## Solutions to the Exercises of Lecture 5

## Exercise 1

Exercise. Prove Proposition 5.2.
(a): $(i) \Rightarrow(i i): \operatorname{Let}(f, g),(f, h) \in \overline{\operatorname{graph} B}$. Then there exist sequences $\left(f_{n}, B f_{n}\right) \subseteq$ $\operatorname{graph} B$ and $\left(\varphi_{n}, B \varphi_{n}\right) \subseteq \operatorname{graph} B$ such that $f_{n} \rightarrow f, B f_{n} \rightarrow g, \varphi_{n} \rightarrow f$ and $B \varphi_{n} \rightarrow h$ as $n \rightarrow \infty$.
Let $\bar{B}$ be a closed extension of $B$, which exists by (i). Then we have $\bar{B} f_{n}=B f_{n} \rightarrow$ $g$ and $\bar{B} \varphi_{n}=B \varphi_{n} \rightarrow h$ as $n \rightarrow \infty$. Since $\bar{B}$ is closed, we have $f \in D(\bar{B})$ and $g=\bar{B} f=h$.
$(i i) \Rightarrow(i i i)$ : Let $\left(f_{n}\right) \subseteq D(B)$ be a sequence with $f_{n} \rightarrow 0$ and $B f_{n} \rightarrow g$ as $n \rightarrow \infty$. Since $\left(f_{n}, B f_{n}\right) \subseteq$ graph $B$, we thus have $(0, g) \in \overline{\operatorname{graph} B}$. Let $A$ be the operator whose graph is graph $\bar{B}$, which exists by (ii). It then holds $g=A 0=0$.
$($ iii $) \Rightarrow(i):$ Define an operator $\bar{B}$ by $D(\bar{B})=\left\{f \in X \mid \exists\left(f_{n}\right) \subseteq D(B): f_{n} \rightarrow f\right.$ and $B f_{n} \rightarrow g \in X$ as $\left.n \rightarrow \infty\right\}$ and $\bar{B} f:=\lim _{n \rightarrow \infty} B f_{n}$.
We show that $\bar{B}$ is well-defined. Let $\left(f_{n}\right),\left(\tilde{f}_{n}\right) \subseteq D(B)$ with $f_{n} \rightarrow f, \tilde{f}_{n} \rightarrow f$, $B f_{n} \rightarrow \bar{B} f$ and $B \tilde{f}_{n} \rightarrow g$ as $n \rightarrow \infty$. Then we have $B\left(f_{n}-\tilde{f}_{n}\right)=B f_{n}-B \tilde{f}_{n} \rightarrow$ $\bar{B} f-g$ as $n \rightarrow \infty$. Since $f_{n}-\tilde{f}_{n} \rightarrow 0$ as $n \rightarrow \infty$, (iii) implies $\bar{B} f-g=0$, which is $\bar{B} f=g$. Hence $\bar{B}$ ist well-defined.
It is clear that $\bar{B}$ is an extension of $B$.
Finally we show that $\bar{B}$ is closed. For this let $\left(f_{n}\right) \subseteq D(\bar{B})$ with $f_{n} \rightarrow f$ and $\bar{B} f_{n} \rightarrow$ $g$ as $n \rightarrow \infty$. Without loss of generality let $\left\|f_{n}-f\right\| \leq \frac{1}{2 n}$ and $\left\|\bar{B} f_{n}-g\right\| \leq \frac{1}{2 n}$ for all $n \in \mathbb{N}$. Choose $\left(\varphi_{n}\right) \subseteq D(B)$ such that $\left\|\varphi_{n}-f_{n}\right\| \leq \frac{1}{2 n}$ and $\left\|B \varphi_{n}-\bar{B} f_{n}\right\| \leq \frac{1}{2 n}$ for all $n \in \mathbb{N}$, which is possible due to the definition of $\bar{B}$. Then we have $\left\|\varphi_{n}-f\right\| \leq$ $\left\|\varphi_{n}-f_{n}\right\|+\left\|f_{n}-f\right\| \leq \frac{1}{n}$ and $\left\|\bar{B} \varphi_{n}-g\right\| \leq\left\|B \varphi_{n}-\bar{B} f_{n}\right\|+\left\|\bar{B} f_{n}-g\right\| \leq \frac{1}{n}$. This means $\varphi_{n} \rightarrow f$ and $\bar{B} \varphi_{n} \rightarrow g$ as $n \rightarrow \infty$. By the definiton of $\bar{B}$ we get $f \in D(\bar{B})$. Hence $\bar{B}$ is closed.
(b): Let $\tilde{A}$ be a closed extension of $B$. For $(f, g) \in \overline{\operatorname{graph} B}$ there is a sequence $\left(f_{n}\right) \subseteq D(B) \subseteq D(\tilde{A})$ such that $f_{n} \rightarrow f$ and $\tilde{A} f_{n}=B f_{n} \rightarrow g$. Since $\tilde{A}$ is closed, we conclude $f \in D(\tilde{A})$ and $\tilde{A} f=g$. Therefore, $(f, g) \in \operatorname{graph} \tilde{A}$. With the operator $A$ from (a) we thus get graph $A=\overline{\operatorname{graph} B} \subseteq \operatorname{graph} \tilde{A}$ and hence $A \subseteq \tilde{A}$. So $A$ is the smallest closed extension of $B$.
(c): Let $B$ be closable and $\lambda \in \mathbb{R}$. Let $\left(f_{n}\right) \subseteq D(\lambda-B)=D(B)$ with $f_{n} \rightarrow 0$ and $(\lambda-B) f_{n} \rightarrow g$ as $n \rightarrow \infty$. Then we have $B f_{n} \rightarrow g$ as $n \rightarrow \infty$ and hence, since $B$ is closable, by the implication $(i) \Rightarrow(i i i)$ of (a), $g=0$. With the implication (iii) $\Rightarrow(i)$ of (a) we conclude that $\lambda-B$ is closable.

Analogously we deduce from the closability of $\lambda-B$ the closability of $B$.

For $f \in D(\overline{\lambda-B})$ we find a sequence $\left(f_{n}\right) \subseteq D(\lambda-B)$ such that $f_{n} \rightarrow f$ and $(\lambda-B) f_{n} \rightarrow \overline{\lambda-B} f$ as $n \rightarrow \infty$. Hence it follows $B f_{n} \rightarrow \lambda f-\overline{\lambda-B} f$ as $n \rightarrow \infty$ and therefore $f \in D(\bar{B})$ and $\bar{B} f=\lambda f-\overline{\lambda-B} f$ since $\bar{B}$ is closed. We thus get $(\lambda-\bar{B}) f=\overline{\lambda-B} f$ and conclude $\overline{\lambda-B} \subseteq \lambda-\bar{B}$. Analogously we get the other inclusion and hence have $\overline{\lambda-B}=\lambda-\bar{B}$.

## Exercise 2

Exercise. Prove the identity $\sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2}=n e^{n}$ needed in Lemma 5.7.

For $n \in \mathbb{N}$ it holds

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{n^{k}}{k!}(n-k)^{2} \\
& =n^{2}+n(n-1)^{2}+\sum_{k=2}^{\infty} \frac{n^{k}}{k!}\left(n^{2}-2 k n+k^{2}\right) \\
& =n^{2}+n(n-1)^{2}+\sum_{k=2}^{\infty} \frac{n^{k}}{k!} \cdot n^{2}-2 \cdot \sum_{k=2}^{\infty} \frac{n^{k+1}}{(k-1)!}+\sum_{k=2}^{\infty} \frac{n^{k}}{(k-2)!}+\sum_{k=2}^{\infty} \frac{n^{k}}{(k-1)!} \\
& =n^{2}+n(n-1)^{2}+n^{2}\left(e^{n}-1-n\right)-2 n^{2}\left(e^{n}-1\right)+n^{2} e^{n}+n\left(e^{n}-1\right) \\
& =n e^{n} .
\end{aligned}
$$

## Exercise 3

Exercise. Prove that in Proposition 5.5 for $\lambda, \mu>\omega$ one has $R(\lambda)=R(\lambda, B)$ and $R(\mu)=R(\mu, B)$ for the same operator $B$.

Let $\lambda, \mu>\omega$. Recall from page 53 that $R(\lambda)$ and $R(\mu)$ are injective and have a common range $R$. Let $y \in R$ and set $x=R(\mu)^{-1} y \in X$. Beginning with the resolvent identity we then conclude

$$
\begin{aligned}
& R(\lambda) x-R(\mu) x=(\mu-\lambda) R(\lambda) R(\mu) x \\
\Longrightarrow & \lambda R(\lambda) R(\mu) x-R(\mu) x=\mu R(\lambda) R(\mu) x-R(\lambda) x \\
\Longrightarrow & \lambda R(\lambda) y-y=\mu R(\lambda) y-R(\lambda) R(\mu)^{-1} y \\
\Longrightarrow & \lambda y-R(\lambda)^{-1} y=\mu y-R(\mu)^{-1} y .
\end{aligned}
$$

So $B$ is independent of which $\lambda>\omega$ you use in its definition. This shows the assertion.

## Exercise 4

Exercise. Consider the Banach space $X:=\ell^{2}$ and recall that for a sequence $m \subseteq \mathbb{C}$ the multiplication operator corresponding to $m$ is denoted by $M_{m}$. Now for $n \in \mathbb{N}$ denote by $\mathbb{1}_{\{1,2, \ldots, n\}}$ the characteristic sequence of the set $\{1,2, \ldots, n\}$. For a given sequence $m \subseteq \mathbb{C}$ define $m_{n}:=m \cdot \mathbb{1}_{\{1, \ldots, n\}}$ and $A_{n}:=M_{m_{n}}$ the corresponding multiplication operators. Check the various conditions of the second Trotter-Kato theorem for this sequence of operators.

Let a sequence $m=\left(y_{1}, y_{2}, \ldots\right) \subset \mathbb{C}$ be given and $m_{n}=\left(y_{1}, \ldots, y_{n}, 0,0, \ldots\right)$. We take a sequence $A_{n}=M_{m_{n}}$ of multiplication operators on $X=\ell^{2}$ with $D\left(A_{n}\right)=$ $X=\ell^{2}$. It is clear that $A_{n}$ generates the strongly continuous semigroup $T_{n}(t)$ with $T_{n}(t) x=\left(e^{t y_{1}} x_{1}, \ldots, e^{t y_{n}} x_{n}, x_{n+1}, \ldots\right)$. We note that for the multiplication operator $A$ with $D(A)=\left\{x \in \ell^{2}: m x \in \ell^{2}\right\}$ and $A x=m x$, we have that $D(A)$ is dense in $X$ because it contains all the finite sequences.

To apply the second Trotter-Kato-Theorem, we need to ensure that all the semigroups are of the same type $(M, \omega)$, i.e. uniformly exponentially bounded, so for the corresponding semigroups $T_{n}(t)$ it holds $\left\|T_{n}(t)\right\| \leq M e^{\omega t}(n \in \mathbb{N})$. It holds for $\left\|T_{n}\right\|$ :

$$
\left\|T_{n}(t)\right\|=\sup _{i \in\{1, \ldots, n\}}\left\|T_{n}(t) e_{i}\right\|=\sup _{i \in\{1, \ldots, n\}}\left|e^{t y_{i}}\right|=\sup _{i \in\{1, \ldots, n\}} e^{t \Re\left(y_{i}\right)}
$$

(with the standard basis of $\ell^{2}:\left\{e_{i}: i \in \mathbb{N}\right\}, e_{i}=(0, \ldots, 0,1,0, \ldots)$ at the i-th component)
It is now obvious that the real part of the given sequence $m$ needs to be bounded for the stability condition on the semigroups, $\operatorname{so~}_{\sup _{k}} \Re\left(y_{k}\right)<\infty$. Then all the semigroups are uniformly bounded with exponent $C=\sup _{k} \Re\left(y_{k}\right)$, i.e. are of type $(1, C)$.

For $g \in X$ we have $f:=(\lambda-m)^{-1} g \in X$ and $(\lambda-m) f=g$. So $f \in D(A)$ and $\lambda f-A f=g$ with $\lambda>C$, i.e. $(\lambda-A) D(A)$ is dense in $X$. It is clear that $A_{n} f \rightarrow A f$ in $X$ for $f \in D(A)$.
So the requirements of Theorem 5.11a) are fullfilled.

## Exercise 5

Exercise. Let $A$ be the generator of a semigroup $T$ of type $(M, \omega)$ for some $M \geq 1$ and $\omega \in \mathbb{R}$ on a Banach space $(X,\|\cdot\|)$ and let $B$ be a bounded linear operator on $X$. Then $A+B$ with $D(A+B)=D(A)$ is a generator of a semigroup.

Before we start the proof, we state the following lemma.
Lemma. Let $(X,\|\cdot\|)$ be a Banach space and let $A$ be the generator of a semigroup $T$ of type $(M, \omega)$ for some $M \geq 1$ and $\omega \in \mathbb{R}$. Then there is an equivalent norm $|||\cdot|||$ on $X$ such that $T$ is of type $(1, \omega)$.

Proof. For $x \in X$ we define $\|\mid x\|\left\|:=\sup _{s>0} \mathrm{e}^{-\omega s}\right\| T(s) x \|$. Clearly $\|\|\cdot\|\|$ is a norm on $X$ and we have

$$
\|x\|=\sup _{s>0} \mathrm{e}^{-\omega s}\|T(s) x\| \leq \sup _{s>0} \mathrm{e}^{-\omega s} M \mathrm{e}^{\omega s}\|x\|=M\|x\|
$$

for every $x \in X$. Since the function $s \mapsto \mathrm{e}^{-\omega s}\|T(s) x\|$ is continuous, we obtain

$$
\|\mid x\| \geq\|T(0) x\|=\|x\|
$$

for every $x \in X$. Thus $\|\cdot\|$ and $\|\|\cdot\| \mid$ are equivalent.
Finally we note that

$$
\begin{aligned}
&\left\|\mathrm{e}^{-\omega t} T(t) x\right\|=\sup _{s>0} \mathrm{e}^{-\omega s} \mathrm{e}^{-\omega t}\|T(s) T(t) x\| \\
&=\sup _{s>0} \mathrm{e}^{-\omega(s+t)}\|T(s+t) x\| \leq \sup _{r>0} \mathrm{e}^{-\omega r}\|T(r) x\|=\|x\|
\end{aligned}
$$

holds for all $x \in X$ and $t \geq 0$ so that we have

$$
\|T(t)\| \leq \mathrm{e}^{\omega t} \quad \text { for all } t \geq 0
$$

as asserted.

Now we return to the proof of Exercise 5. Our aim is to apply Chernoff's product formula as stated in Theorem 5.12.

Proof. As in the preceding lemma, we endow $X$ with a norm $\mid\|\cdot\| \|$ such that $T$ is of type $(1, \omega)$.

Next, we define $F:[0, \infty) \rightarrow \mathcal{L}(X)$ by

$$
F(t)=\mathrm{e}^{t B} T(t) \quad \text { for } t \geq 0
$$

where $\mathrm{e}^{\cdot B}$ is the semigroup of type $(1,\| \| B \|)$ generated by $B$, see exercise 1 of lecture 2. Note that the proof of the lemma also implies $\|\|B\| \leq M\| B \|$.

Then $F(0)=I$ and we have

$$
\begin{equation*}
\left\|\left\|F(t)^{n}\right\|\right\|=\| \|\left(\mathrm{e}^{t B} T(t)\right)^{n}\| \| \leq \mathrm{e}^{(\omega+\|B\|) n t} \tag{1}
\end{equation*}
$$

for all $t \geq 0$ and $n \in \mathbb{N}$.
Moreover, for all $f \in D(A)$ it holds

$$
\frac{F(h) f-f}{h}=\frac{\mathrm{e}^{h B} T(h) f-f}{h}=\mathrm{e}^{h B}\left(\frac{T(h) f-f}{h}\right)+\frac{\mathrm{e}^{h B} f-f}{h}, \quad h>0 .
$$

When $h$ tends to 0 from above, the second summand converges to $B f$ and we want to show that the first summand converges to $A f$. In fact, for $f \in D(A)$ and $h>0$ we compute

$$
\begin{aligned}
& \left\|\mathrm{e}^{h B}\left(\frac{T(h) f-f}{h}\right)-A f\right\| \\
& \leq\| \| \mathrm{e}^{h B}\left(\frac{T(h) f-f}{h}-A f\right)\| \|+\| \| \mathrm{e}^{h B} A f-A f\| \| \\
& \leq \mathrm{e}^{h\|B\| \|}\left\|\frac{T(h) f-f}{h}-A f\right\|\|+\| \mathrm{e}^{h B} A f-A f\| \|
\end{aligned}
$$

Since $A$ is the generator of $T$ and $\mathrm{e}^{\cdot B}$ is strongly continous, the right hand side tends to 0 as $h$ tends to 0 from above. Hence we have shown that for all $f \in D(A)$ it holds

$$
\lim _{h \backslash 0} \frac{F(h) f-f}{h}=A f+B f .
$$

For $\lambda>\omega+\|| | B\|$ Proposition 2.26c) yields

$$
\|B R(\lambda, A)\| \leq \frac{\| \| B \|}{\lambda-\omega}<1 .
$$

By this and the closedness of $A+B$ with $D(A+B)=D(A)$ we have $\lambda \in \rho(A+B)$, where the resolvent is given by

$$
R(\lambda, A+B)=R(\lambda, A) \sum_{n=0}^{\infty}(B R(\lambda, A))^{n}
$$

In particular $(\lambda-(A+B)) D(A)$ is dense in $X$. All assumptions of Theorem 5.12 are now satisfied and thus $A+B$ generates a strongly continuous semigroup S .

It is given by

$$
S(t) f=\lim _{n \rightarrow \infty}(F(t / n))^{n} f
$$

for all $f \in X$ and $t \geq 0$. From (1) we see that $S$ is of type $(1, \omega+\| \| B \|)$ in $(X,\||\cdot|\|)$. Moreover we conclude from

$$
\|S(t) f\| \leq\|S(t) f\| \leq \leq \mathrm{e}^{(\omega+\|+\| \|) t}\| \| f\left\|\leq M \mathrm{e}^{(\omega+M\|B\|) t}\right\| f \|
$$

for all $f \in X$ that $S$ is of type $(M, \omega+M\|B\|)$ in $(X,\|\cdot\|)$.

## Exercise 6

Exercise. Prove that if $F, F_{n}:\left[0, t_{0}\right] \rightarrow \mathcal{L}(X)$ are uniformly bounded functions, then the following assertions are equaivalent.

1. $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in X$.
2. $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in D$ from a dense subspace $D$.
3. $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right] \times K$ as $n \rightarrow \infty$ for each compact set $K \subseteq X$.
$(i) \Rightarrow(i i)$ : This is trivial by choosing $D=X$.
(ii) $\Rightarrow$ (iii) : Let $M \geq 0$ be such that $\|F\| \leq M$ and $\left\|F_{n}\right\| \leq M$ for all $n \in \mathbb{N}$. Let $D \subseteq X$ be a dense subspace with $F_{n}(t) x \rightarrow F(t) x$ uniformly on $\left[0, t_{0}\right]$ as $n \rightarrow \infty$ for each $x \in D$. Let $\varepsilon>0$. Set $B_{x}:=B\left(x, \frac{\varepsilon}{3 M}\right)$ for every $x \in D$. Since $D$ is dense in $X$, we have $K \subseteq X \subseteq \bigcup_{x \in D} B_{x}$. The compactness of $K$ and the openness of the $B_{x}$ deliver that we can choose finitely many $x_{1}, \ldots, x_{d} \in D$ with $K \subseteq \bigcup_{i=1}^{d} B_{x_{i}}$. The uniform convergence on $D$ gives us for all $i \in\{i, \ldots, d\}$ indices $n_{1}, \ldots, n_{d} \in \mathbb{N}$ such that $\left\|F_{n}(t) x_{i}-F(t) x_{i}\right\| \leq \frac{\varepsilon}{3}$ for all $n \geq n_{i}$ and all $t \in\left[0, t_{0}\right]$. Set $n_{0}:=\max _{i=1, \ldots, d} n_{i}$. For every $x \in K$ let $\tilde{x}$ be an element of $\left\{x_{1}, \ldots, x_{d}\right\}$ such that $x \in B_{\tilde{x}}$. Hence we get for all $n \geq n_{0}$ and all $t \in\left[0, t_{0}\right]$

$$
\begin{aligned}
& \sup _{x \in K}\left\|F_{n}(t) x-F(t) x\right\| \\
\leq & \sup _{x \in K}\left(\left\|F_{n}(t) x-F_{n}(t) \tilde{x}\right\|+\left\|F_{n}(t) \tilde{x}-F(t) \tilde{x}\right\|+\|F(t) \tilde{x}-F(t) x\|\right) \\
\leq & \sup _{x \in K}\left(M \cdot\|x-\tilde{x}\|+\left\|F_{n}(t) \tilde{x}-F(t) \tilde{x}\right\|+M \cdot\|\tilde{x}-x\|\right) \\
\leq & \sup _{x \in K}\left(M \cdot \frac{\varepsilon}{3 M}+\frac{\varepsilon}{3}+M \cdot \frac{\varepsilon}{3 M}\right)=\varepsilon .
\end{aligned}
$$

This shows that $F_{n}(t) x$ converges to $F(t) x$ uniformly on $\left[0, t_{0}\right] \times K$ as $n \rightarrow \infty$. (iii) $\Rightarrow(i)$ : For each $x \in X$ choose $K_{x}=\{x\}$. Then $K_{x}$ is compact and the assertion follows.

Johannes Eilinghoff, Andreas Geyer-Schulz, Alexander Grimm and
Roland Schnaubelt for the team of Karlsruhe

