Solutions to ISEM Lecture 3

Tehran Team

1 Exercise 3.1

According to the strong convergence of semigroups, for every $f \in X$ and $t_{\max }>0$,

$$
\begin{equation*}
\sup _{0 \leq t \leq t_{\max }}\left\|T_{n}(t) f-T(t) f\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

Hence

$$
\sup _{0 \leq t \leq t_{\max }}\left\|T_{n}(t) f\right\| \leq \sup _{0 \leq t \leq t_{\max }}\left\|T_{n}(t) f-T(t) f\right\|+\sup _{0 \leq t \leq t_{\max }}\|T(t) f\|
$$

From (1) and n large enough we obtain $\sup _{0 \leq t \leq t_{\max }}\left\|T_{n}(t) f\right\| \leq \sup _{0 \leq t \leq t_{\max }}\|T(t) f\|$.
Using the uniform boundedness principle, Theorem 2.28, and since T is of type (M, ω) there exist constants $M \geq 1, \omega \in R$ such that $\left\|T_{n}(t)\right\| \leq M e^{\omega t}$ holds for all $n \in N, t \geq 0$.

2 Exercise 3.2

Let

$$
S_{n}(x)=\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) B_{n, k}(x)
$$

that $f \in C_{0}([0,1])$, thus f is uniformly continuously for $0 \leq j \leq n$ and fix if $x=x_{j}=\frac{j}{n}$ we have $S_{n}(x)=f(x)$ therefore $S_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

If $\frac{j}{n}<x<\frac{j+1}{n}$ for $0 \leq j \leq n-1$ and fix, we have

$$
S_{n}(x):=\frac{x-\frac{j}{n}}{\frac{1}{n}} f\left(\frac{j+1}{n}\right)+\frac{x-\frac{j+1}{n}}{-\frac{1}{n}} f\left(\frac{j}{n}\right)
$$

hence

$$
S_{n}(x)-f(x)=\frac{x-\frac{j}{n}}{\frac{1}{n}}\left(f\left(\frac{j+1}{n}\right)-f(x)\right)+\frac{x-\frac{j+1}{n}}{-\frac{1}{n}}\left(f\left(\frac{j}{n}\right)-f(x)\right) \rightarrow 0
$$

as $n \rightarrow \infty$, since f is uniformly continuous.

3 Exercise 3.3

We show that there is a constant $K>0$ with $\left\|P_{n}\right\|,\left\|J_{n}\right\| \leq K$ for all $n \in \mathbb{N}$.

$$
\begin{gathered}
\left\|P_{n}\right\|=\sup _{f \in X} \frac{\left\|P_{n} f\right\|}{\|f\|}=\sup _{f \in X} \frac{\frac{1}{n} \sum_{k=1}^{n}\left|\left(P_{n} f\right)_{k}\right|}{\|f\|} \leq \sup _{f \in X} \frac{\sum_{k=1}^{n} \frac{\int_{\frac{k-1}{n}}^{n}|f(x)| d x}{\|f\|_{L^{1}(0,1)}^{n}}=1}{\left\|J_{n}\right\|}=\sup _{y \in X_{n}} \frac{\left\|J_{n} y\right\|}{\|y\|} \leq \sup _{y \in X_{n}} \frac{\frac{1}{n} \sum_{k=1}^{n}\left|y_{k}\right|}{\|y\|}=1
\end{gathered}
$$

It is obvious to show $P_{n} J_{n}=I_{n}$. the last property is satisfied because

$$
\begin{aligned}
& \text { Put } S_{n}=J_{n} P_{n} f=\sum_{k=1}^{n}\left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(s) d s\right) \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)} \text { and let } f(x)=\sum_{k=1}^{n} \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)} \text {. we show that } \| S_{n}(x)- \\
& f(x) \|_{L^{1}(0,1)}=\int_{0}^{1}\left|S_{n}(x)-f(x)\right| d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|S_{n}(x)-f(x)\right| d x=0 . \\
& \text { but } \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|S_{n}(x)-f(x)\right| d x=\int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|\sum_{k=1}^{n}\left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(s) d s\right) \chi_{\left.\frac{k-1}{n}, \frac{k}{n}\right)}-f(x)\right| d x= \\
& \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|\sum_{k=1}^{n}\left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(s) d s\right)-f(x)\right| \chi_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}(x) d x=\int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|\sum_{k=1}^{n}\left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(s) d s\right)-f(x)\right| d x= \\
& \qquad n \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left|\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}}(f(s)-f(x)) d s\right| d x \leq n \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}}|f(s)-f(x)| d s\right) d x
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \quad\left\|S_{n}(x)-f(x)\right\|_{L^{1}(0,1)} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} n \int_{\frac{k-1}{n}}^{\frac{k}{n}}\left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}}|f(s)-f(x)| d s\right) d x \\
& =\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1}|f(s)-f(x)| d s d x \rightarrow 0 \text { Since } s, x \in\left[\frac{k-1}{n}, \frac{k}{n}\right) .
\end{aligned}
$$

5 Exercise 3.5

Exercise 3.5.1

We divide both intervals $0 \leq x \leq \pi$ and $0 \leq y \leq \pi$ into $N+1$ equal subintervals
With length $h=\frac{\pi}{N+1}$ grid points are $x_{i}=i h, y_{j}=j h$.
We use Taylors formula to approximate the exact solution at time level $t \geq 0$ and at the points $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{y}_{j}$:

$$
\begin{aligned}
& \partial_{x x} w_{i j}(t) \approx \frac{w_{i-1 j}(t)-2 w_{i j}(t)+w_{i+1 j}(t)}{h^{2}} \\
& \partial_{y y} \approx \frac{w_{i j-1}(t)-2 w_{i j}(t)+w_{i j+1}(t)}{h^{2}}
\end{aligned}
$$

The spatially discretized problem takes the form:
$\frac{d}{d t} w_{i j}(t)=\frac{1}{h^{2}}\left(w_{i-1 j}-4 w_{i j}+w_{i+1 j}+w_{i j-1}+w_{i j+1}\right) \quad$ for $i, j=1,2, \ldots, N$
The cases $i=j=0$ and $i=j=N+1$ are given by the boundary condition

$$
w(t, x, y)=0 \text { On } \partial \Omega \text { as } w_{0 j}=w_{i 0}=w_{N+1 j}=w_{i N+1}=0
$$

For all $t \geq \mathbf{O}$.
The ordinary differential equations above can be formulated as system of ordinary differential equation $\frac{d}{d t} w(t)=M w(t)$.where M is a block tridiagonal matrix of order N^{2}.i.e. $M=\frac{1}{h^{2}} \operatorname{tridiagoal}(I, A, I)$.
A is a tridiagonal matrix of order N given by $A=\left\lfloor a_{i j}\right\rfloor, i, j=1,2, \ldots, N$. Where
$a_{i j}=\left\{\begin{array}{cc}-4 & i=j \\ 1 & |i-j|=1 \\ 0 & \text { otherwise }\end{array}\right.$
And I is the identity Matrix of order N. The vector $w(t)=\left[w_{i j}(t)\right] \in R^{N^{2}}$ for $i, j=1,2, \ldots, N$

Exercise 3.5.2

It is obvious that for $u \neq v, 0 \leq \theta \leq 1 \quad F(\theta u+(1-\theta) v)=\theta F(u)+(1-\theta) F(v)-\theta(1-\theta)(A(u-v), u-v)$
The last term on the right is nonnegative. Since A is strongly elliptic thus functional F is strictly convex. We show that u is minimize by the strict convexity of F. Hence

$$
F(v)-F(u)>\frac{F(u+\theta(v-u))-F(u)}{\theta}
$$

Since $A u=F$ the term $\frac{F(u+\theta(v-u))-F(u)}{\theta} \rightarrow 0$ as $\theta \rightarrow 0$. Hence

$$
F(u)<F(v) \quad \text { for } v \in D(A), v \neq u \text {. }
$$

Exercise 3.5.3

a) we have
$\sum_{k=1}^{m} c_{k}<A \varphi_{k}, \varphi_{j}>=<f, \varphi_{j}>$
In example A.4.a with the spectral method we have
$\sum_{k=1}^{m}-c_{k} k j \delta_{j k} \frac{\pi}{2}=\int_{0}^{\pi} f(x) \sin (j x) d x$
The definitions of the vectors
$c:=\left[\begin{array}{c}c_{1} \\ \cdot \\ \cdot \\ \cdot \\ c_{m}\end{array}\right] \quad$ and $\quad \varphi:=\left[\begin{array}{c}<f(x), \sin x> \\ \cdot \\ \cdot \\ \cdot \\ <f(x), \sin m x>\end{array}\right]$

And the matrix $A_{m}=-\frac{\pi}{2} \operatorname{diag}\left(1,2^{2}, \ldots, m^{2}\right)$ enable us formulate the problem as a system of linear equations $A_{m} c=\varphi$.
b)

In example A.4.b with the finite element method we have
$\frac{1}{\Delta x}\left(c_{j-1}-2 c_{j}+c_{j+1}\right)=\int_{0}^{\pi} f(x) \varphi_{j}(x) d x$ for $j=1,2, \ldots, m$

The matrix A_{m} has the tridiagonal form $A_{m}=\frac{1}{\Delta x}$ tridiagonal $(1,-2,1)$.

