Problem 1

As we know from given conditions for every $t \geq 0$ there exists $M(t)$ such that $\left\|T_{n}(t)\right\|<M(t)$ for all $n \in \mathbb{N}$. Let us take $t \geq 0$ arbitrary and write $t=$ $k+r$ with $k \in \mathbb{N}$ and $r \in[0,1)$. Then for all $n \in \mathbb{N}$ we obtain

$$
\begin{aligned}
\left\|T_{n}(t)\right\| & \leq\left\|T_{n}(r) T_{n}(k)\right\| \leq\left\|T_{n}(r)\right\|\left\|T_{n}(1)\right\|^{k} \\
& \leq M^{k}(1)\left\|T_{n}(r)\right\| \leq(1+M(1))^{k}\left\|T_{n}(r)\right\| \leq(1+M(1))^{t}\left\|T_{n}(r)\right\|
\end{aligned}
$$

By using the uniformly boundedness principle and the uniform convergence of $T_{n}(r) f$ for r on compact intervals from $[0, \infty)$ we conclude that

$$
\sup _{r \in[0,1)} \sup _{n \in \mathbb{N}} T_{n}(r)<\infty
$$

Thus there exists $M \geq 1$ such that $\left\|T_{n}(r)\right\| \leq M$ for all $n \in \mathbb{N}$ and $r \in[0,1)$. Therefore we can continue the sequence of inequalities above and write

$$
\left\|T_{n}(t)\right\| \leq\left\|T_{n}(r) T_{n}(k)\right\| \leq M(1+M(1))^{t}=M e^{\omega t}
$$

with $\omega=\log (1+M(1))$.

Problem 2

Let us fix an arbitrary $f \in C_{(0)}([0,1])$. We have to prove that

$$
\begin{equation*}
\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) B_{n, k}(x) \rightarrow f(x), n \rightarrow+\infty \tag{0.1}
\end{equation*}
$$

uniformly in $x \in[0,1]$. Let us fix an arbitrary $\varepsilon>0$. Then, there exists $N \in \mathbb{N}: \forall n>N \forall x_{1}, x_{2} \in[0,1]:\left|x_{1}-x_{2}\right| \leq \frac{1}{n}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon(\mathrm{f}$ is uniformly continuous). $(\forall n>N)(\forall x \in[0,1])(\exists k \in \overline{1, n}): \frac{k-1}{n} \leq x \leq \frac{k}{n}$. Then,

$$
\begin{aligned}
& \left|\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) B_{n, k}(x)-f(x)\right|=\left|(n x-k+1) f\left(\frac{k}{n}\right)+(k-n x) f\left(\frac{k-1}{n}\right)-f(x)\right|= \\
& \quad=\left|(n x-k)\left(f\left(\frac{k}{n}\right)-f\left(\frac{k-1}{n}\right)\right)+\left(f\left(\frac{k}{n}\right)-f(x)\right)\right| \leq 2 \varepsilon
\end{aligned}
$$

In order to obtain the last inequality we used that f is uniformly continuous, $x \in\left[\frac{k-1}{n}, \frac{k}{n}\right]$ and triangle inequality.

Problem 3

We first prove that there is a constant $K>0$ with $\left\|P_{n}\right\|,\left\|J_{n}\right\| \leq K$ for all $n \in \mathbb{N}$. We actually show that $K=1$. Indeed,

$$
\begin{aligned}
\left\|P_{n} f\right\|_{X_{n}} & =\frac{1}{n} \sum_{k=1}^{n}\left|n \int_{(k-1) / n}^{k / n} f d x\right| \leq \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n}|f| d x=\|f\|_{X} \\
\left\|J_{n}\left(y_{1}, \ldots, y_{n}\right)\right\|_{X} & =\int_{0}^{1}\left|\sum_{k=1}^{n} y_{k} \chi_{[(k-1) / n, k / n]}(x)\right| \mathrm{d} x \\
& =\int_{0}^{1} \sum_{k=1}^{n}\left|y_{k}\right| \chi_{[(k-1) / n, k / n]}(x) \mathrm{d} x=\left\|\left(y_{1}, \ldots, y_{n}\right)\right\|_{X_{n}}
\end{aligned}
$$

The identity $P_{n} J_{n}=I_{n}$ holds trivially.
Finally, let us show that the sequence $J_{n} P_{n} f$ converges to f as $n \rightarrow \infty$ in L^{1}-norm for all integrable functions f. We obtain the stated convergence for $\mathrm{C}([0,1])$-functions. Letting $g \in \mathrm{C}([0,1])$ and applying the mean value theorem for integration yields

$$
\begin{aligned}
\left\|g(x)-n \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n} g(t) \mathrm{d} t \chi_{[(k-1) / n, k / n]}(x)\right\|_{\mathrm{L}^{1}(0,1)} & =\int_{0}^{1}\left|g(x)-\sum_{k=1}^{n} g\left(\xi_{k}\right) \chi_{[(k-1) / n, k / n]}(x)\right| \mathrm{d} x \\
& =\sum_{k=1}^{n} \int_{(k-1) / n}^{k / n}\left|g(x)-g\left(\xi_{k}\right)\right| \mathrm{d} x<\frac{\varepsilon}{3}
\end{aligned}
$$

Here we used the uniform continuity of g. For each $\varepsilon>0$ and $f \in \mathrm{~L}^{1}(0,1)$ there exists $g \in \mathrm{C}([0,1])$ such that $\|f-g\|_{\mathrm{L}^{1}(0,1)}<\frac{\varepsilon}{3}$. Hence

$$
\begin{array}{r}
\left\|J_{n} P_{n} f-f\right\|_{\mathrm{L}^{1}(0,1)} \leq\|f-g\|_{\mathrm{L}^{1}(0,1)}+\left\|J_{n} P_{n} g-g\right\|_{\mathrm{L}^{1}(0,1)}+\left\|J_{n} P_{n}(f-g)\right\|_{\mathrm{L}^{1}(0,1)} \\
<\frac{2 \varepsilon}{3}+\left\|J_{n} P_{n}(f-g)\right\|_{\mathrm{L}^{1}(0,1)}
\end{array}
$$

To finish the proof let us evaluate the last term in the above inequality

$$
\begin{aligned}
& \left\|J_{n} P_{n}(f-g)\right\|_{\mathrm{L}^{1}(0,1)}=\int_{0}^{1}\left|n \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n}(f-g)(t) \mathrm{d} t \chi_{[(k-1) / n, k / n]}(x)\right| \mathrm{d} x \\
= & \int_{0}^{1} n \sum_{k=1}^{n}\left|\int_{(k-1) / n}^{k / n}(f-g)(t) \mathrm{d} t\right| \chi_{[(k-1) / n, k / n]}(x) \mathrm{d} x=\sum_{k=1}^{n}\left|\int_{(k-1) / n}^{k / n}(f-g)(t) \mathrm{d} t\right|<\frac{\varepsilon}{3} .
\end{aligned}
$$

Problem 4

We have to consider the general case in Proposition 3.10. Let us again start by fixing some $t_{0}>0$. Then for all $t \in\left[0, t_{0}\right]$ we obtain

$$
\begin{aligned}
\left(T_{n}(t) P_{n}\right. & \left.-P_{n} T(t)\right) A^{-1} f=\underbrace{T_{n}(t)\left(P_{n} A^{-1}-A_{n}^{-1} P_{n}\right) f} \\
& +A_{n}^{-1}\left(T_{n}(t) P_{n}-P_{n} T(t)\right) f+\underbrace{\left(A_{n}^{-1} P_{n}-P_{n} A^{-1}\right) T(t) f}
\end{aligned}
$$

Using the stability assumption we conclude that the first and the last term of this sum converge to zero in the operator norm and

$$
\begin{aligned}
\left\|T_{n}(t)\left(P_{n} A^{-1}-A_{n}^{-1} P_{n}\right) f\right\| & \leq M e^{\omega t_{0}}\left\|P_{n} A^{-1}-A_{n}^{-1} P_{n}\right\|\|f\| \\
\left\|\left(A_{n}^{-1} P_{n}-P_{n} A^{-1}\right) T(t) f\right\| & \leq M e^{\omega t_{0}}\left\|P_{n} A^{-1}-A_{n}^{-1} P_{n}\right\|\|f\|
\end{aligned}
$$

Thus we now focus on the middle term.
Observe that the function

$$
[0, t] \ni s \mapsto T_{n}(t-s) A_{n}^{-1} P_{n} T(s) A^{-1} h \in X
$$

is differentiable and its derivative is

$$
\begin{aligned}
\frac{d}{d s}\left(T_{n}(t-s) A_{n}^{-1} P_{n} T(s) A^{-1} h\right) & =T_{n}(t-s)\left(-A_{n} A_{n}^{-1} P_{n} T(s)+A_{n}^{-1} P_{n} T(s) A\right) A^{-1} h \\
& =T_{n}(t-s)\left(A_{n}^{-1} P_{n}-P_{n} A^{-1}\right) T(s) h
\end{aligned}
$$

Hence, the fundamental theorem of calculus yields

$$
A_{n}^{-1}\left(P_{n} T(t)-T_{n}(t) P_{n}\right) A^{-1} h=\int_{0}^{t} T_{n}(t-s)\left(A_{n}^{-1} P_{n}-P_{n} A^{-1}\right) T(s) h d s
$$

holds for all $h \in X$ and $t>0$. Using this obtain the inequality

$$
\begin{aligned}
\left\|A_{n}^{-1}\left(T_{n}(t) P_{n}-P_{n} T(t)\right) A^{-1} h\right\| & \leq \int_{0}^{t} M e^{\omega(t-s)}\left\|A_{n}^{-1} P_{n}-P_{n} A^{-1}\right\|\|T(s) h\| d s \\
& \leq t_{0} M^{2} e^{\omega t_{0}}\left\|A_{n}^{-1} P_{n}-P_{n} A^{-1}\right\|\|h\|
\end{aligned}
$$

Taking into account all obtained estimates, we conclude that for $g \in$ $D\left(A^{2}\right)$ we can introduce $f=A g$ and $h=A f$ to get that

$$
\left\|T_{n}(t) P_{n} g-P_{n} T(t) g\right\| \leq\left\|A_{n}^{-1} P_{n}-P_{n} A^{-1}\right\| M^{2} e^{\omega t_{0}}\left(t_{0} M\left\|A^{2} g\right\|+2\|A g\|\right)
$$

Observing that $\|A g\| \leq\left\|A^{-1}\right\|\left\|A^{2} g\right\|$ from the last inequality we obtain the desired estimate.

Problem A. 1

Let us put $\Delta:=\Delta x=\Delta y=\frac{\pi}{N}, N \in \mathbb{N}$. We'll use the denotation $w_{i, j}(t):=w\left(t, x_{i}, y_{j}\right):=w(t, i \Delta x, j \Delta y)$. The spatially discretised problem
has the form:
(0.2)
$\frac{d}{d t} w_{i j}(t)=\frac{w_{i+1, j}(t)-2 w_{i, j}(t)+w_{i-1, j}(t)}{(\Delta x)^{2}}+\frac{w_{i, j+1}(t)-2 w_{i, j}(t)+w_{i, j-1}(t)}{(\Delta y)^{2}}$,

$$
i, j=1, \ldots, N-1
$$

The boundary conditions take the form $w_{0, j}(t)=w_{i, 0}(t)=w_{i, N}(t)=$ $w_{N, j}(t)=0$. Let us put $W(t)=\left(\vec{w}_{1}(t), \vec{w}_{2}(t), \ldots, \vec{w}_{N-1}(t)\right)^{\top}$, where $\vec{w}_{j}(t)=\left(w_{1, j}(t), w_{2, j}(t), \ldots, w_{N-1, j}(t)\right)$. System (0.2) can be represented in the form:

$$
\frac{d}{d t} W(t)=M_{x, y} W(t)
$$

where $M_{x, y}=M_{x}+M_{y}$ is $(N-1)^{2} \times(N-1)^{2}$-matrix and matrices M_{x}, M_{y} have the form:

$$
M_{x}=\left(\begin{array}{cccc}
M & 0 & \ldots & 0 \tag{0.3}\\
0 & M & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & M
\end{array}\right), M_{y}=\frac{1}{(\Delta y)^{2}}\left(\begin{array}{cccccc}
I_{-2} & I_{1} & 0 & 0 & \ldots & 0 \\
I_{1} & I_{-2} & I_{1} & 0 & \ldots & 0 \\
0 & I_{1} & I_{-2} & I_{1} & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & I_{1} & I_{-2} & I_{1} \\
0 & 0 & \ldots & 0 & I_{1} & I_{-2}
\end{array}\right)
$$

where M is the same matrix as in Appendix (formula (A.3)), $I_{1}=\operatorname{diag}(1,1, \ldots, 1) \in$ $\mathbb{R}^{(N-1) \times(N-1)}, I_{-2}=(-2) \operatorname{diag}(1,1, \ldots, 1) \in \mathbb{R}^{(N-1) \times(N-1)}$. Matrix $M_{x, y}$ can also be represented in the form:

$$
M_{x, y}=\left(\begin{array}{cccccc}
\tilde{M} & I_{1} & 0 & 0 & \ldots & 0 \tag{0.4}\\
I_{1} & \tilde{M} & I_{1} & 0 & \ldots & 0 \\
0 & I_{1} & \tilde{M} & I_{1} & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & I_{1} & \tilde{M} & I_{1} \\
0 & 0 & \ldots & 0 & I_{1} & \tilde{M}
\end{array}\right), \tilde{M}=\frac{1}{(\Delta)^{2}}\left(\begin{array}{cccccc}
-4 & 1 & 0 & 0 & \ldots & 0 \\
1 & -4 & 1 & 0 & \ldots & 0 \\
0 & 1 & -4 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & -4 & 1 \\
0 & 0 & \ldots & 0 & 1 & -4
\end{array}\right)
$$

Problem A. 2
Our proof starts with the observation that $A^{\frac{1}{2}}$ is symmetric and $D(A) \subset$ $D\left(A^{\frac{1}{2}}\right)$. Next, by means of the Cauchy inequality

$$
\begin{aligned}
0 & =2\langle A u, u\rangle-2\langle f, u\rangle=2\langle A u, w\rangle-2\langle f, w\rangle=2\left\langle A^{\frac{1}{2}} u, A^{\frac{1}{2}} w\right\rangle-2\langle f, w\rangle \\
& \leq 2\left\|A^{\frac{1}{2}} u\right\|\left\|A^{\frac{1}{2}} w\right\|-2\langle f, w\rangle \leq\left\|A^{\frac{1}{2}} u\right\|^{2}+\left\|A^{\frac{1}{2}} w\right\|^{2}-2\langle f, w\rangle \\
& =\langle A u, u\rangle+\langle A w, w\rangle-2\langle f, w\rangle
\end{aligned}
$$

where the equality holds only if $A^{\frac{1}{2}} u=A^{\frac{1}{2}} w$, hence if $u=w$, and the proof is complete.

Problem A. 3

a) In this case we have basis functions $\varphi_{j}=\sin j x$. Thus $A \varphi_{j}=-j^{2} \sin j x$ and the elements of the matrix A_{m} are defined as

$$
\left(A_{m}\right)_{j k}=<A \varphi_{j}, \varphi_{k}>=\int_{0}^{\pi}\left(-j^{2}\right) \sin (j x) \sin (k x) d x=-j k \frac{\pi}{2} \delta_{j k}
$$

b) As basis functions in this case do not belong to $H^{2}(0, \pi)$, the matrix A_{m} has to be defined by using the weak formulation, i.e.,

$$
\begin{aligned}
\left(A_{m}\right)_{j k} & =-<\frac{d}{d x} \varphi_{j}, \frac{d}{d x} \varphi_{k}> \\
& = \begin{cases}0 \int_{j \Delta x}^{j \Delta x}\left(\frac{1}{\Delta x}\right)^{2} d x & \text { for } k<j-1 \\
\int_{(j-1) \Delta x}-\left(\int_{(j-1) \Delta x}^{j \Delta x}\left(\frac{1}{\Delta x}\right)^{2} d x+\int_{j \Delta x}^{(j+1) \Delta x}\left(\frac{1}{\Delta x}\right)^{2} d x\right) & \text { for } k=j-1 \\
\int_{j \Delta x}^{(j-1) \Delta x}\left(\frac{1}{\Delta x}\right)^{2} d x & \text { for } k=j+1 \\
0 & \text { for } k>j+1\end{cases} \\
& = \begin{cases}0 & \text { for } k<j-1 \\
\frac{1}{\Delta x} & \text { for } k=j-1 \\
-\frac{2}{1 x} & \text { for } k=j \\
\frac{1}{\Delta x} & \text { for } k=j+1 \\
0 & \text { for } k>j+1\end{cases}
\end{aligned}
$$

i.e., $A_{m}=\frac{1}{\Delta x} \operatorname{tridiag}(1,-2,1)$.

L'viv Team: Oleksandr Chvartatskyi, Stepan Man'ko, Nataliya Pronska.

