula as stated in Theorem 5.12.

Proof. As in the preceding lemma, we endow X with a norm $||| \cdot |||$ such that T is of type $(1, \omega)$.

Next, we define $F: [0, \infty) \to \mathcal{L}(X)$ by

$$F(t) = e^{tB}T(t) \quad \text{for } t \ge 0,$$

where $e^{\cdot B}$ is the semigroup of type (1, |||B|||) generated by B, see exercise 1 of lecture 2. Note that the proof of the lemma also implies $|||B||| \leq M||B||$.

Then F(0) = I and we have

$$|||F(t)^{n}||| = |||(e^{tB}T(t))^{n}||| \le e^{(\omega + |||B|||)nt},$$
(1)

for all $t \geq 0$ and $n \in \mathbb{N}$.

Moreover, for all $f \in D(A)$ it holds

$$\frac{F(h)f-f}{h} = \frac{\mathrm{e}^{hB}T(h)f-f}{h} = \mathrm{e}^{hB}\left(\frac{T(h)f-f}{h}\right) + \frac{\mathrm{e}^{hB}f-f}{h}, \quad h > 0.$$

When h tends to 0 from above, the second summand converges to Bf and we want to show that the first summand converges to Af. In fact, for $f \in D(A)$ and h > 0we compute

$$\begin{aligned} \left\| \left\| e^{hB} \left(\frac{T(h)f - f}{h} \right) - Af \right\| \\ & \leq \left\| \left\| e^{hB} \left(\frac{T(h)f - f}{h} - Af \right) \right\| + \left\| \left\| e^{hB}Af - Af \right\| \right\| \\ & \leq e^{h \left\| B \right\|} \left\| \left\| \frac{T(h)f - f}{h} - Af \right\| \right\| + \left\| \left\| e^{hB}Af - Af \right\| \right\|. \end{aligned}$$

Since A is the generator of T and $e^{\cdot B}$ is strongly continous, the right hand side tends to 0 as h tends to 0 from above. Hence we have shown that for all $f \in D(A)$ it holds

$$\lim_{h \searrow 0} \frac{F(h)f - f}{h} = Af + Bf.$$

For $\lambda > \omega + |||B|||$ Proposition 2.26c) yields

$$||BR(\lambda, A)||| \le \frac{||B|||}{\lambda - \omega} < 1.$$

By this and the closedness of A + B with D(A + B) = D(A) we have $\lambda \in \rho(A + B)$, where the resolvent is given by

$$R(\lambda, A + B) = R(\lambda, A) \sum_{n=0}^{\infty} (BR(\lambda, A))^n.$$

In particular $(\lambda - (A + B))D(A)$ is dense in X. All assumptions of Theorem 5.12 are now satisfied and thus A + B generates a strongly continuous semigroup S.

It is given by

$$S(t)f = \lim_{n \to \infty} (F(t/n))^n f$$

for all $f \in X$ and $t \ge 0$. From (1) we see that S is of type $(1, \omega + ||B|||)$ in $(X, ||| \cdot |||)$. Moreover we conclude from

$$||S(t)f|| \le ||S(t)f||| \le e^{(\omega+||B|||)t} |||f||| \le M e^{(\omega+M||B||)t} ||f||$$

for all $f \in X$ that S is of type $(M, \omega + M ||B||)$ in $(X, \|\cdot\|)$.

Exercise 6

Exercise. Prove that if $F, F_n: [0, t_0] \to \mathcal{L}(X)$ are uniformly bounded functions, then the following assertions are equalvalent.

- 1. $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in X$.
- 2. $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in D$ from a dense subspace D.
- 3. $F_n(t)x \to F(t)x$ uniformly on $[0, t_0] \times K$ as $n \to \infty$ for each compact set $K \subseteq X$.

 $(i) \Rightarrow (ii)$: This is trivial by choosing D = X.

 $(ii) \Rightarrow (iii)$: Let $M \ge 0$ be such that $||F|| \le M$ and $||F_n|| \le M$ for all $n \in \mathbb{N}$. Let $D \subseteq X$ be a dense subspace with $F_n(t)x \to F(t)x$ uniformly on $[0, t_0]$ as $n \to \infty$ for each $x \in D$. Let $\varepsilon > 0$. Set $B_x := B(x, \frac{\varepsilon}{3M})$ for every $x \in D$. Since D is dense in X, we have $K \subseteq X \subseteq \bigcup_{x \in D} B_x$. The compactness of K and the openness of the

 B_x deliver that we can choose finitely many $x_1, \ldots, x_d \in D$ with $K \subseteq \bigcup_{i=1}^d B_{x_i}$. The uniform convergence on D gives us for all $i \in \{i, \ldots, d\}$ indices $n_1, \ldots, n_d \in \mathbb{N}$ such that $||F_n(t)x_i - F(t)x_i|| \leq \frac{\varepsilon}{3}$ for all $n \geq n_i$ and all $t \in [0, t_0]$. Set $n_0 := \max_{i=1,\ldots,d} n_i$. For every $x \in K$ let \tilde{x} be an element of $\{x_1, \ldots, x_d\}$ such that $x \in B_{\tilde{x}}$. Hence we get for all $n \geq n_0$ and all $t \in [0, t_0]$

$$\sup_{x \in K} \|F_n(t)x - F(t)x\|$$

$$\leq \sup_{x \in K} \left(\|F_n(t)x - F_n(t)\tilde{x}\| + \|F_n(t)\tilde{x} - F(t)\tilde{x}\| + \|F(t)\tilde{x} - F(t)x\| \right)$$

$$\leq \sup_{x \in K} \left(M \cdot \|x - \tilde{x}\| + \|F_n(t)\tilde{x} - F(t)\tilde{x}\| + M \cdot \|\tilde{x} - x\| \right)$$

$$\leq \sup_{x \in K} \left(M \cdot \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3M} \right) = \varepsilon.$$

This shows that $F_n(t)x$ converges to F(t)x uniformly on $[0, t_0] \times K$ as $n \to \infty$. (*iii*) \Rightarrow (*i*) : For each $x \in X$ choose $K_x = \{x\}$. Then K_x is compact and the assertion follows. Johannes Eilinghoff, Andreas Geyer-Schulz, Alexander Grimm and Roland Schnaubelt for the team of Karlsruhe