Solutions to ISEM Lecture 3

Tehran Team

1 Exercise 3.1

According to the strong convergence of semigroups, for every $f \in X$ and $t_{max} > 0$,

$$\sup_{0 \le t \le t_{max}} \|T_n(t)f - T(t)f\| \to 0 \quad as \quad n \to \infty$$
 (1)

Hence

$$sup_{0 \leq t \leq t_{max}} \left\| T_n(t) f \right\| \leq sup_{0 \leq t \leq t_{max}} \left\| T_n(t) f - T(t) f \right\| + sup_{0 \leq t \leq t_{max}} \left\| T(t) f \right\|$$

From (1) and n large enough we obtain $\sup_{0 \le t \le t_{max}} \|T_n(t)f\| \le \sup_{0 \le t \le t_{max}} \|T(t)f\|$.

Using the uniform boundedness principle, Theorem 2.28, and since T is of type (M, ω) there exist constants $M \ge 1$, $\omega \in R$ such that $||T_n(t)|| \le Me^{\omega t}$ holds for all $n \in N$, $t \ge 0$.

2 Exercise 3.2

Let

$$S_n(x) = \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) B_{n,k}(x)$$

that $f \in C_0([0,1])$, thus f is uniformly continuously for $0 \le j \le n$ and fix if $x = x_j = \frac{j}{n}$ we have

$$S_n(x) = f(x)$$
 therefore $S_n(x) \to f(x)$ as $n \to \infty$.

If $\frac{j}{n} < x < \frac{j+1}{n}$ for $0 \le j \le n-1$ and fix, we have

$$S_n(x) := \frac{x - \frac{j}{n}}{\frac{1}{n}} f\left(\frac{j+1}{n}\right) + \frac{x - \frac{j+1}{n}}{-\frac{1}{n}} f\left(\frac{j}{n}\right)$$

hence

$$S_n(x) - f(x) = \frac{x - \frac{j}{n}}{\frac{1}{n}} \left(f\left(\frac{j+1}{n}\right) - f(x) \right) + \frac{x - \frac{j+1}{n}}{-\frac{1}{n}} \left(f\left(\frac{j}{n}\right) - f(x) \right) \to 0$$

as $n \to \infty$, since f is uniformly continuous.

3 Exercise 3.3

We show that there is a constant K > 0 with $||P_n||, ||J_n|| \le K$ for all $n \in \mathbb{N}$.

$$||P_n|| = \sup_{f \in X} \frac{||P_n f||}{||f||} = \sup_{f \in X} \frac{\frac{1}{n} \sum_{k=1}^n |(P_n f)_k|}{||f||} \le \sup_{f \in X} \frac{\sum_{k=1}^n \int_{\frac{k}{n}}^{\frac{k}{n}} |f(x)| dx}{||f||_{L^1(0,1)}} = 1$$

$$||J_n|| = \sup_{y \in X_n} \frac{||J_n y||}{||y||} \le \sup_{y \in X_n} \frac{\frac{1}{n} \sum_{k=1}^n |y_k|}{||y||} = 1$$

It is obvious to show $P_nJ_n=I_n$, the last property is satisfied because

Put
$$S_n = J_n P_n f = \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(s) ds \right) \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$$
 and let $f(x) = \sum_{k=1}^n \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}$. we show that $||S_n(x) - f(x)||_{L^1(0,1)} = \int_0^1 |S_n(x) - f(x)| dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} |S_n(x) - f(x)| dx = 0.$

but $\int_{\frac{k}{n-1}}^{\frac{k}{n}} |S_n(x) - f(x)| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)} - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) - f(x) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}, \frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^n \left(n \int_{\frac{k}{n}}^{\frac{k}{n}} f(s) ds \right) \right| dx = \int_{\frac{$

$$n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} (f(s) - f(x)) ds \right| dx \le n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} |f(s) - f(x)| ds \right) dx$$

Hence

$$\|S_n(x) - f(x)\|_{L^1(0,1)} \le \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} |f(s) - f(x)| ds \right) dx$$

$$= \lim_{n \to \infty} \int_0^1 \int_0^1 |f(s) - f(x)| ds dx \to 0 \text{ Since } s, x \in \left[\frac{k-1}{n}, \frac{k}{n}\right].$$

5 Exercise 3.5

Exercise 3.5.1

We divide both intervals $0 \le x \le \pi$ and $0 \le y \le \pi$ into N + 1 equal subintervals

With length
$$h = \frac{\pi}{N+1}$$
 grid points are $x_i = ih$, $y_j = jh$.

We use Taylors formula to approximate the exact solution at time level $t \ge 0$ and at the points x_i , y_j :

$$\partial_{xx} w_{ij}(t) \approx \frac{w_{i-1j}(t) - 2w_{ij}(t) + w_{i+1j}(t)}{h^2}$$

$$\hat{\mathcal{O}}_{yy} \approx \frac{w_{ij-1}(t) - 2w_{ij}(t) + w_{ij+1}(t)}{h^2}$$

The spatially discretized problem takes the form:

$$\frac{d}{dt}w_{ij}(t) = \frac{1}{h^2}(w_{i-1j} - 4w_{ij} + w_{i+1j} + w_{ij-1} + w_{ij+1})$$
 for $i, j = 1, 2, ..., N$

The cases i = j = 0 and i = j = N + 1 are given by the boundary condition

$$w(t, x, y) = 0$$
 On $\partial \Omega$ as $w_{0j} = w_{i0} = w_{N+1j} = w_{iN+1} = 0$

For all $t \ge 0$.

The ordinary differential equations above can be formulated as system of ordinary differential equation $\frac{d}{dt}w(t) = Mw(t)$ where M is a block tridiagonal matrix of order N^2 .i.e. $M = \frac{1}{h^2}tridiagonal(I, A, I)$.

A is a tridiagonal matrix of order N given by $A = [a_{ij}]$, i, j = 1, 2, ..., N. Where

$$a_{ij} = \begin{cases} -4 & i = j \\ 1 & |i - j| = 1 \\ 0 & otherwise \end{cases}$$

And I is the identity Matrix of order N. The vector $w(t) = [w_{ij}(t)] \in \mathbb{R}^{N^2}$ for i, j = 1, 2, ..., N

Exercise 3.5.2

It is obvious that for
$$u \neq v, 0 \leq \theta \leq 1$$
 $F(\theta u + (1-\theta)v) = \theta F(u) + (1-\theta)F(v) - \theta(1-\theta)(A(u-v), u-v)$

The last term on the right is nonnegative. Since A is strongly elliptic thus functional F is strictly convex. We show that u is minimize by the strict convexity of F. Hence

$$F(v) - F(u) > \frac{F(u + \theta(v - u)) - F(u)}{\theta}$$

Since Au = F the term $\frac{F(u + \theta(v - u)) - F(u)}{\theta} \to 0$ as $\theta \to 0$. Hence

$$F(u) < F(v)$$
 for $v \in D(A), v \neq u$.

Exercise 3.5.3

a) we have

$$\sum_{k=1}^{m} c_k < A\varphi_k, \varphi_j > = < f, \varphi_j >$$

In example A.4.a with the spectral method we have

$$\sum_{k=1}^{m} -c_k kj \delta_{jk} \frac{\pi}{2} = \int_{0}^{\pi} f(x) \sin(jx) dx$$

The definitions of the vectors

$$c := \begin{bmatrix} c_1 \\ \cdot \\ \cdot \\ \cdot \\ c_m \end{bmatrix} \quad \text{and} \quad \varphi := \begin{bmatrix} \langle f(x), \sin x \rangle \\ \cdot \\ \cdot \\ \langle f(x), \sin mx \rangle \end{bmatrix}$$

And the matrix $A_m = -\frac{\pi}{2} diag(1, 2^2, ..., m^2)$ enable us formulate the problem as a system of linear equations $A_m c = \varphi$.

b)

In example A.4.b with the finite element method we have

$$\frac{1}{\Delta x}(c_{j-1} - 2c_j + c_{j+1}) = \int_0^{\pi} f(x)\varphi_j(x)dx \text{ for } j = 1, 2, ..., m$$

The matrix A_m has the tridiagonal form $A_m = \frac{1}{\Delta x} tridiagonal (1, -2,1)$.