Problem 1

Let us first show that T(t) has a semigroup property. Using the binomial theorem and the absolute convergence of the series $\sum_{n=0}^{\infty} \frac{t^n A^n}{n!}$ one can write

$$\begin{split} T(t)T(s) &= \left(\sum_{n=0}^{\infty} \frac{t^n A^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{s^n A^n}{n!}\right) = \sum_{l,k \geq 0} \frac{1}{l!k!} t^l s^k A^{l+k} \\ &= \sum_{m=0}^{\infty} \sum_{l=0}^{m} \frac{1}{l!(m-l)!} t^l s^{m-l} A^m = \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{l=0}^{m} \frac{m!}{l!(m-l)!} t^l s^{m-l} A^m \\ &= \sum_{m=0}^{\infty} \frac{(t+s)^m A^m}{m!} = T(t+s) \end{split}$$

And it is clear that T(0) = I.

Then we have to show that for all $f \in X$ the mapping $t \mapsto T(t)f$ is continuous. Take an arbitrary $f \in X$ and $\varepsilon > 0$. For $t \ge 0$

$$||T(t+h)f - T(t)f||_{X} \le ||T(t)|| ||T(h) - I|| ||f||_{X} = ||T(t)|| \left\| \sum_{n=1}^{\infty} \frac{h^{n} A^{n}}{n!} \right\| ||f||_{X}$$

$$\le ||T(t)|| \left(\sum_{n=1}^{\infty} \frac{|h|^{n} ||A||^{n}}{n!} \right) ||f||_{X} = ||T(t)|| ||f||_{X} (e^{|h|||A||} - 1)$$

One can choose |h| so small that $e^{|h|\|A\|} - 1 < \frac{\varepsilon}{\|T(t)\|\|f\|}$, and so $\|T(t+h) - T(t)\|_X < \varepsilon$. This implies needed continuity. Thus T is strongly continuous semigroup. Using absolutely analogous sequence of inequalities one can also show that

$$||T(t+h) - T(t)|| \le ||T(t)||(e^{|h|||A||} - 1).$$

and so $||T(t+h)-T(t)|| \le \varepsilon$ for sufficiently small |h|. this yields that the considered semigroup is also continuous for the operator norm on $[0, \infty)$.

It is easy to verify that for the operator $S(t) = \sum_{n=0}^{\infty} \frac{(-1)^n t^n A^n}{n!}$ the equalities S(t)T(t) = T(t)S(t) = I hold, i.e., for $t \geq 0$ the operator T(t) is invertible and $T^{-1}(t) = S(t)$. To show that the mapping $t \mapsto T^{-1}(t)$ is continuous one can use the same arguments as for $t \mapsto T(t)$. So the considered semigroup consists of continuously invertible operators.

Let G denote the generator of the semigroup T. Then

$$Gf = \lim_{h \to 0} \frac{1}{h} \left(T(h)f - f \right)$$

One sees that a natural candidate for this limit is Af. Consider the norm of the difference

$$\begin{split} \left\| \frac{1}{h} \left(T(h)f - f \right) - Af \right\|_{X} &= \left\| \frac{1}{h} \sum_{n=2}^{\infty} \frac{h^{n} A^{n}}{n!} f \right\|_{X} \\ &\leq \frac{1}{|h|} \sum_{n=2}^{\infty} \frac{|h|^{n} ||A||^{n}}{n!} ||f||_{X} = \left(\frac{1}{|h|} \left(e^{|h| ||A||} - 1 \right) - ||A|| \right) ||f||_{X}. \end{split}$$

As $\lim_{h\searrow 0} \frac{e^{|h|\|A\|}-1}{|h|} = \|A\|$ it is clear that for any arbitrary small $\varepsilon>0$ one can choose |h| so small that the considered norm is less than ε . Hence the generator of the semigroup T is acting as

$$Gf = Af$$

on the domain which coincides with that of the operator A.

Problem 2

Let us consider the Banach space $L^2(\mathbb{R})$. The formula $(S(t)f)(x) := f(t+x), \ t \ge 0, \ x \in \mathbb{R}$ defines a strongly continuous semigroup.

$$||S(t)|| = \sup_{\substack{f \in L^2(\mathbb{R}): \\ ||f||_{L^2} = 1}} \int_{-\infty}^{+\infty} |f(t+x)|^2 dx = 1$$

Thus, $||S(t)|| \le 1 \ \forall t \ge 0$. I. e., S(t) is of (1,0) type.

The mapping S(t) is a contraction iff there is $0 < \alpha < 1$: $\forall f, g \in L^2$: $||S(t)f - S(t)g||_{L^2} \le \alpha ||f - g||_{L^2}$. For example, we can put $f := e^{-x^2} \in L^2$, g := 0. Then, $||S(t)f||_{L^2} = ||f||_{L^2}$. Thus S(t) is not a contraction.

Problem 3

a) To start with let us show that $S(t) := R^{-1}T(t)R$ defines a semigroup

$$S(t+s) = R^{-1}T(t+s)R = R^{-1}T(t)RR^{-1}T(s)R = S(t)S(s),$$

$$S(0) = R^{-1}T(0)R = I.$$

Using the inequality

$$||S(t+h)f - S(t)f||_X = ||R^{-1}T(t+h)Rf - R^{-1}T(t)Rf||_X$$

$$\leq ||R^{-1}|||T(t+h)Rf - T(t)Rf||_X$$

and strongly continuous of T(t) one arrives at the strongly continuous of S(t). The inequalities

$$||S(t)|| \le ||R^{-1}|| ||T(t)|| ||R|| = ||T(t)||,$$

$$||T(t)|| \le ||R|| ||S(t)|| ||R^{-1}|| = ||S(t)||$$

show that ||S(t)|| = ||T(t)||, hence that $\omega_0(S) = \omega_0(T)$.

Now we determine the generator of S(t). Since by definition

$$A_{S}f = \lim_{h \searrow 0} \frac{1}{h} (S(h)f - f) = \lim_{h \searrow 0} \frac{1}{h} (R^{-1}T(h)Rf - f)$$
$$= R^{-1} \lim_{h \searrow 0} \frac{1}{h} (T(h)Rf - Rf) = R^{-1}A_{T}Rf,$$

one sees immediately that

$$D(A_S) := \{ f \in X : Rf \in D(A_T) \}, \qquad A_S f = R^{-1} A_T R f.$$

b) From the fact that T(t) is a strongly continuous semigroup and this

$$\begin{split} S(t+s) &= e^{(t+s)z} T(t+s) = S(t)S(s), \qquad S(0) = T(0) = I, \\ \|S(t+h)f - S(t)f\|_X &= \|e^{(t+h)z} T(t+h)f - e^{tz} T(t)f\|_X \\ &\leq |e^{(t+h)z} - e^{tz}| \|T(t+h)f\|_X + |e^{tz}| \|T(t+h)f - T(t)f\|_X \end{split}$$

we get that $S(t) = e^{tz}T(t)$ is also a strongly continuous semigroup.

Next, $||S(t)|| = e^{t\Re z}||T(t)||$, and so $\omega_0(S) = \omega_0(T) + \Re z$. Determine the generator of S(t) by

$$D(A_S) := D(A_T), \qquad A_S f = A_T f + z f$$

since

$$A_{S}f = \lim_{h \searrow 0} \frac{1}{h} (S(h)f - f) = \lim_{h \searrow 0} \frac{1}{h} (e^{hz}T(h)f - f)$$
$$= \lim_{h \searrow 0} \frac{1}{h} (T(h)e^{hz}f - e^{hz}f + e^{hz}f - f) = A_{T}f + zf.$$

c) As before T(t) is a strongly continuous semigroup and from the following

$$\begin{split} S(t+s) &= T(\alpha(t+s)) = T(\alpha t) T(\alpha s) = S(t) S(s), & S(0) = T(0) = I, \\ \|S(t+h)f - S(t)f\|_X &= \|T(\alpha(t+h))f - T(\alpha t)f\|_X \\ &\leq \|T(\alpha t + \alpha h)f - T(\alpha t)f\|_X \end{split}$$

we obtain that $S(t) = T(\alpha t)$ is a strongly continuous semigroup. Since $||S(t)|| = ||T(\alpha t)||$, it follows that $\omega_0(S) = \alpha \omega_0(T)$.

Now let us determine the generator of S(t). From

$$A_S f = \lim_{h \searrow 0} \frac{1}{h} (T(\alpha h)f - f) = \alpha \lim_{h \searrow 0} \frac{1}{\alpha h} (T(\alpha h)f - f) = \alpha A_T f$$

we see that

$$D(A_S) := D(A_T), \qquad A_S f = \alpha A_T f.$$

Problem 5

We have to prove that for all $f \in D(A) = W^{1,p}(\mathbb{R})$

$$\lim_{h \to 0} \int_{-\infty}^{+\infty} \left| \frac{f(t+h) - f(t)}{h} - g(t) \right|^2 dt = 0,$$

where

(0.1)
$$f(t) - f(0) = \int_{0}^{t} g(s)ds$$

From formula (0.1) f(t) is absolutely continuous in \mathbb{R} . Thus, f(t) has a derivative f'(t) almost everywhere. We have to interchange the limit and the integral. That's why some additional condition is needed.

Problem 7

For $t \geq 0$ and $f \in C_{(0)}([0,1])$ define

$$S_{(0)}(t)f(s) := \left\{ \begin{array}{ll} f(t+s) & \text{if } s \in [0,1], \ t+s \leq 1 \\ 0 & \text{if } s \in [0,1], \ t+s > 1 \end{array} \right.$$

For $t \geq 1$ we have $S_{(0)}(t) = 0$. Thus $S_{(0)}(s)^n = 0$ for s > 0 with $n \in \mathbb{N}$, $n > \frac{1}{t}$. Therefore such defined semigroup $S_{(0)}$ is the nilpotent left shift on $C_{(0)}([0,1])$.

Let us now determine the generator of this semigroup. Using the fact f(1) = 0 one finds

$$\lim_{h\searrow 0}\frac{1}{h}\left(S_{(0)}(h)f(s)-f(s)\right)=\lim_{h\searrow 0}\frac{1}{h}\left(f(s+h)-f(s)\right)=f'(s).$$

Therefore the generator of $S_{(0)}$ is defined as

$$Af := \lim_{h \to 0} \frac{1}{h} \left(S_{(0)}(h)f - f \right) = f'$$

on the domain

$$D(A) = \{ f \in C_{(0)}([0,1]) : f' \in C([0,1]) \}.$$

Problem 9

Let $p \in [0, \infty)$. We prove that for all t > 0 and $r \in [p, \infty]$ the Gaussian semigroup T(t) is bounded from $L^p(\mathbb{R})$ to $L^r(\mathbb{R})$. Recall that $T(t)f = g_t * f$ and that g belongs to $L^p(\mathbb{R})$ for all $p \in [1, \infty]$. By Young's inequality one gets

$$||T(t)f||_{\mathbf{L}^r(\mathbb{R})} = ||f * g_t||_{\mathbf{L}^r(\mathbb{R})} \le ||g_t||_{\mathbf{L}^q(\mathbb{R})} ||f||_{\mathbf{L}^p(\mathbb{R})}$$

$$\leq \left(\frac{1}{\sqrt{t}}\right)^{1-\frac{1}{q}} ||g||_{\mathcal{L}^{q}(\mathbb{R})} ||f||_{\mathcal{L}^{p}(\mathbb{R})},$$

where

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1.$$

From this it follows that for all t > 0 the operator T(t) from $L^p(\mathbb{R})$ to $L^r(\mathbb{R})$ is bounded by $\left(\frac{1}{\sqrt{t}}\right)^{1-\frac{1}{q}} \|g\|_{L^q(\mathbb{R})}$.

L'viv Team: Olexandr Chvartatskyi, Stepan Man'ko, Nataliya Pronska.