
Exercise 1

Let A ∈ L(X) and for t ≥ 0

T (t) = etA :=
∞∑
n=0

tnAn

n!

be given. We want to show that

1. T is a strongly continuous semigroup,

2. T is continuous on [0, ∞) with respect to the operator norm,

3. T consists of continuously invertible operators and

4. A is the generator of T .

1)
For all t ≥ 0 the operators T (t) are bounded since ‖T (t)‖ =

∥∥∑∞
n=0

tnAn

n!

∥∥ ≤∑∞
n=0

tn‖A‖n
n!

= et‖A‖ < ∞. The semigroup property follows as in the real
case for the exponential series, because tA and sA commute. Note that with
the same argument T (t+ s) = T (t)T (s) holds even for s, t ∈ R.
Part 2) implies the strong continuity of T .
2)
As preparation we have to show that for all t ≥ 0

sup
s∈[0, t]

‖T (s)‖ <∞.

(This is the locally boundedness of T without assuming that it is strongly
continuous.)
It follows directly by

sup
s∈[0, t]

‖T (s)‖ ≤ sup
s∈[0, t]

es‖A‖ = et‖A‖ =: C.

Next we can attend to the uniformly continuity.
Consider for t, s ≥ 0 and without loss of generality t > s

‖T (t)− T (s)‖ = ‖T (s)T (t− s)− T (s)‖ ≤ ‖T (s)‖ ‖T (t− s)− Id‖

= ‖T (s)‖

∥∥∥∥∥
∞∑
n=0

(t− s)nAn

n!
− Id

∥∥∥∥∥ = ‖T (s)‖

∥∥∥∥∥
∞∑
n=1

(t− s)nAn

n!

∥∥∥∥∥
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≤ C
∞∑
n=1

(t− s)n ‖A‖n

n!

The continuity of the exponential function in 0 on R leads to the requested.
3)
If A ∈ L(X), also −A ∈ L(X), such that 1) implies S(t) := et(−A) ∈ L(X).
That S(t) is the inverse of T (t) follows directly by the semigroup property
which is fulfilled on all of R ( see 1).
4)
The generator G of T (t) is defined on the whole space X as the following
computation shows. Taking f ∈ X we find

Gf = lim
h→0+

T (h)f − f

h
= lim

h→0+

f + hAf +
∑∞

n=2
hnAn

n!
f − f

h

= Af + lim
h→0+

∞∑
n=2

hn−1An

n!
f = Af.

In the second to the last step the limit limh→0+ commutes with the limit of

the series, because the power series
∑∞

n=2
hn−1‖A‖n

n!
converges uniformly in h.

So we have G ≡ A.

Exercise 2 & 4

We provide a single example that can be used in both exercises.

Let us consider the Hilbert space L2((0, 1), µ), where µ denotes the mea-
sure defined by µ(A) := 2λ(A ∩ (0; 1/2)) + λ(A ∩ (1/2; 1)) for all Lebesgue
measurable sets A. Here λ is the Lebesgue-measure for all lebesgue mea-
surable sets A. Furthermore, let T be the leftshift semigroup. Obviously, T
satisfies the semigroup property and, since the norm ‖·‖µ is equivalent to the
norm ‖ · ‖λ, T is strongly continuous. We know that ‖f‖µ ≤ 2‖f‖λ. Hence
it follows ‖T (t)‖L(L2) ≤ 2. In addition we see that T (t) = 0 for all t ≥ 1.

Finally, we consider the function

ft =
1√
t
χ(1/2,1/2+t)

for t ∈ (0, 1/2] and

ft =
1√

1− t
χ(t,1)
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for t ∈ (1/2, 1). We calculate that

‖ft‖µ = 1

and
‖T (t)ft‖µ = 2.

Summarized, we have

‖T (t)‖ =


2, for 0 < t < 1

1, for t = 0

0, else.

It follows that
‖T (t)‖ ≤ 2 ≤ 2eωt

for all ω ≥ 0 (Exercise 2) and

‖T (t)‖ ≤ 2 ≤Mωe
ωt

for all ω < 0 with Mω = 2e−ω (Exercise 4).

Exercise 3

Exercise 3a

T (s) is a strongly continuous semigroup, R an invertible and bounded trans-
formation in L(X).

It is to show that the family of linear Operators S(s) = R−1T (s)R also
defines a strongly continuous semigroup. The algebraic semigroup property
can be shown easily:

S(t+ s) = R−1T (t+ s)R = R−1T (t)RR−1T (s)R = S(t)S(s)

The strong continuity can be shown, according to Proposition 2.5, by fixing
a f ∈ X and proving S(h)f → f for h→ 0 as R−1T (s)R is locally bounded
because of R ∈ L(X) and T(s) being a strongly continuous semigroup:

||R−1T (h)Rf − f || = ||R−1(T (h)Rf −Rf)||.

Since R−1 ∈ L(X) it holds

||R−1(T (h)Rf −R ◦ f)|| ≤ C||T (h)Rf −Rf || → 0
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by use of the fact that T (s) is a strongly continuous semigroup.
Using again the fact that R is bounded and possesses a bounded inverse, we
obtain

‖R−1T (t)R‖ ≤ ‖R−1‖‖R‖‖T (t)‖ ≤ ‖R−1‖‖R‖Meωt

, if T is of type (M,ω). On the other hand

‖T (t)‖ ≤ ‖RR−1T (t)RR−1‖ ≤ ‖R−1‖‖R‖‖R−1T (t)R‖

holds. Thus the growth bound is the same as for the original semigroup T (t).

Now, the Generator AS of S(t) and its Domain D(AS) have to be deter-
mined. If the limit exists for an f ∈ X it holds:

lim
h↘0

1

h
(S(h)f − f) = lim

h↘0

1

h
(R−1T (h)Rf − f) = ASf

As R ∈ L(X) it is obvious that existence of the limes is equivalent to Rf ∈
D(A). Therefore D(AS) = R−1[D(A)] and by means of the chain rule AS =
R−1AR.

Exercise 3b

Let T be a strongly continuous semigroup, z ∈ C, S(t) := etzT (t). We first
show that S is a strongly continuous semigroup:
Before we verify the semigroup axioms, we need to verify that S is indeed a
continuous linear operator. Let t ∈ R be non-negative. Then S(t) is linear
and bounded since etz ∈ C and T (t) is bounded and linear.
Now the semigroup properties are also fulfilled: Let t, s ≥ 0. S(0) =
e0zT (0) = I and

S(t+ s) = et+sT (t+ s) = etesT (t+ s) = etT (t) · esT (s) = S(t) · S(s).

According to Proposition 2.5 it is enough to verify strong continuity by
checking right continuity at 0 if the operator is locally bounded. The latter
is the case, since ∀t ≥ 0

sups∈[0,t]||S(s)|| = sups∈[0,t]||eszT (s)|| ≤ et|Re(z)|sups∈[0,t]||T (s)|| <∞,

since T is a strongly continuous semigroup and whence locally bounded by
Proposition 2.2.

Let h > 0 and let f ∈ X.

||S(h)f − f || = ||ehz · T (h)f − f || → 0, h→ 0,
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since ehz → 1 and T (h)f → f for h→ 0.
Now we need to determine its growth bound. Let ωT be the growth

bound of T , i.e. it is the infimum over all ω s.t. there is an M ≥ 1 such
that ||T (t)|| ≤ Metω. Then, certainly, ||S(t)|| ≤ Metω+t|Re(z)| and according
to the laws of infima, ωS = ωT + |Re(z)|. We remark that ωt and hence ωS
may not be finite.

Finally we determine its generator AS, assuming AT is the generator
of T . Let u(t) = etzT (t)f be the orbit map for a fixed f ∈ X. Then
d
dt
u(t) = zetzT (t)f+etz d

dt
T (t)f by the product rule. This expression precisely

makes sense for those f ∈ X for which d
dt

[T (t)f ] exists. In this case, d
dt
u(0) =

(z+AT )f . Since this is only possible if we are in the domain ofAT , the domain
is D(AS) = {f ∈ X : S(·) differentiable in [0,∞)} = D(AT − z) = D(AT ),
with AS = z + A.

Exercise 3c

Let T be a strongly continuous semigroup, α ≥ 0, S(t) := T (αt). Since
T (t) is a linear operator for t ≥ 0, S(t) is a linear operator. The semigroup
properties derive trivially by easy calculations. It is also locally bounded by
the bounedness of T . For strong continuity we see

||S(h)f − f || = ||T (αh)f − f || → 0, h→ 0,

since T is strongly continuous.

Now, for the growth bound, let again ωT be the growth bound of T , i.e. it
is the infimum over all ω s.t. there is an M ≥ 1 with ||T (t)|| ≤Metω. Then,
||S(t)|| = ||T (αt)|| ≤Metαω and according to the laws of infima, ωS = αωT .

Finally, we determine its generator AS, assuming again AT to be the
generator of T . Let u(t) = S(t)f = T (αt)f be the orbit map for a fixed
f ∈ X. d

dt
u(t) = α d

dt
T (αt)f . It exists again precisely for those f ∈ X for

which d
dt

[T (t)f ] exists. Then, d
dt
u(0) = α d

dt
T (α0)f = αATf for all f in the

domain of AT , D(AT ). Hence D(AS) = D(AT ) and AS = αAT .
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Exercise 5

In the sequel we shall use that the space W 1,p(R) as defined in Lecture 2
coincides with the usual Sobolev space

W 1,p(R) = {f ∈ Lp(R) | ∃g ∈ Lp(R)∀ϕ ∈ C∞c (R) :

∫
R
fϕ′ = −

∫
R
gϕ}

modulo the usual identification of functions that are equal almost everywhere
with respect to the Lebesgue-measure on R. For f ∈ W 1,p(R), the function
g as in the definition of W 1,p(R) above, is uniquely determined and coincides
with the derivative of f as defined in Lecture 2. For a proof, see for example
[G. Leoni, A First Course In Sobolev Spaces, AMS 2000, Theorem 7.13].

Now, let p ∈ [1,∞) and let A be the generator of the left shift semigroup
S on Lp(R). Define another unbounded operator B on Lp(R) by

D(B) := W 1,p(R), Bf = f ′.

Proposition 2.13 claims A = B. In a first step we will show A ⊂ B and then
use Exercise 3 from Lecture 2 to conclude.

Take f ∈ D(A). For ϕ ∈ C∞c (R) the Dominated Convergence Theorem
yields ∫

R
f(x)ϕ′(x) dx =

∫
R
f(x) lim

h↘0

ϕ(x− h)− ϕ(x)

−h
dx

= − lim
h↘0

∫
R
f(x)

ϕ(x− h)− ϕ(x)

h
dx.

Substitute y := x− h. Then,∫
R
f(x)ϕ′(x) dx = − lim

h↘0

∫
R
ϕ(y)

f(y + h)− f(y)

h
dy

= −
∫
R
ϕ(y)(Af)(y) dy,

where the last step is justified by the fact that ϕ ∈ C∞c (R) ⊂ Lp
′
(R) and

lim
h↘0

f(·+h)−f
h

= Af holds in Lp(R) as A is the generator of S. The last

equation tells us f ∈ W 1,p(R) = D(B) and Af = f ′ = Bf . Since f ∈ D(A)
was arbitrarily chosen, we have shown that A is a restriction of B. Hence,
1−A is a restriction of 1−B if we endow 1−A and 1−B with the canonical
domains D(1− A) := D(A) and D(1−B) := D(B).
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As ‖S(t)f‖p = ‖f‖p holds for all t ≥ 0 and all f ∈ Lp(R), the semigroup
S is of type (1, 0). By means of Proposition 2.26a) we conclude 1 ∈ ρ(A). In
particular, the operator 1− A is surjective.

Now, suppose that f ∈ D(B) satisfies (1 − B)f = 0. By definition of B
we get that f belongs to W 1,p(R) and satisfies f = f ′ in the sense of W 1,p(R).
By identifying f with its continuous version and using the equality

f(t)− f(0) =

∫ t

0

f ′(s) ds =

∫ t

0

f(s) ds,

we find that f is continuously differentiable and satisfies f = f ′ in the clas-
sical sense. Elementary calculus tells us f(t) = f(0)et for all t ∈ R. But as
f also belongs to Lp(R), we conclude f = 0. Thus, 1−B is injective.

We have eventually shown that the surjective operator 1−A is a restriction
of the injective operator 1−B. Exercise 3 from Lecture 1 yields 1−A = 1−B
which is equivalent to A = B. �

Exercise 6

Proposition 2.14.

The nilpotent left shift S0 is a strongly continuous semigroup on Lp(0, 1).

Proof.
Because of ‖S0(t)f‖ ≤ ‖f‖ and

S0(t)(f + g)(s) = (f + g)(s+ t) = f(s+ t) + g(s+ t)

if s+ t ≤ 1 or

S0(t)(f + g)(s) = 0 = S0(t)f(s) + S0(t)g(s)

if s+ t > 1, S0 clearly maps to L(Lp(0, 1)). Also

S0(s+ t)f(x) =

{
f(s+ t+ x) if s+ t+ x ≤ 1

0 if s+ t+ x ≤ 1

=

{
f(s+ (t+ x)) if s+ (t+ x) ≤ 1

0 if s+ (t+ x) ≤ 1

= S0(s)S0(t)f(x)
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and S0(0) = I, which shows the semigroup property. Finally, to show
that t 7→ S0(t)f is continuous for some f ∈ Lp

(
(0, 1)

)
, define

f̃(x) =

{
f(x) if x ≤ 1

0 if x > 1,

then clearly f̃ ∈ Lp(R) and S0(t)f = S(t)f̃ on (0, 1) where S is the left
shift on Lp(R). But according to Proposition 2.12 the left shift semigroup
S is strongly continuous on Lp(R), so the mapping t 7→ S(t)f̃ is continuous
as a mapping to Lp(R), but then it is especially continous as a mapping to
Lp(0, 1), where S(t)f̃ coincides with S0(t)f , as ‖ · ‖Lp(0,1) ≤ ‖ · ‖Lp(R), which
shows the strong cotinuity of S0.

�

Proposition 2.15.

The generator A of the nilpotent left shift S0 on Lp(0, 1) is given by

D(A) = W 1,p
(0) (0, 1), Af = f ′.

Proof.
As parts of this proof will be derived from analogous properties of the usual
left-shift S on Lp(R) , let AS and AS0 be the generators of S and S0. Anal-
ogously to Exercise 5, we can first show that D(AS0) ⊂ W 1,p(0, 1). So let
f ∈ D(AS0), ϕ ∈ C∞c (0, 1), then by dominated Convergence

∫ 1

0

f(x)ϕ′(x)dx =

∫ 1

0

f(x) lim
h↘0

ϕ(x− h)− ϕ(x)

−h
dx

= − lim
h↘0

∫ 1

0

f(x)
ϕ(x− h)− ϕ(x)

h
dx

= − lim
h↘0

(

∫ 1−h

0

f(x)
ϕ(x− h)− ϕ(x)

h
dx

+

∫ 1

1−h
f(x)

ϕ(x− h)− ϕ(x)

h
dx)

= − lim
h↘0

∫ 1−h

0

ϕ(y)
f(y + h)− f(y)

h
dy

= −
∫ 1

0

ϕ(y) lim
h↘0

χ(0,1−h)
f(y + h)− f(y)

h
dy

= −
∫ 1

0

ϕ(y)AS0f(y)dy,
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where we substituted y := x+h in line 4. This showsD(AS0) ⊂ W 1,p(0, 1).
But to be differentiable, S0(t)f in particular has to be continouos, enforc-
ing the additional condition f(1) = 0, because (S0(t)f)(1 − t) = f(1) and
(S0(t)f)(x) = 0 for all x > 1 − t, so this is necessary for it to be continous
in x = 1 − t. This shows, that D(AS0) ⊂ W 1,p

(0) (0, 1). If on the other hand

the condition f(1) = 0 is fullfilled in addition to f ∈ W 1,p(0, 1), then we
may again define f̃ from above, because then f̃ is continuous on (0,∞) and
weakly differentiable with

f̃ ′(x) =

{
f ′(x) if x ≤ 1

0 if x > 1,

which, together with Proposition 2.13, means that S(t)f̃ is differentiable on
(0,∞), but then also S0(t)f has to be differentiable on (0, 1), finally giving
us D(A) = W 1,p

(0) (0, 1). The same argument also gives us

AS0f =
d

dt
S0(t)f

∣∣∣∣
t=0

=
t

dt
S(t)f̃

∣∣∣∣
t=0

= AS f̃ = f̃ ′ = f ′

on (0, 1).

�

Exercise 7

The nilpotent left shift semigroup S0(t) on C(0)([0, 1]) is given by

(S0(t)f)(s) =

{
f(s+ t) if s ∈ [0, 1], s+ t ≤ 1,

0 if s ∈ [0, 1], s+ t > 1.

It is clear that S0(t) ∈ L(C(0)([0, 1])) and ‖S0(t)‖L(C(0)([0,1])) ≤ 1. To deter-
mine the generator A, we investigate

lim
h↘0

S0(h)f − f
h

in C(0)([0, 1]),

where the limit is considered in C(0)([0, 1]), i.e., for the supremum-norm. The
candidate for A is Af = f ′ with domain

D =
{
h ∈ C(0)([0, 1]) : h is differentiable on [0, 1] and h′ ∈ C(0)([0, 1])

}
,

where differentability in x = 0 and x = 1 is meant to be right- and left
differentiability, respectively.
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We begin with D(A) ⊆ D. So let f be in D(A), which means that the
above limit exists in C(0)([0, 1]). Calling the limit function g ∈ C(0)([0, 1]),
we have

lim
h↘0

S0(h)f − f
h

= g in C(0)([0, 1]).

Since uniform convergence is stronger than pointwise convergence and with
Lemma 2.6, we also have

lim
h→0

(S0(h)f)(x)− f(x)

h
= lim

h→0

f(x+ h)− f(x)

h
= f ′(x)

!
= g(x)

for every x ∈ (0, 1), and

lim
h↘0

(S0(h)f)(0)− f(0)

h
= lim

h↘0

f(0 + h)− f(0)

h
= f ′(0)

!
= g(0).

This means that f must be differentiable on [0, 1) (right differentiable in
x = 0) and its derivative f ′ is exactly g on [0, 1) and thus continuous. By
continuity of g on the whole interval [0, 1], we may continuously prolong f ′

into x = 1 with f ′(1) = g(1) = 0. This even implies left differentiability in
x = 1, since by continuity of f ′ the limit in

lim
h↗0

f(1 + h)− f(1)

h
= lim

h↗0
f ′(ξ) for some ξ ∈ (1 + h, 1)

exists and is equal to f ′(1) = 0 (we applied the Mean Value Theorem here).
Hence,

f ∈
{
h ∈ C(0)([0, 1]) : h is differentiable on [0, 1] and h′ ∈ C(0)([0, 1])

}
and D(A) ⊆ D.

Conversely, in order to show D ⊆ D(A), let f be in D. Then, using
again the Mean Value Theorem and uniform continuity of f ′ on the compact
interval [0, 1], we have

lim
h↘0

f(·+ h)− f(·)
h

= f ′(·) uniformly on [0, 1).

In x = 1, it holds that (S0(h)f)(1) = 0 for every h > 0 by definition, which
means that

(S0(h)f)(1)− f(1)

h
=
−f(1)

h
=

0

h
= 0 = f ′(0),
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such that uniform convergence in

lim
h↘0

S0(h)f − f
h

= f ′ in C(0)([0, 1])

is preserved and we find D ⊆ D(A).
Summing up, we have shown that the generator A of S0(t) is given by

Af = f ′ with domain

D(A) =
{
h ∈ C(0)([0, 1]) : h is differentiable on [0, 1] and h′ ∈ C(0)([0, 1])

}
.

Exercise 8

Exercise 8

The generator (A,D(A)) of the Gaussian semigroup (T (t))t≥0 on L2(R) is
given by

A : H2(R) ⊂ L2(R)→ L2(R), u 7→ u′′

where H2(R) = W 2,2(R), see e. g. Section 3.2 of [AF03].

Proof

Recall that T (t)f for f ∈ L2(R) and t > 0 is given by convolution of f with
the mapping

gt : R→ R, x 7→ 1√
4πt

e−
x2

4t .

Then
F(T (t)f) =

√
2πĝtf̂

where F denotes the Fourier transform on L2(R). Let h denote the Laplace
transform of gt with respect to t, i. e.

h : R+ × R→ R, (λ, x) 7→
∫ ∞
0

e−λtgt(x)dt.

The Fourier transform of h with respect to x is

ĥ(λ, ξ) =

∫ ∞
0

e−λsĝs(ξ)ds =
1√
2π

∫ ∞
0

e−λse−ξ
2sds =

1√
2π

1

λ+ ξ2
.

Now, Proposition 2.26 of the lecture notes implies that the resolvent R(λ,A)
satisfies

F(R(λ,A)f) = F
∫ ∞
0

e−λsgs ∗ fds =
1

λ+ ξ2
f̂
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for λ > 0 and f ∈ L2(R). The domain of A coincides with the range of
R(λ,A) which in turn coincides with H2(R), see e. g. Section 7.62 in [AF03].
For u ∈ D(A) and f ∈ L2(R) we have (λ − A)u = f if and only if û =
(λ + ξ2)−1f̂ and thus (λ + ξ2)û = f̂ . Injectivity of the Fourier transform
implies (λ− A)u = λu− u′′ whence the claim follows.

Exercise 9

We want to prove that for each t > 0 the Operator T (t) defined by the
Gaussian semigroup (Proposition 2.17) is a bounded operator from Lp(R) to
Lr(R), where r is in the intervall [p,∞].
For f ∈ Lp(R) and by using Young’s inequality for convolutions we get

||T (t)f ||r = ||gt ∗ f ||p ≤ ||gt||q · ||f ||p

with 1 + 1
r

= 1
q

+ 1
p
. Since r ≥ p we can conclude

q =
1

1 +
1

r
− 1

p︸ ︷︷ ︸
≤0

≥ 1,

so || · ||q is well defined as a norm.
We finish the proof by showing gt ∈ Lq(R) for every q ∈ [1,∞] and t > 0. By
Remark 2.16 part 2 we already know gt ∈ L1(R) und obviously gt ∈ L∞(R).
With usage of the Lyapunov inequality we get gt ∈ Lq(R) for every q ∈ [1,∞]
and t > 0, so

||T (t)||L(Lp(R),Lr(R)) ≤ ||gt||q <∞,

hence T (t) is bouneded for every t > 0.
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