Exercise 1

Let A€ L£(X) and for t > 0

o n An
T(t) = &4 ::Zt

be given. We want to show that
1. T is a strongly continuous semigroup,
2. T is continuous on [0, 0o) with respect to the operator norm,
3. T consists of continuously invertible operators and

4. A is the generator of T.

1)

For all ¢ > 0 the operators T'(t) are bounded since | T'(t)[| = ||> o7, &4~ <
- % = el < 00, The semigroup property follows as in the real

case for the exponential series, because tA and sA commute. Note that with
the same argument 7'(t + s) = T'(t)T'(s) holds even for s, t € R.

Part 2) implies the strong continuity of 7T'.

2)

As preparation we have to show that for all t > 0

sup [|T(s)] < oo.
s€0, t]

(This is the locally boundedness of T without assuming that it is strongly
continuous.)
It follows directly by

sup | T(s)|| < sup el = ¢t = ¢
s€lo, 1] s€l0, t]

Next we can attend to the uniformly continuity.
Consider for t, s > 0 and without loss of generality ¢ > s

I7(t) =T ()l = [[T()T(E=s) =T(s)|| < TSN —s) = Ld]

o0 'n,

Z " 14

=0

’FL

= [T(s) = [T(s)




— (t—s)" [|A]"
= CZI n!

The continuity of the exponential function in 0 on R leads to the requested.
3)

If A€ L(X),also —A € L(X), such that 1) implies S(t) := !4 € L(X).
That S(t) is the inverse of T'(¢) follows directly by the semigroup property
which is fulfilled on all of R ( see 1).

)

The generator G of T'(t) is defined on the whole space X as the following
computation shows. Taking f € X we find

— hA o htAT ¢
Gf = lim s = f = lim fAhAf+Y e f — f
h—0+ h hos0+ h
) 0 n—1 An
B Af+hli>%l+; n! f=Af

In the second to the last step the limit limj_,+ commutes with the limit of
. . co A" A|"
the series, because the power series > ) =—

So we have G = A.

converges uniformly in h.

Exercise 2 & 4

We provide a single example that can be used in both exercises.

Let us consider the Hilbert space L?((0,1), i), where p denotes the mea-
sure defined by u(A) := 2XA(A N (0;1/2)) + AM(AN(1/2;1)) for all Lebesgue
measurable sets A. Here )\ is the Lebesgue-measure for all lebesgue mea-
surable sets A. Furthermore, let T" be the leftshift semigroup. Obviously, T
satisfies the semigroup property and, since the norm ||-||,, is equivalent to the
norm || - ||x, 7" is strongly continuous. We know that ||f||, < 2|/ f]/». Hence
it follows ||T'()||z(z2) < 2. In addition we see that T'(t) = 0 for all ¢ > 1.

Finally, we consider the function

1
Ji = %X(1/2,1/2+t)

for t € (0,1/2] and




for t € (1/2,1). We calculate that

1 fell =1

and
1T fellw = 2

Summarized, we have

2, for0<t<1
IT(t)]| =41, fort =0

0, else.

It follows that
IT(t)] <2 <2

for all w > 0 (Exercise 2) and
IT@)] <2 < Myet

for all w < 0 with M,, = 2e™ (Exercise 4).

Exercise 3

Exercise 3a

T(s) is a strongly continuous semigroup, R an invertible and bounded trans-
formation in £(X).

It is to show that the family of linear Operators S(s) = R™'T(s)R also
defines a strongly continuous semigroup. The algebraic semigroup property
can be shown easily:

S(t+s) = R'D(t+s)R = R'T(H)RRT(s)R = S(t)S(s)

The strong continuity can be shown, according to Proposition 2.5, by fixing
a f € X and proving S(h)f — f for h — 0 as R™'T(s)R is locally bounded
because of R € £(X) and T(s) being a strongly continuous semigroup:

IR T(h)Rf — fll = [R-HT(M)Rf — Rf)|.
Since R~! € L(X) it holds

IRTHT(h)Rf — Ro f)|| < CIIT(R)Rf — Rf|| = 0
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by use of the fact that 7'(s) is a strongly continuous semigroup.
Using again the fact that R is bounded and possesses a bounded inverse, we
obtain

IR T@R| < [RTNRINT @I < | B IR] M
, if T is of type (M,w). On the other hand

1T < [RRTTORR™ < [[RTIRIIIRT(t)R]|

holds. Thus the growth bound is the same as for the original semigroup 7'(t).

Now, the Generator Ag of S(t) and its Domain D(Ag) have to be deter-
mined. If the limit exists for an f € X it holds:

.1 N

lim (S(0)f = ) = m = (R TU)RS — f) = Asf

As R € L(X) it is obvious that existence of the limes is equivalent to Rf €
D(A). Therefore D(Ag) = R™'[D(A)] and by means of the chain rule Ag =
R™AR.

Exercise 3b

Let T be a strongly continuous semigroup, z € C, S(t) := **T'(t). We first
show that S is a strongly continuous semigroup:

Before we verify the semigroup axioms, we need to verify that S is indeed a
continuous linear operator. Let ¢ € R be non-negative. Then S(t) is linear
and bounded since e € C and T'(t) is bounded and linear.

Now the semigroup properties are also fulfilled: Let ¢,s > 0. S(0) =
e%T(0) = I and

St+s)=eTT(t+s)=ce’T(t+s)=eT(t)-e’T(s) = S(t) - S(s).

According to Proposition 2.5 it is enough to verify strong continuity by
checking right continuity at 0 if the operator is locally bounded. The latter
is the case, since Vt > 0

sUPepo | [S(9)I| = supyeqoqleT(s)]] < e lsup e |1 T(5)]] < oo,

since T' is a strongly continuous semigroup and whence locally bounded by
Proposition 2.2.
Let h > 0 and let f € X.
1S(R)f = fll = lle" - T(h) f = fIl = 0,h =0,
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since ¢ — 1 and T'(h)f — f for h — 0.

Now we need to determine its growth bound. Let wy be the growth
bound of T, i.e. it is the infimum over all w s.t. there is an M > 1 such
that ||T(t)|| < Me'. Then, certainly, ||S(t)|| < Me+Ee)] and according
to the laws of infima, wg = wr + |Re(z)|. We remark that w; and hence wg
may not be finite.

Finally we determine its generator Ag, assuming Ar is the generator
of T. Let u(t) = e*T(t)f be the orbit map for a fixed f € X. Then
%u(t) = 2e"*T(t)f —i—etZ%T(t) f by the product rule. This expression precisely
makes sense for those f € X for which % [T(¢) f] exists. In this case, £u(0) =
(2+Ar)f. Since this is only possible if we are in the domain of Az, the domain

is D(Ag) = {f € X : S(-) differentiable in [0,00)} = D(Ar — 2) = D(Ar),
with Ag = z + A.

Exercise 3c

Let T be a strongly continuous semigroup, o > 0, S(t) := T'(at). Since
T'(t) is a linear operator for ¢ > 0, S(¢) is a linear operator. The semigroup
properties derive trivially by easy calculations. It is also locally bounded by
the bounedness of T'. For strong continuity we see

IS(h)f = flIl = [[T(ah)f = fIl = 0,h =0,
since 7' is strongly continuous.

Now, for the growth bound, let again wr be the growth bound of T', i.e. it
is the infimum over all w s.t. there is an M > 1 with ||T'(t)|| < Me™. Then,
1S()]| = ||T(at)|] < Me'™ and according to the laws of infima, wg = awr.

Finally, we determine its generator Ag, assuming again Ar to be the
generator of T. Let u(t) = S(t)f = T'(at)f be the orbit map for a fixed

feX. Lult)=alT(at)f. It exists again precisely for those f € X for
which £[T(¢)f] exists. Then, 4u(0) = 2T (a0)f = aArf for all f in the

domain of Ay, D(Ar). Hence D(Ag) = D(Ar) and Ag = aAr.



Exercise 5

In the sequel we shall use that the space W'?(R) as defined in Lecture 2
coincides with the usual Sobolev space

WP (R) = {f € L’(R) | 3g € L’(R)Vy € CZ(R) : /ngy _ /Rggp}

modulo the usual identification of functions that are equal almost everywhere
with respect to the Lebesgue-measure on R. For f € W1P(R), the function
g as in the definition of W1?(R) above, is uniquely determined and coincides
with the derivative of f as defined in Lecture 2. For a proof, see for example
[G. Leoni, A First Course In Sobolev Spaces, AMS 2000, Theorem 7.13].

Now, let p € [1,00) and let A be the generator of the left shift semigroup
S on LP(R). Define another unbounded operator B on L*(R) by

D(B) :==W"(R), Bf=f.

Proposition 2.13 claims A = B. In a first step we will show A C B and then
use Exercise 3 from Lecture 2 to conclude.

Take f € D(A). For ¢ € C°(R) the Dominated Convergence Theorem
yields

p(x —h) — p(z)

/Rﬂl’)@/(:ﬂ) de = /Rf(a:’) lim

AN —h
—h) —
- Jm Rf(x)w(fc })L pl) 4o

Substitute y := x — h. Then,

[ @@ = ~pim [l =I0 g,

hN\O Jg

- 14mwMﬁ@d%

where the last step is justified by the fact that ¢ € C®°(R) c L”(R) and

}lli{‘% W = Af holds in LP(R) as A is the generator of S. The last
equation tells us f € W'P(R) = D(B) and Af = f' = Bf. Since f € D(A)
was arbitrarily chosen, we have shown that A is a restriction of B. Hence,
1— A is a restriction of 1 — B if we endow 1 — A and 1 — B with the canonical

domains D(1 — A) := D(A) and D(1 — B) := D(B).



As |S(t)fll, = I f|l, holds for all ¢ > 0 and all f € LP(R), the semigroup
S is of type (1,0). By means of Proposition 2.26a) we conclude 1 € p(A). In
particular, the operator 1 — A is surjective.

Now, suppose that f € D(B) satisfies (1 — B)f = 0. By definition of B
we get that f belongs to W!?(R) and satisfies f = f’ in the sense of W?(R).
By identifying f with its continuous version and using the equality

F0 =10 = [ Fras= [0

we find that f is continuously differentiable and satisfies f = f’ in the clas-
sical sense. Elementary calculus tells us f(t) = f(0)e’ for all t € R. But as
f also belongs to LP(R), we conclude f = 0. Thus, 1 — B is injective.

We have eventually shown that the surjective operator 1— A is a restriction
of the injective operator 1— B. Exercise 3 from Lecture 1 yields 1—-A =1—B
which is equivalent to A = B. [

Exercise 6

Proposition 2.14.
The nilpotent left shift Sy is a strongly continuous semigroup on L”(0, 1).

Proof.
Because of ||So(t) f|| < || f|| and

So()(f +9)(s) = (f+9)(s+1) = fls+1) +g(s+1)

ifs+t<1lor

So(t)(f +9)(s) = 0= So(t) f(s) + So(t)g(s)

if s+t > 1, Sy clearly maps to £L(L”(0,1)). Also

fls+t+zx) if s+t+a<1
0 if s+t+x<1

So(s +1)f(x) = {

S fsH ) i s+ (t+a) <
o if s+(t+z)<

= So(s)So(t)f(x)

1
1



and Sp(0) = I, which shows the semigroup property. Finally, to show
that t — So(t)f is continuous for some f € LP((0,1)), define

= o Jflx) if <1
f(x)_{o it a1,

then clearly f € LP(R) and Sy(t)f = S(t)f on (0,1) where S is the left
shift on LP(R). But according to Proposition 2.12 the left shift semigroup
S is strongly continuous on LP(R), so the mapping ¢ — S(t)f is continuous
as a mapping to LP(R), but then it is especially continous as a mapping to
LP(0,1), where S(t)f coincides with Sy(t)f, as || - [|zr(0.1) < || - || o (m), Which

shows the strong cotinuity of Sj.
OJ

Proposition 2.15.

The generator A of the nilpotent left shift Sy on LP(0,1) is given by

Proof.
As parts of this proof will be derived from analogous properties of the usual
left-shift S on LP(R) , let Ag and Ag, be the generators of S and Sy. Anal-
ogously to Exercise 5, we can first show that D(Ag,) € WP(0,1). So let

f € D(Ag,),p € C(0,1), then by dominated Convergence

/O F@) (@)de = /0 (@) im w(x—li)h— ple)
L ele = h) = o)
_ }1}{{%% f(x)sr)(x - h}z — (@)
+ llh f(f) (p(x B h}i - 90(‘1') d$)
- iy | ) gp(y)f(“h;_ 1w,
_ _/0 o) }%X(O’l_h)f(wh) —f(y)dy
-~ [ ewas s
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where we substituted y := z-+h in line 4. This shows D(Ag,) C W'?(0,1).
But to be differentiable, Sy(¢)f in particular has to be continouos, enforc-
ing the additional condition f(1) = 0, because (So(t)f)(1 —¢t) = f(1) and
(So(t)f)(z) = 0 for all x > 1 — ¢, so this is necessary for it to be continous
in w = 1—¢ This shows, that D(Ag,) C W'(0,1). If on the other hand
the condition f(1) = 0 is fullfilled in addition to f € W'?(0,1), then we
may again define f from above, because then f is continuous on (0,00) and
weakly differentiable with

5o ) fi@) if 2w <1
f(x)_{o itors 1,

which, together with Proposition 2.13, means that S(t)f is differentiable on
(0,00), but then also Sy(t)f has to be differentiable on (0, 1), finally giving
us D(A) = W(lo’f (0,1). The same argument also gives us

d

Asof = ESO(t)f

t=0

on (0,1).

Exercise 7
The nilpotent left shift semigroup Sy(t) on Cp([0, 1]) is given by

f(s+1t) ifsel0,1],s+t<1,
0 if se€[0,1], s+¢>1.

(So(1)f)(s) = {

It is clear that Sy(t) € L(C(g)([0,1])) and [[So(t)|lc(c, o) < 1. To deter-
mine the generator A, we investigate

o Sol)f — 1

lim SR in Co (0.1,

where the limit is considered in C)([0, 1]), i.e., for the supremum-norm. The
candidate for A is Af = f’ with domain

D = {h € Cp)([0,1]): h is differentiable on [0, 1] and &’ € C(oy([0,1])},

where differentability in = 0 and = 1 is meant to be right- and left
differentiability, respectively.



We begin with D(A) C D. So let f be in D(A), which means that the
above limit exists in C(gy([0, 1]). Calling the limit function g € C)([0, 1]),

we have
i Solh)f = f
im —-2—+—

tim h =g in C)([0,1]).

Since uniform convergence is stronger than pointwise convergence and with
Lemma 2.6, we also have

L (S ) () = f(2)

h—0 h h—0 h

for every x € (0,1), and
f(0+h) — f(0)

. (So(h)f)(0) = f(O) _ . 1oy
AN K = o h = /10)=9(0).

This means that f must be differentiable on [0,1) (right differentiable in
x = 0) and its derivative f’ is exactly g on [0,1) and thus continuous. By
continuity of g on the whole interval [0, 1], we may continuously prolong f
into x = 1 with f’(1) = g(1) = 0. This even implies left differentiability in
x = 1, since by continuity of f’ the limit in

}lbi;r(l) f+ h})l — ) = }1L1/I% (&) for some & € (1+h,1)

exists and is equal to f'(1) = 0 (we applied the Mean Value Theorem here).
Hence,

f € {heCul(0,1]): his differentiable on [0,1] and k' € Cg)([0,1])}

and D(A) C D.

Conversely, in order to show D C D(A), let f be in D. Then, using
again the Mean Value Theorem and uniform continuity of f’ on the compact
interval [0, 1], we have

i LR = £0)
RN\0 h

= f'() uniformly on [0,1).

In z = 1, it holds that (So(h)f)(1) = 0 for every h > 0 by definition, which
means that

So(W) M) = f(1) _ —f1) 0
h h h
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such that uniform convergence in

So(h)f —
}ILI{‘% % = f’ n C(O)([O, 1])

is preserved and we find D C D(A).
Summing up, we have shown that the generator A of Sy(t) is given by
Af = f" with domain

D(A) = {h € Cp([0,1]): h is differentiable on [0,1] and A’ € C(0)([0,1])} .

Exercise 8

Exercise 8

The generator (A, D(A)) of the Gaussian semigroup (7'(t));>o on L*(R) is
given by
A: H*(R) C L*(R) — L*(R), u+ u”

where H?(R) = W*?2(R), see e. g. Section 3.2 of [AF03].

Proof

Recall that T'(t)f for f € L*(R) and ¢ > 0 is given by convolution of f with
the mapping

22

e 4t

1
g:R—R, x+— Jini
-7:<T<t)f) = \/%gtf

where F denotes the Fourier transform on L?(R). Let h denote the Laplace
transform of g, with respect to ¢, i. e.

Then

h:RyxR—=R, (\z)— / e Mgy (2)dt.
0

The Fourier transform of A with respect to x is

, © 1™ e 11
h()\7§):/0 S )\gs<€)dszﬁ/0' (S Ae ¢ CISZ—%ﬁ62

Now, Proposition 2.26 of the lecture notes implies that the resolvent R(\, A)

satisfies
1

yrel

F(RNAf)=F /0 h e Mg x fds =
1

1



for A > 0 and f € L?*(R). The domain of A coincides with the range of
R(A, A) which in turn coincides with H?(R), see e. g. Section 7.62 in [AF03].
For w € D(A) and f € L*(R) we have (A — A)u = f if and only if 4 =
(A +£2)71f and thus (A + €2)a = f. Injectivity of the Fourier transform
implies (A — A)u = Au — v” whence the claim follows.

Exercise 9

We want to prove that for each ¢ > 0 the Operator T'(¢) defined by the
Gaussian semigroup (Proposition 2.17) is a bounded operator from LP(R) to
L"(R), where r is in the intervall [p, co.

For f € LP(R) and by using Young’s inequality for convolutions we get

T @) Flr = [lge* fllp < llgellq - 11/l

with 1+ % = % + ]13. Since r > p we can conclude

= >
1 121
14> =
rp
——
<0
s0 || - || is well defined as a norm.

We finish the proof by showing ¢; € LY(R) for every ¢ € [1,00] and ¢ > 0. By
Remark 2.16 part 2 we already know ¢g; € L'(R) und obviously g; € L>°(R).
With usage of the Lyapunov inequality we get ¢g; € LI(R) for every ¢ € [1, o0]
and t > 0, so

T cmarmy < gl < oo,

hence T'(t) is bouneded for every t > 0.
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