Lecture 3 - Solutions

Voronezh Team: Polyakov Dmitry, Dikarev Yegor.

Exercise 1. Prove the exponential estimate, the stability condition, from Remark 3.1.

Proof. In order to prove the stability condition $||T_n(t)|| \leq Me^{\omega t}$ it suffices to prove that $\forall \varepsilon > 0 \; \exists N : \forall n > N \quad ||T_n(t) - T(t)|| < \varepsilon$. We know that $T_n(t), T(t)$ are strongly continuous semigroups, so we have $||T(t)|| \leq Me^{\omega t}$ and $||T_n(t)|| \leq M_n e^{\omega_n t}$. Now we want to show that $M_n = M$ and $\omega_n = \omega$ for all $n \in \mathbb{N}$. Get it, proving the following inequalities.

$$||T_n(t) - T(t)|| \le ||Me^{\omega t} - M_n e^{\omega_n t}|| \le ||M \sum_{k=0}^{\infty} \frac{\omega^k t^k}{k!} - M_n \sum_{k=0}^{\infty} \frac{\omega_n^k t^k}{k!}||$$

$$\le ||\sum_{k=0}^{\infty} \frac{M\omega^k - M_n \omega_n^k}{k!} t^k|| \le \sum_{k=0}^{\infty} \frac{|M\omega^k - M_n \omega_n^k|}{k!} t^k$$

$$= |M - M_n| + \sum_{k=1}^{\infty} \frac{|M\omega^k - M_n \omega_n^k|}{k!} t^k \le \varepsilon.$$

Now WLOG we can say that $M_n = M$ and rewrite last equation in such way:

$$|M - M_n| + \sum_{k=1}^{\infty} \frac{|M\omega^k - M_n\omega_n^k|}{k!} t^k = M \cdot \sum_{k=1}^{\infty} \frac{|\omega^k - \omega_n^k|}{k!} t^k$$

$$\leqslant M \cdot \left(\sum_{k=1}^{\infty} \frac{|\omega^k|}{k!} t^k + \sum_{k=1}^{\infty} \frac{|\omega_n^k|}{k!} t^k \right)$$

$$= M \cdot \left(e^{|\omega|t} + e^{|\omega_n|t} \right) \leqslant \varepsilon.$$

Clearly that last inequality holds for all t > 0 if and only if $\omega = \omega_n$ for all $n \in \mathbb{N}$. Thus, $||T_n(t)|| \leq M e^{\omega t}$.

Exercise 3. Let $X := L^1(0,1)$, $X_n = \mathbb{C}^n$, and define the operators

$$J_n(y_1, ..., y_n) := \sum_{k=1}^n y_k \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}, \qquad (P_n f)_k := n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx$$

and the norm $||(y_k)||_n := \frac{1}{n} \sum_{k=1}^n |y_k|$ for $(y_k) \in X_n$. Here χ stands for the characteristic function of a set. Prove that this scheme satisfies the conditions of Assumptions 3.2. Perform analogous calculations to Example 3.7.

Proof. Verifying that this scheme satisfies the conditions of Assumptions 3.2.

1) $P_n: X \to X_n$ and $J_n: X_n \to X$, then we find estimates for the norm

$$||P_n f|| = \frac{1}{n} \sum_{k=1}^n \left| \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx \right| = \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} |f(x)| dx = \int_0^1 |f(x)| dx < K < \infty.$$

as norm in $L^1(0,1)$.

$$||J_n y|| = \int_0^1 \left| \sum_{k=1}^n y_k \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} \right| dx$$

$$= \sum_{k=1}^n |y_k| \int_{\frac{k-1}{n}}^{\frac{k}{n}} \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} dx = \frac{1}{n} \sum_{k=1}^n |y_k| = ||(y_k)||_n < K < \infty$$

where $y = (y_1, ..., y_n)$.

2) Prove that $P_nJ_n=I$. Let $y_k\in X$ then

$$||P_n J_n y_k|| = n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \sum_{k=1}^{n} y_k \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} dx$$

$$= n \sum_{k=1}^{n} y_k \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} dx = n y_k \left(\frac{k}{n} - \frac{k-1}{n}\right) = y_k.$$

Hence, $P_n J_n = I$.

3) Prove that $J_n P_n f \to f$ as $n \to \infty$ for all $f \in X$.

$$||J_n P_n f - f|| = \left\| \sum_{k=1}^n n \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right]} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx - f(x) \right\| = \left\| n \int_{0}^{1} f(x) dx - f(x) \right\| \to 0$$

as $n \to \infty$ as norm in X_n .

Exercises 5. Solve the exercises in Appendix A.

Appendix A.

Exercise 2. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and $A : D(A) \subset H \to H$ be a linear densely defined operator possessing the following properties:

- a) A is symmetric on D(A), that is, $\langle Au, v \rangle = \langle u, Av \rangle$ for all $u, v \in D(A)$, and
- b) A is strongly elliptic, that is, there exists a constant c > 0 such that $\langle Au, u \rangle \geq c \|u\|^2$ for all $u \in D(A)$.

For all $v \in \mathrm{D}(A)$ and a given element $f \in H$ define the functional F: $\mathrm{D}(A) \to \mathbb{R}$ by

$$F(v) := \langle Av, v \rangle - 2\langle f, v \rangle.$$

Show that if Au = f for $u \in D(A)$ then the functional F is minimal, i.e. F(u) < F(v) for all $v \in D(A), v \neq u$.

Proof. Given equation Au = f and multiply by a scalar $u \in D(A)$ and $v \in D(A)$. We obtain

$$\langle Au, u \rangle = \langle f, u \rangle, \qquad \langle Au, v \rangle = \langle f, v \rangle.$$

Consider the following expression

$$F(v) - F(u) = \langle Av, v \rangle - 2\langle f, v \rangle - \langle Au, u \rangle + 2\langle f, u \rangle = \langle Av, v \rangle - \langle Au, u \rangle$$

$$+ 2(\langle f, u \rangle - \langle f, v \rangle) = \langle Av, v \rangle - \langle Au, u \rangle + 2(\langle Au, u \rangle - \langle Au, v \rangle) = \langle Av, v \rangle$$

$$+ \langle Au, u \rangle - 2\langle Au, v \rangle = \langle A(u-v), u-v \rangle - \langle Au, v \rangle + \langle Av, u \rangle = \langle A(u-v), u-v \rangle$$

$$- \langle Au, v \rangle + \langle Au, v \rangle = \langle A(u-v), u-v \rangle \ge c||u-v||^2 > 0.$$

Hence, F(v) - F(u) > 0. Therefore, F(v) > F(u) and F is minimal.