
Problem 1

As we know from given conditions for every t ≥ 0 there exists M(t) such
that ∥Tn(t)∥ < M(t) for all n ∈ N. Let us take t ≥ 0 arbitrary and write t =
k + r with k ∈ N and r ∈ [0, 1). Then for all n ∈ N we obtain

∥Tn(t)∥ ≤ ∥Tn(r)Tn(k)∥ ≤ ∥Tn(r)∥∥Tn(1)∥k

≤ Mk(1)∥Tn(r)∥ ≤ (1 +M(1))k∥Tn(r)∥ ≤ (1 +M(1))t∥Tn(r)∥.

By using the uniformly boundedness principle and the uniform conver-
gence of Tn(r)f for r on compact intervals from [0,∞) we conclude that

sup
r∈[0,1)

sup
n∈N

Tn(r) < ∞

Thus there exists M ≥ 1 such that ∥Tn(r)∥ ≤ M for all n ∈ N and r ∈ [0, 1).
Therefore we can continue the sequence of inequalities above and write

∥Tn(t)∥ ≤ ∥Tn(r)Tn(k)∥ ≤ M(1 +M(1))t = Meωt

with ω = log(1 +M(1)).

Problem 2

Let us fix an arbitrary f ∈ C(0)([0, 1]). We have to prove that

(0.1)

n−1∑
k=0

f

(
k

n

)
Bn,k(x) → f(x), n → +∞

uniformly in x ∈ [0, 1]. Let us fix an arbitrary ε > 0. Then, there exists
N ∈ N: ∀n > N ∀x1, x2 ∈ [0, 1]: |x1 − x2| ≤ 1

n |f(x1) − f(x2)| < ε (f is

uniformly continuous). (∀n > N) (∀x ∈ [0, 1]) (∃k ∈ 1, n): k−1
n ≤ x ≤ k

n .
Then,

∣∣∣n−1∑
k=0

f

(
k

n

)
Bn,k(x)−f(x)

∣∣∣ = ∣∣∣(nx−k+1)f

(
k

n

)
+(k−nx)f

(
k − 1

n

)
−f(x)

∣∣∣ =
=
∣∣∣(nx− k)

(
f

(
k

n

)
− f

(
k − 1

n

))
+

(
f

(
k

n

)
− f(x)

)∣∣∣ ≤ 2ε.

In order to obtain the last inequality we used that f is uniformly continuous,

x ∈
[
k−1
n , kn

]
and triangle inequality.

Problem 3

We first prove that there is a constant K > 0 with ∥Pn∥, ∥Jn∥ ≤ K for all
n ∈ N. We actually show that K = 1. Indeed,
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∥Pnf∥Xn =
1

n

n∑
k=1

∣∣∣∣n
k/n∫

(k−1)/n

f dx

∣∣∣∣ ≤ n∑
k=1

k/n∫
(k−1)/n

|f | dx = ∥f∥X ,

∥Jn(y1, . . . , yn)∥X =

1∫
0

∣∣∣∣ n∑
k=1

yk χ[(k−1)/n,k/n](x)

∣∣∣∣ dx
=

1∫
0

n∑
k=1

|yk|χ[(k−1)/n,k/n](x) dx = ∥(y1, . . . , yn)∥Xn .

The identity PnJn = In holds trivially.
Finally, let us show that the sequence JnPnf converges to f as n → ∞

in L1-norm for all integrable functions f . We obtain the stated convergence
for C([0, 1])-functions. Letting g ∈ C([0, 1]) and applying the mean value
theorem for integration yields

∥∥∥∥g(x)− n

n∑
k=1

k/n∫
(k−1)/n

g(t) dt χ[(k−1)/n,k/n](x)

∥∥∥∥
L1(0,1)

=

1∫
0

∣∣∣∣g(x)− n∑
k=1

g(ξk)χ[(k−1)/n,k/n](x)

∣∣∣∣dx
=

n∑
k=1

k/n∫
(k−1)/n

|g(x)− g(ξk)|dx <
ε

3
.

Here we used the uniform continuity of g. For each ε > 0 and f ∈ L1(0, 1)
there exists g ∈ C([0, 1]) such that ∥f − g∥L1(0,1) <

ε
3 . Hence

∥JnPnf−f∥L1(0,1) ≤ ∥f−g∥L1(0,1)+∥JnPng−g∥L1(0,1)+∥JnPn(f−g)∥L1(0,1)

<
2ε

3
+ ∥JnPn(f − g)∥L1(0,1).

To finish the proof let us evaluate the last term in the above inequality

∥JnPn(f − g)∥L1(0,1) =

1∫
0

∣∣∣∣n n∑
k=1

k/n∫
(k−1)/n

(f − g)(t) dt χ[(k−1)/n,k/n](x)

∣∣∣∣dx
=

1∫
0

n
n∑

k=1

∣∣∣∣
k/n∫

(k−1)/n

(f−g)(t) dt

∣∣∣∣χ[(k−1)/n,k/n](x)dx =
n∑

k=1

∣∣∣∣
k/n∫

(k−1)/n

(f−g)(t) dt

∣∣∣∣ < ε

3
.
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Problem 4

We have to consider the general case in Proposition 3.10. Let us again start
by fixing some t0 > 0. Then for all t ∈ [0, t0] we obtain

(Tn(t)Pn − PnT (t))A
−1f = Tn(t)(PnA

−1 −A−1
n Pn)f︸ ︷︷ ︸

+A−1
n (Tn(t)Pn − PnT (t))f + (A−1

n Pn − PnA
−1)T (t)f︸ ︷︷ ︸

Using the stability assumption we conclude that the first and the last term
of this sum converge to zero in the operator norm and

∥Tn(t)(PnA
−1 −A−1

n Pn)f∥ ≤ Meωt0∥PnA
−1 −A−1

n Pn∥∥f∥
∥(A−1

n Pn − PnA
−1)T (t)f∥ ≤ Meωt0∥PnA

−1 −A−1
n Pn∥∥f∥

Thus we now focus on the middle term.
Observe that the function

[0, t] ∋ s 7→ Tn(t− s)A−1
n PnT (s)A

−1h ∈ X

is differentiable and its derivative is

d

ds
(Tn(t− s)A−1

n PnT (s)A
−1h) = Tn(t− s)(−AnA

−1
n PnT (s) +A−1

n PnT (s)A)A−1h

= Tn(t− s)(A−1
n Pn − PnA

−1)T (s)h.

Hence, the fundamental theorem of calculus yields

A−1
n (PnT (t)− Tn(t)Pn)A

−1h =

t∫
0

Tn(t− s)(A−1
n Pn − PnA

−1)T (s)hds

holds for all h ∈ X and t > 0. Using this obtain the inequality

∥A−1
n (Tn(t)Pn − PnT (t))A

−1h∥ ≤
t∫

0

Meω(t−s)∥A−1
n Pn − PnA

−1∥∥T (s)h∥ds

≤ t0M
2eωt0∥A−1

n Pn − PnA
−1∥∥h∥.

Taking into account all obtained estimates, we conclude that for g ∈
D(A2) we can introduce f = Ag and h = Af to get that

∥Tn(t)Png − PnT (t)g∥ ≤ ∥A−1
n Pn − PnA

−1∥M2eωt0(t0M∥A2g∥+ 2∥Ag∥).

Observing that ∥Ag∥ ≤ ∥A−1∥∥A2g∥ from the last inequality we obtain the
desired estimate.

Problem A. 1

Let us put ∆ := ∆x = ∆y = π
N , N ∈ N. We’ll use the denotation

wi,j(t) := w(t, xi, yj) := w(t, i∆x, j∆y). The spatially discretised problem
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has the form:
(0.2)
d

dt
wij(t) =

wi+1,j(t)−2wi,j(t) + wi−1,j(t)

(∆x)2
+

wi,j+1(t)−2wi,j(t) + wi,j−1(t)

(∆y)2
,

i, j = 1, . . . , N − 1

The boundary conditions take the form w0,j(t) = wi,0(t) = wi,N (t) =

wN,j(t) = 0. Let us put W (t) = (−→w 1(t),
−→w 2(t), . . . ,

−→wN−1(t))
⊤, where

−→w j(t) = (w1,j(t), w2,j(t), . . . , wN−1,j(t)). System (0.2) can be represented
in the form:

d

dt
W (t) = Mx,yW (t),

where Mx,y = Mx+My is (N − 1)2× (N − 1)2-matrix and matrices Mx, My

have the form:

(0.3)

Mx =


M 0 . . . 0
0 M . . . 0
...

...
...

...
0 0 . . . M

 , My =
1

(∆y)2



I−2 I1 0 0 . . . 0
I1 I−2 I1 0 . . . 0
0 I1 I−2 I1 . . . 0
...

. . .
. . .

. . .
. . .

...
0 0 . . . I1 I−2 I1
0 0 . . . 0 I1 I−2


,

whereM is the same matrix as in Appendix (formula (A.3)), I1 = diag(1, 1, . . . , 1) ∈
R(N−1)×(N−1), I−2 = (−2)diag(1, 1, . . . , 1) ∈ R(N−1)×(N−1). Matrix Mx,y

can also be represented in the form:
(0.4)

Mx,y =



M̃ I1 0 0 . . . 0

I1 M̃ I1 0 . . . 0

0 I1 M̃ I1 . . . 0
...

. . .
. . .

. . .
. . .

...

0 0 . . . I1 M̃ I1
0 0 . . . 0 I1 M̃


, M̃ =

1

(∆)2



−4 1 0 0 . . . 0
1 −4 1 0 . . . 0
0 1 −4 1 . . . 0
...

. . .
. . .

. . .
. . .

...
0 0 . . . 1 −4 1
0 0 . . . 0 1 −4


Problem A. 2

Our proof starts with the observation that A
1
2 is symmetric and D(A) ⊂

D(A
1
2 ). Next, by means of the Cauchy inequality

0 = 2⟨Au, u⟩ − 2⟨f, u⟩ = 2⟨Au,w⟩ − 2⟨f, w⟩ = 2⟨A
1
2u,A

1
2w⟩ − 2⟨f, w⟩

≤ 2∥A
1
2u∥∥A

1
2w∥ − 2⟨f, w⟩ ≤ ∥A

1
2u∥2 + ∥A

1
2w∥2 − 2⟨f, w⟩

= ⟨Au, u⟩+ ⟨Aw,w⟩ − 2⟨f, w⟩,
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where the equality holds only if A
1
2u = A

1
2w, hence if u = w, and the proof

is complete.

Problem A.3

a) In this case we have basis functions φj = sin jx. Thus Aφj = −j2 sin jx
and the elements of the matrix Am are defined as

(Am)jk =< Aφj , φk >=

π∫
0

(−j2) sin(jx) sin(kx)dx = −jk
π

2
δjk

b)As basis functions in this case do not belong to H2(0, π), the matrix Am

has to be defined by using the weak formulation, i.e.,

(Am)jk = − <
d

dx
φj ,

d

dx
φk >

=



0 for k < j − 1
j∆x∫

(j−1)∆x

(
1
∆x

)2
dx for k = j − 1

−

(
j∆x∫

(j−1)∆x

(
1
∆x

)2
dx+

(j+1)∆x∫
j∆x

(
1
∆x

)2
dx

)
for k = j

j∆x∫
(j−1)∆x

(
1
∆x

)2
dx for k = j + 1

0 for k > j + 1

=


0 for k < j − 1
1
∆x for k = j − 1
− 2

∆x for k = j
1
∆x for k = j + 1
0 for k > j + 1

.

i.e., Am = 1
∆xtridiag(1,−2, 1).
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