
Problem 1

Let us first show that T (t) has a semigroup property. Using the binomial theorem

and the absolute convergence of the series
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And it is clear that T (0) = I.
Then we have to show that for all f ∈ X the mapping t 7→ T (t)f is continuous.

Take an arbitrary f ∈ X and ε > 0. For t ≥ 0

∥T (t+ h)f − T (t)f∥X ≤ ∥T (t)∥∥T (h)− I∥∥f∥X = ∥T (t)∥

∥∥∥∥∥
∞∑

n=1

hnAn

n!

∥∥∥∥∥ ∥f∥X
≤ ∥T (t)∥

( ∞∑
n=1

|h|n∥A∥n

n!

)
∥f∥X = ∥T (t)∥∥f∥X(e|h|∥A∥ − 1)

One can choose |h| so small that e|h|∥A∥−1 < ε
∥T (t)∥∥f∥ , and so ∥T (t+h)−T (t)∥X <

ε. This implies needed continuity. Thus T is strongly continuous semigroup.
Using absolutely analogous sequence of inequalities one can also show that

∥T (t+ h)− T (t)∥ ≤ ∥T (t)∥(e|h|∥A∥ − 1).

and so ∥T (t+h)−T (t)∥ ≤ ε for sufficiently small |h|. this yields that the considered
semigroup is also continuous for the operator norm on [0,∞).

It is easy to verify that for the operator S(t) =
∞∑

n=0

(−1)ntnAn

n! the equali-

ties S(t)T (t) = T (t)S(t) = I hold, i.e., for t ≥ 0 the operator T (t) is invertible
and T−1(t) = S(t). To show that the mapping t 7→ T−1(t) is continuous one can
use the same arguments as for t 7→ T (t). So the considered semigroup consists of
continuously invertible operators.

Let G denote the generator of the semigroup T . Then

Gf = lim
h↘0

1

h
(T (h)f − f)

One sees that a natural candidate for this limit is Af . Consider the norm of the
difference∥∥∥∥ 1h (T (h)f − f)−Af

∥∥∥∥
X

=

∥∥∥∥∥ 1h
∞∑

n=2

hnAn

n!
f

∥∥∥∥∥
X

≤ 1

|h|

∞∑
n=2

|h|n∥A∥n

n!
∥f∥X =

(
1

|h|

(
e|h|∥A∥ − 1

)
− ∥A∥

)
∥f∥X .

1



2

As lim
h↘0

e|h|∥A∥−1
|h| = ∥A∥ it is clear that for any arbitrary small ε > 0 one can

choose |h| so small that the considered norm is less than ε. Hence the generator of
the semigroup T is acting as

Gf = Af

on the domain which coincides with that of the operator A.

Problem 2

Let us consider the Banach space L2(R). The formula (S(t)f)(x) := f(t+x), t ≥
0, x ∈ R defines a strongly continuous semigroup.

||S(t)|| = sup
f ∈ L2(R) :
||f ||L2 = 1

+∞∫
−∞

∣∣∣f(t+ x)
∣∣∣2dx = 1

Thus, ||S(t)|| ≤ 1 ∀t ≥ 0. I. e., S(t) is of (1, 0) type.
The mapping S(t) is a contraction iff there is 0 < α < 1: ∀ f, g ∈ L2: ||S(t)f −

S(t)g||L2 ≤ α||f − g||L2 . For example, we can put f := e−x2 ∈ L2, g := 0. Then,
||S(t)f ||L2 = ||f ||L2 . Thus S(t) is not a contraction.

Problem 3

a) To start with let us show that S(t) := R−1T (t)R defines a semigroup

S(t+ s) = R−1T (t+ s)R = R−1T (t)RR−1T (s)R = S(t)S(s),

S(0) = R−1T (0)R = I.

Using the inequality

∥S(t+ h)f − S(t)f∥X = ∥R−1T (t+ h)Rf −R−1T (t)Rf∥X
≤ ∥R−1∥∥T (t+ h)Rf − T (t)Rf∥X

and strongly continuous of T (t) one arrives at the strongly continuous of S(t).
The inequalities

∥S(t)∥ ≤ ∥R−1∥∥T (t)∥∥R∥ = ∥T (t)∥,
∥T (t)∥ ≤ ∥R∥∥S(t)∥∥R−1∥ = ∥S(t)∥

show that ∥S(t)∥ = ∥T (t)∥, hence that ω0(S) = ω0(T ).
Now we determine the generator of S(t). Since by definition

ASf = lim
h↘0

1

h
(S(h)f − f) = lim

h↘0

1

h

(
R−1T (h)Rf − f

)
= R−1 lim

h↘0

1

h

(
T (h)Rf −Rf

)
= R−1ATRf,

one sees immediately that

D(AS) := {f ∈ X : Rf ∈ D(AT )}, ASf = R−1ATRf.



3

b) From the fact that T (t) is a strongly continuous semigroup and this

S(t+ s) = e(t+s)zT (t+ s) = S(t)S(s), S(0) = T (0) = I,

∥S(t+ h)f − S(t)f∥X = ∥e(t+h)zT (t+ h)f − etzT (t)f∥X
≤ |e(t+h)z − etz|∥T (t+ h)f∥X + |etz|∥T (t+ h)f − T (t)f∥X

we get that S(t) = etzT (t) is also a strongly continuous semigroup.
Next, ∥S(t)∥ = etℜz∥T (t)∥, and so ω0(S) = ω0(T )+ℜz. Determine the generator

of S(t) by

D(AS) := D(AT ), ASf = AT f + zf

since

ASf = lim
h↘0

1

h
(S(h)f − f) = lim

h↘0

1

h

(
ehzT (h)f − f

)
= lim

h↘0

1

h

(
T (h)ehzf − ehzf + ehzf − f

)
= AT f + zf.

c) As before T (t) is a strongly continuous semigroup and from the following

S(t+ s) = T (α(t+ s)) = T (αt)T (αs) = S(t)S(s), S(0) = T (0) = I,

∥S(t+ h)f − S(t)f∥X = ∥T (α(t+ h))f − T (αt)f∥X
≤ ∥T (αt+ αh)f − T (αt)f∥X

we obtain that S(t) = T (αt) is a strongly continuous semigroup.
Since ∥S(t)∥ = ∥T (αt)∥, it follows that ω0(S) = αω0(T ).
Now let us determine the generator of S(t). From

ASf = lim
h↘0

1

h
(T (αh)f − f) = α lim

h↘0

1

αh
(T (αh)f − f) = αAT f

we see that

D(AS) := D(AT ), ASf = αAT f.

Problem 5

We have to prove that for all f ∈ D(A) = W 1,p(R)

lim
h→0

+∞∫
−∞

∣∣∣f(t+ h)− f(t)

h
− g(t)

∣∣∣2dt = 0,

where

(0.1) f(t)− f(0) =

t∫
0

g(s)ds

From formula (0.1) f(t) is absolutely continuous in R. Thus, f(t) has a derivative
f ′(t) almost everywhere. We have to interchange the limit and the integral. That’s
why some additional condition is needed.
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Problem 7

For t ≥ 0 and f ∈ C(0)([0, 1]) define

S(0)(t)f(s) :=

{
f(t+ s) if s ∈ [0, 1], t+ s ≤ 1
0 if s ∈ [0, 1], t+ s > 1

For t ≥ 1 we have S(0)(t) = 0. Thus S(0)(s)
n = 0 for s > 0 with n ∈ N, n > 1

t .
Therefore such defined semigroup S(0) is the nilpotent left shift on C(0)([0, 1]).

Let us now determine the generator of this semigroup. Using the fact f(1) = 0
one finds

lim
h↘0

1

h

(
S(0)(h)f(s)− f(s)

)
= lim

h↘0

1

h
(f(s+ h)− f(s)) = f ′(s).

Therefore the generator of S(0) is defined as

Af := lim
h↘0

1

h

(
S(0)(h)f − f

)
= f ′

on the domain
D(A) = {f ∈ C(0)([0, 1]) : f

′ ∈ C([0, 1])}.

Problem 9

Let p ∈ [0,∞). We prove that for all t > 0 and r ∈ [p,∞] the Gaussian semigroup
T (t) is bounded from Lp(R) to Lr(R). Recall that T (t)f = gt ∗f and that g belongs
to Lp(R) for all p ∈ [1,∞]. By Young’s inequality one gets

∥T (t)f∥Lr(R) = ∥f ∗ gt∥Lr(R) ≤ ∥gt∥Lq(R)∥f∥Lp(R)

≤
( 1√

t

)1− 1
q ∥g∥Lq(R)∥f∥Lp(R),

where
1

p
+

1

q
=

1

r
+ 1.

From this it follows that for all t > 0 the operator T (t) from Lp(R) to Lr(R) is

bounded by
(

1√
t

)1− 1
q ∥g∥Lq(R).
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