Lecture 4. Exercise 1

Solution from team Wuppertal

We first give a solution of Exercise 1 where we do not require A to be the generator of a semigroup, but instead only suppose that it has a non-empty resolvent set. Then we give a counterexample showing that this assumption cannot be further relaxed.

Lemma. Let A be a closed operator on the Banach space X with $\rho(A) \neq \emptyset$. Then there are constants c_1, \ldots, c_n such that

$$||A^k x|| \le c_k(||x|| + ||A^n x||), \text{ for all } x \in D(A^n), k = 1, \dots, n.$$

Proof. Let $\lambda \in \rho(A)$. From

$$(A - \lambda)^{-1}A = I + \lambda(A - \lambda)^{-1} = A(A - \lambda)^{-1}$$

we have that for $0 \le k \le m$,

$$(A - \lambda)^{-m} A^k = (A - \lambda)^{-m+k} ((A - \lambda)^{-1} A)^k$$

is a bounded operator (on $D(A^k)$ with respect to the norm $\|\cdot\|$). For $1 \le k < n$ and $x \in D(A^n)$ we have

$$\begin{split} A^k x &= (A - \lambda)^{-n+k} (A - \lambda)^{n-k} A^k x \\ &= (A - \lambda)^{-n+k} \sum_{j=0}^{n-k} \binom{n-k}{j} A^{n-k-j} (-\lambda)^j A^k x \\ &= (A - \lambda)^{-n+k} A^n x + \sum_{j=1}^{n-k} \binom{n-k}{j} (-\lambda)^j (A - \lambda)^{-n+k} A^{n-j} x \end{split}$$

and hence

$$||A^{k}x|| \le ||(A-\lambda)^{-n+k}|| ||A^{n}x||$$

$$+ \sum_{j=1}^{n-k} {n-k \choose j} |\lambda|^{j} ||(A-\lambda)^{-n+k}A^{n-k-j+1}|| ||A^{k-1}x||.$$

So there are constants c_{1k} , c_{2k} such that

$$||A^k x|| \le c_{1k} ||A^{k-1} x|| + c_{2k} ||A^n x||, \quad x \in D(A^n), \ 1 \le k < n.$$

Using these estimates repeatedly, we obtain the claim.

Exercise 1. Let A be closed with $\rho(A) \neq \emptyset$. Then the two norms

$$||x||_n = ||x|| + ||A^n x||,$$

 $|||x|||_n = ||x|| + ||Ax|| + \dots + ||A^n x||$

on $D(A^n)$ are equivalent and turn $D(A^n)$ into a Banach space.

Proof. Obviously $||x||_n \le |||x|||_n$. By the lemma we also have a constant c such that $|||x|||_n \le c||x||_n$. So the two norms are equivalent.

To see now that $D(A^n)$ together with its graph norm $\|\cdot\|_n$ is a Banach space, we show that A^n is a closed operator: Let $x_m \in D(A^n)$, $x_m \to x$, $A^n x_m \to y$ in X. The lemma implies that each $(A^k x_m)_m$ is a Cauchy sequence in X, hence it converges. Since A is closed, we obtain inductively $x \in D(A^k)$, $A^k x_m \to A^k x$ for all $k \le n$; in particular A^n is closed.

The following example features a closed operator A with $\rho(A) = \emptyset$, for which the norms $\|\cdot\|_2$ and $\|\cdot\|_2$ are not equivalent.

Example. On $X = \ell^2$ we want to consider an operator A which is block diagonal with 2×2 blocks. To this end we write

$$X = \ell^2(\mathbb{C}^2) = \{(u_n)_{n \in \mathbb{N}} \mid u_n \in \mathbb{C}^2, \sum_n ||u_n||^2 < \infty \}.$$

Let then A be given by

$$A(u_n)_n = (A_n u_n)_n \qquad A_n = \begin{pmatrix} 0 & n \\ 0 & 0 \end{pmatrix},$$

$$D(A) = \{(u_n) \in \ell^2(\mathbb{C}^2) \mid (A_n u_n) \in \ell^2(\mathbb{C}^2)\}.$$

Then it is straight forward to show that A is closed and that $\rho(A) = \emptyset$. The latter follows from the fact that for $\lambda \neq 0$

$$(A_n - \lambda)^{-1} = \begin{pmatrix} -\frac{1}{\lambda} & -\frac{n}{\lambda^2} \\ 0 & -\frac{1}{\lambda} \end{pmatrix};$$

hence $\sup_n \|(A_n - \lambda)^{-1}\| = \infty$ and so $(A - \lambda)^{-1}$ is not bounded. Now consider the sequence (x_k) in X given by

$$x_k = (u_n^{(k)})$$
 where $u_k^{(k)} = \begin{pmatrix} 0 \\ 1/k \end{pmatrix}$ and $u_n^{(k)} = 0$ for $n \neq k$.

Then $x_k \in D(A^2)$, $||x_k|| = 1/k$, $||Ax_k|| = 1$ and $A^2x_k = 0$. Hence $x_k \to 0$ with respect to $||\cdot||_2$, but not with respect to $|||\cdot||_2$. Consequently, $||\cdot||_2$ and $|||\cdot|||_2$ are not equivalent.