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1 Exercise 3.1 

According to the strong convergence of semigroups, for every 𝑓 ∈ 𝑋 and 𝑡𝑚𝑎𝑥 > 0, 

                                         𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥
 𝑇𝑛 𝑡 𝑓 − 𝑇(𝑡)𝑓 → 0    𝑎𝑠     𝑛 → ∞             (1) 

Hence  

𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥
 𝑇𝑛 𝑡 𝑓 ≤ 𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥

 𝑇𝑛 𝑡 𝑓 − 𝑇(𝑡)𝑓 + 𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥
 𝑇(𝑡)𝑓  

From (1) and 𝑛 large enough we obtain 𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥
 𝑇𝑛 𝑡 𝑓 ≤ 𝑠𝑢𝑝0≤𝑡≤𝑡𝑚𝑎𝑥

 𝑇(𝑡)𝑓 . 

Using the uniform boundedness principle, Theorem 2.28, and since 𝑇 is of type (𝑀, 𝜔) there exist 

constants 𝑀 ≥ 1, 𝜔 ∈ 𝑅 such that  𝑇𝑛 𝑡  ≤ 𝑀𝑒𝜔𝑡  holds for all 𝑛 ∈ 𝑁, 𝑡 ≥ 0. 

 

2 Exercise 3.2 

Let 
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that 𝑓 ∈ 𝐶0 [0,1] , thus 𝑓 is uniformly continuously for 0 ≤ 𝑗 ≤ 𝑛 and fix if 𝑥 = 𝑥𝑗 =
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 we have  
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 as 𝑛 → ∞, since 𝑓 is uniformly continuous. 

 



3 Exercise 3.3 

We show that there is a constant 𝐾 > 0 with  𝑃𝑛 ,  𝐽𝑛 ≤ 𝐾 for all 𝑛 ∈ ℕ. 

 𝑃𝑛 = sup
𝑓∈𝑋
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It is obvious to show 𝑃𝑛𝐽𝑛 = 𝐼𝑛 . the last property is satisfied because  
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5 Exercise 3.5 

Exercise 3.5.1 

We divide both intervals  x0  and  y0 into 𝑁 + 1 equal subintervals 

With length 
1


N

h
  grid points are ihxi  , jhy j  . 

We use Taylors formula to approximate the exact solution at time level 0t    

and at the points ix  ,
 jy : 
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The spatially discretized problem takes the form: 
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dt

d
        for Nji ,...,2,1,   

The cases 0 ji and 1 Nji  are given by the boundary condition 

0),,( yxtw   On    as  01100   iNjNij wwww  

For all 0t . 

The ordinary differential equations above can be formulated as system of ordinary differential equation 

)()( tMwtw
dt

d
  .where 𝑀 is a block tridiagonal matrix of order 2N .i.e. 
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h
M  𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑎𝑙(𝐼, 𝐴, 𝐼) . 

𝐴 is a tridiagonal matrix of order 𝑁 given by  ijaA   , Nji ,...,2,1,  . Where 

 

And I is the identity Matrix of order N . The vector 
2
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ij Rtwtw  for Nji ,...,2,1,   

Exercise 3.5.2 

It is obvious that for  10,  vu    )),()(1()()1()())1(( vuvuAvFuFvuF    

The last term on the right is nonnegative. Since A is strongly elliptic thus functional F is strictly convex. 

We show that u is minimize by the strict convexity of .F Hence 
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Exercise 3.5.3 

a) we have 
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In example A.4.a with the spectral method we have  
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The definitions of the vectors 
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And the matrix ),...,2,1(
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22 mdiagAm


 enable us formulate the problem as a system of linear equations

cAm
. 

b)  

In example A.4.b with the finite element method we have 
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for mj ,...,2,1  

The matrix mA has the tridiagonal form
x

Am
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𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (1, −2,1). 

 


