PROBLEM 1
As we know from given conditions for every ¢t > 0 there exists M(t) such
that || T, ()| < M (t) for all n € N. Let us take ¢ > 0 arbitrary and write t =
k+r with k € N and r € [0,1). Then for all n € N we obtain
TNl < I Ta(r) T (B) | < T ()1 T (1)1
< ME)Ta()ll < (1 + M) Ta(r)l < (1 + M) To(r)ll-

By using the uniformly boundedness principle and the uniform conver-
gence of T,,(r)f for r on compact intervals from [0, 00) we conclude that

sup sup T, (r) < oo
ref0,1) neN

Thus there exists M > 1 such that || T, (r)|| < M for alln € Nand r € [0,1).
Therefore we can continue the sequence of inequalities above and write

W) < ITa(r) TRl < M1+ M) = Mt
with w = log(1 + M(1)).

PROBLEM 2

Let us fix an arbitrary f € C(g)([0, 1]). We have to prove that

n—1

(0.1) S f (i) Bui(z) = f(x),n — 400

k=0

uniformly in z € [0,1]. Let us fix an arbitrary & > 0. Then, there exists
N € N: Vn > N Vay, 20 € [0,1]: |o1 — 22| < L [f(21) — f(z)] < e (fis

— n

uniformly continuous). (Vn > N) (Vz € [0,1]) 3k € I,n): =2 <2 < £
Then,

Ef (,k;) Bn,k(x)—f(x)‘ = ‘(nx—k%—l)f <i>+(k—nw)f (T)‘f(x)’ _

“[oe-n (1 () -1 (557)) + (1 (5) -7l <2

In order to obtain the last inequality we used that f is uniformly continuous,

T € [@, ﬂ and triangle inequality.

n

PROBLEM 3

We first prove that there is a constant K > 0 with ||B,]|, || /.|| < K for all

n € N. We actually show that K = 1. Indeed,
1



IPufll, =3 Dol [ fas| < 3 [ 1f1de =15l

=17 1) /n k=1x 1) /n
1

(s p)lx =/

Z Yk X[(k—1)/n,k/n) ()| dT

k=1

1

= / |yk\ X[(k—=1)/nk/m] (T) Az = [|(y1, -+ s yn) | x0-

0 k=

The identity P,.J, = I, holds trivially.

Finally, let us show that the sequence J, P, f converges to f as n — oo
in L'-norm for all integrable functions f. We obtain the stated convergence
for C([0,1])-functions. Letting g € C([0,1]) and applying the mean value
theorem for integration yields

k/n 1 n
H —”Z / t) A X [(k—1) /n ke /n) () :/'g = 9(E)X (k1) /mbym) ()| d
k=1 L1(0,1) 1
(k—1)/n 0
n k/n
= / 9(&k)| dz < g
k= 1 -1/

Here we used the uniform continuity of g. For each ¢ > 0 and f € L'(0,1)
there exists g € C([0, 1]) such that | f — gl[r,1(0,1) < §. Hence

| JnPrf=flltr0,) < 1f=gllLro,0+1InPrg—gllui o)t InPu(f=9)llLio,1)

2¢e
< 3 + [ o P (f — 9)||L1(0,1)-

To finish the proof let us evaluate the last term in the above inequality

1 n /n
| JnPr(f = 9)llL10,1) = / (f = 9)(@) At X((k=1)/nk/n) (%) | dz
0 Yk=1)/n
n k/n n k/n
/”Z Udt‘ X[(k—1)/mg/m)(@)dz =) ()dt‘ 5

0 =l 1y/m F=L(k-1)/n



PROBLEM 4

We have to consider the general case in Proposition 3.10. Let us again start
by fixing some ¢y > 0. Then for all ¢ € [0,¢y] we obtain

(T (t) Py — PaT(t) A7 f = T, (1) (P, AT — AJIP,) f

-~

+ AN T () Py — P T(E))f + (A1 P, — PLATH)T(2) f

Using the stability assumption we conclude that the first and the last term
of this sum converge to zero in the operator norm and

T () (P AT = AT o) f| < Me'0|| P ATH — ATUR ]| £
(A P — PoATHT () fI| < Me™ || P AT — AP |

Thus we now focus on the middle term.
Observe that the function

[0,1] 35— T, (t — s)A, ' P, T(s) At h € X

is differentiable and its derivative is
d

(Ta(t = $) A, PT(8)A™'h) = Tyt — 5)(—Au A, PAT(s) + A, P (s) A)A ™ h

= T,(t — s)(A,' P, — P,A")T(s)h.

Hence, the fundamental theorem of calculus yields
¢
AN (P T(t) — To(t)Py) A h = / T, (t — ) (A ' P, — P,A")T(s)hds
0
holds for all h € X and ¢ > 0. Using this obtain the inequality
t
A @Ry = PLT)AT R < [ M9 AP, — PoA T (0] ds
0

< toM?e“ || AP, — Py AR

Taking into account all obtained estimates, we conclude that for g €
D(A?) we can introduce f = Ag and h = Af to get that

I Ta(t) Pag — PaT(t)g]l < |A7 P — PaATH || M2 (1o M| A%g|| + 2[| Ag])).-
Observing that || Ag|| < [|[A7Y|||A2g]| from the last inequality we obtain the

desired estimate.

PRrROBLEM A. 1

Let us put A := Az = Ay = 5, N € N. We'll use the denotation
w; j(t) = w(t,x;,y;) = w(t,iAz,jAy). The spatially discretised problem
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has the form:

(0.2)
Aiw“@):U%HJ@%—%WJ@%+MFLAQ_%wm+ﬂﬂ—2meJ+U%¢4@)
dt " (Az)? (Ay)? ’

ij=1,...,N—1

The boundary conditions take the form wg;(t) = wio(t) = wyn(t) =
wy;(t) = 0. Let us put W(t) = (Wy(t), Ta(t),..., Wn_1(t))", where
ﬁj(t) = (w1,(t), w2(t),...,wn-1;(t)). System (0.2) can be represented
in the form:
iW(t) = M, ,W(t)
dt Sy ’
where M, , = M, + M, is (N —1)? x (N — 1)?>-matrix and matrices M, M,
have the form:

(0.3)
I I O 0 ... O
M 0 ... O L I, L 0 ... 0
Y 0 M ... 0 M 1 0 Il I,Q Il 0
oo s T (A2 S
o 0 ... M 0 0 ... L I L
0 I I
where M is the same matrix as in Appendix (formula (A.3)), I1 = diag(1,1,...,1) €
RWN=DX(N=1) "1 o = (=2)diag(1,1,...,1) € RNV=DxWN=1)" Matrix M,
can also be represented in the form:
(0.4) 3
M L 0 0 ... 0 -4 1 0 0 0
L M Iy 0 ... 0 1 -4 1 0 0
0O L M L ... 0 - 1 0 1 -4 1 0
M[L’,y: E ,'. ." ." . S ’M:(A)Q . . . .“ E
0 0 I, M I 0 0 1 -4 1
0O 0 0 I, M 0 0 0 1 -4

PROBLEM A. 2

Our proof starts with the observation that Az is symmetric and D(A) C
D(A%). Next, by means of the Cauchy inequality

0 = 2(Au,u) — 2(f,u) = 2(Au, w) — 2(f, w) = 2(A2u, Azw) — 2(f, w)

< 2| A2 ul||| A2 w| — 2(f, w) < [ AZul)? + | AR w||? — 2(f, w)
= <A'LL,U> + <AU),U)> - 2<f7 U)),
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where the equality holds only if Azy = A%w, hence if u = w, and the proof
is complete.

PROBLEM A.3

a) In this case we have basis functions ¢; = sin jz. Thus Ap; = — j2sin jx
and the elements of the matrix A,, are defined as

. .. . L T
(Am)jr =< Apj, o >= /(—]2) sin(jx) sin(kx)dx = —jkgdjk
0
b)As basis functions in this case do not belong to H?(0,7), the matrix A,,
has to be defined by using the weak formulation, i.e.,

d d
(Ap)jr = — < T Pi g Pk >

0 for k<j—1
jAzx 9
[ (&) dz fork=j—1
(j—-1)Az
jAz 9 (J+1)Az 9
={ - [ (&) dze+ [ (£)'da| fork=3
(j—1)Azx JjAz
jAzx 9
i (ﬁ) dx fork=j5+1
(J-DAz
0 for k>j+1
(0 fork<j—1
ﬁ fork=j—-1
= _A%g for k=j
ﬁ fork=j+1
L 0 for k>j+1

ie., Ay = a-tridiag(1, —2,1).
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