Exercise 1

Let $A \in \mathcal{L}(X)$ and for $t \ge 0$

$$T(t) = e^{tA} := \sum_{n=0}^{\infty} \frac{t^n A^n}{n!}$$

be given. We want to show that

- 1. T is a strongly continuous semigroup,
- 2. T is continuous on $[0, \infty)$ with respect to the operator norm,
- 3. T consists of continuously invertible operators and
- 4. A is the generator of T.

1)

For all $t \ge 0$ the operators T(t) are bounded since $||T(t)|| = \left\|\sum_{n=0}^{\infty} \frac{t^n A^n}{n!}\right\| \le \sum_{n=0}^{\infty} \frac{t^n ||A||^n}{n!} = e^{t||A||} < \infty$. The semigroup property follows as in the real case for the exponential series, because tA and sA commute. Note that with the same argument T(t+s) = T(t)T(s) holds even for $s, t \in \mathbb{R}$. Part 2) implies the strong continuity of T.

As preparation we have to show that for all $t \ge 0$

$$\sup_{s\in[0,\,t]}\|T(s)\|<\infty.$$

(This is the locally boundedness of T without assuming that it is strongly continuous.)

It follows directly by

$$\sup_{s \in [0, t]} \|T(s)\| \le \sup_{s \in [0, t]} e^{s\|A\|} = e^{t\|A\|} =: C.$$

Next we can attend to the uniformly continuity. Consider for $t, s \ge 0$ and without loss of generality t > s

$$\|T(t) - T(s)\| = \|T(s)T(t - s) - T(s)\| \le \|T(s)\| \|T(t - s) - Id\|$$
$$= \|T(s)\| \left\|\sum_{n=0}^{\infty} \frac{(t - s)^n A^n}{n!} - Id\right\| = \|T(s)\| \left\|\sum_{n=1}^{\infty} \frac{(t - s)^n A^n}{n!}\right\|$$

$$\leq C \sum_{n=1}^{\infty} \frac{(t-s)^n \|A\|^n}{n!}$$

The continuity of the exponential function in 0 on \mathbb{R} leads to the requested. 3)

If $A \in \mathcal{L}(X)$, also $-A \in \mathcal{L}(X)$, such that 1) implies $S(t) := e^{t(-A)} \in \mathcal{L}(X)$. That S(t) is the inverse of T(t) follows directly by the semigroup property which is fulfilled on all of \mathbb{R} (see 1). 4)

The generator G of T(t) is defined on the whole space X as the following computation shows. Taking $f \in X$ we find

$$Gf = \lim_{h \to 0^+} \frac{T(h)f - f}{h} = \lim_{h \to 0^+} \frac{f + hAf + \sum_{n=2}^{\infty} \frac{h^n A^n}{n!} f - f}{h}$$
$$= Af + \lim_{h \to 0^+} \sum_{n=2}^{\infty} \frac{h^{n-1} A^n}{n!} f = Af.$$

In the second to the last step the limit $\lim_{h\to 0^+}$ commutes with the limit of the series, because the power series $\sum_{n=2}^{\infty} \frac{h^{n-1} ||A||^n}{n!}$ converges uniformly in h. So we have $G \equiv A$.

Exercise 2 & 4

We provide a single example that can be used in both exercises.

Let us consider the Hilbert space $L^2((0,1),\mu)$, where μ denotes the measure defined by $\mu(A) := 2\lambda(A \cap (0; 1/2)) + \lambda(A \cap (1/2; 1))$ for all Lebesgue measurable sets A. Here λ is the Lebesgue-measure for all lebesgue measurable sets A. Furthermore, let T be the leftshift semigroup. Obviously, T satisfies the semigroup property and, since the norm $\|\cdot\|_{\mu}$ is equivalent to the norm $\|\cdot\|_{\lambda}$, T is strongly continuous. We know that $\|f\|_{\mu} \leq 2\|f\|_{\lambda}$. Hence it follows $\|T(t)\|_{\mathcal{L}(L^2)} \leq 2$. In addition we see that T(t) = 0 for all $t \geq 1$.

Finally, we consider the function

$$f_t = \frac{1}{\sqrt{t}} \chi_{(1/2, 1/2 + t)}$$

for $t \in (0, 1/2]$ and

$$f_t = \frac{1}{\sqrt{1-t}}\chi_{(t,1)}$$

for $t \in (1/2, 1)$. We calculate that

$$||f_t||_{\mu} = 1$$

and

$$||T(t)f_t||_{\mu} = 2.$$

Summarized, we have

$$||T(t)|| = \begin{cases} 2, \text{ for } 0 < t < 1\\ 1, \text{ for } t = 0\\ 0, \text{ else.} \end{cases}$$

It follows that

$$\|T(t)\| \le 2 \le 2e^{\omega t}$$

for all $\omega \geq 0$ (Exercise 2) and

$$||T(t)|| \le 2 \le M_{\omega} e^{\omega t}$$

for all $\omega < 0$ with $M_{\omega} = 2e^{-\omega}$ (Exercise 4).

Exercise 3

Exercise 3a

T(s) is a strongly continuous semigroup, R an invertible and bounded transformation in $\mathcal{L}(X)$.

It is to show that the family of linear Operators $S(s) = R^{-1}T(s)R$ also defines a strongly continuous semigroup. The algebraic semigroup property can be shown easily:

$$S(t+s) = R^{-1}T(t+s)R = R^{-1}T(t)RR^{-1}T(s)R = S(t)S(s)$$

The strong continuity can be shown, according to Proposition 2.5, by fixing a $f \in X$ and proving $S(h)f \to f$ for $h \to 0$ as $R^{-1}T(s)R$ is locally bounded because of $R \in \mathcal{L}(X)$ and T(s) being a strongly continuous semigroup:

$$||R^{-1}T(h)Rf - f|| = ||R^{-1}(T(h)Rf - Rf)||.$$

Since $R^{-1} \in \mathcal{L}(X)$ it holds

$$||R^{-1}(T(h)Rf - R \circ f)|| \le C||T(h)Rf - Rf|| \to 0$$

by use of the fact that T(s) is a strongly continuous semigroup.

Using again the fact that R is bounded and possesses a bounded inverse, we obtain

$$||R^{-1}T(t)R|| \le ||R^{-1}|| ||R|| ||T(t)|| \le ||R^{-1}|| ||R|| M e^{\omega t}$$

, if T is of type (M, ω) . On the other hand

$$||T(t)|| \le ||RR^{-1}T(t)RR^{-1}|| \le ||R^{-1}|| ||R|| ||R^{-1}T(t)R||$$

holds. Thus the growth bound is the same as for the original semigroup T(t).

Now, the Generator A_S of S(t) and its Domain $D(A_S)$ have to be determined. If the limit exists for an $f \in X$ it holds:

$$\lim_{h \searrow 0} \frac{1}{h} (S(h)f - f) = \lim_{h \searrow 0} \frac{1}{h} (R^{-1}T(h)Rf - f) = A_S f$$

As $R \in \mathcal{L}(X)$ it is obvious that existence of the limes is equivalent to $Rf \in D(A)$. Therefore $D(A_S) = R^{-1}[D(A)]$ and by means of the chain rule $A_S = R^{-1}AR$.

Exercise 3b

Let T be a strongly continuous semigroup, $z \in \mathbb{C}$, $S(t) := e^{tz}T(t)$. We first show that S is a strongly continuous semigroup:

Before we verify the semigroup axioms, we need to verify that S is indeed a continuous linear operator. Let $t \in \mathbb{R}$ be non-negative. Then S(t) is linear and bounded since $e^{tz} \in \mathbb{C}$ and T(t) is bounded and linear.

Now the semigroup properties are also fulfilled: Let $t, s \ge 0$. $S(0) = e^{0z}T(0) = I$ and

$$S(t+s) = e^{t+s}T(t+s) = e^t e^s T(t+s) = e^t T(t) \cdot e^s T(s) = S(t) \cdot S(s).$$

According to Proposition 2.5 it is enough to verify strong continuity by checking right continuity at 0 if the operator is locally bounded. The latter is the case, since $\forall t \geq 0$

$$\sup_{s \in [0,t]} ||S(s)|| = \sup_{s \in [0,t]} ||e^{sz}T(s)|| \le e^{t|\operatorname{Re}(z)|} \sup_{s \in [0,t]} ||T(s)|| < \infty,$$

since T is a strongly continuous semigroup and whence locally bounded by Proposition 2.2.

Let h > 0 and let $f \in X$.

$$||S(h)f - f|| = ||e^{hz} \cdot T(h)f - f|| \to 0, h \to 0,$$

since $e^{hz} \to 1$ and $T(h)f \to f$ for $h \to 0$.

Now we need to determine its growth bound. Let ω_T be the growth bound of T, i.e. it is the infimum over all ω s.t. there is an $M \geq 1$ such that $||T(t)|| \leq Me^{t\omega}$. Then, certainly, $||S(t)|| \leq Me^{t\omega+t|Re(z)|}$ and according to the laws of infima, $\omega_S = \omega_T + |Re(z)|$. We remark that ω_t and hence ω_S may not be finite.

Finally we determine its generator A_S , assuming A_T is the generator of T. Let $u(t) = e^{tz}T(t)f$ be the orbit map for a fixed $f \in X$. Then $\frac{d}{dt}u(t) = ze^{tz}T(t)f + e^{tz}\frac{d}{dt}T(t)f$ by the product rule. This expression precisely makes sense for those $f \in X$ for which $\frac{d}{dt}[T(t)f]$ exists. In this case, $\frac{d}{dt}u(0) =$ $(z+A_T)f$. Since this is only possible if we are in the domain of A_T , the domain is $D(A_S) = \{f \in X : S(\cdot) \text{ differentiable in } [0,\infty)\} = D(A_T - z) = D(A_T),$ with $A_S = z + A$.

Exercise 3c

Let T be a strongly continuous semigroup, $\alpha \geq 0$, $S(t) := T(\alpha t)$. Since T(t) is a linear operator for $t \geq 0$, S(t) is a linear operator. The semigroup properties derive trivially by easy calculations. It is also locally bounded by the boundeness of T. For strong continuity we see

$$||S(h)f - f|| = ||T(\alpha h)f - f|| \to 0, h \to 0,$$

since T is strongly continuous.

Now, for the growth bound, let again ω_T be the growth bound of T, i.e. it is the infimum over all ω s.t. there is an $M \ge 1$ with $||T(t)|| \le Me^{t\omega}$. Then, $||S(t)|| = ||T(\alpha t)|| \le Me^{t\alpha\omega}$ and according to the laws of infima, $\omega_S = \alpha\omega_T$.

Finally, we determine its generator A_S , assuming again A_T to be the generator of T. Let $u(t) = S(t)f = T(\alpha t)f$ be the orbit map for a fixed $f \in X$. $\frac{d}{dt}u(t) = \alpha \frac{d}{dt}T(\alpha t)f$. It exists again precisely for those $f \in X$ for which $\frac{d}{dt}[T(t)f]$ exists. Then, $\frac{d}{dt}u(0) = \alpha \frac{d}{dt}T(\alpha 0)f = \alpha A_T f$ for all f in the domain of A_T , $D(A_T)$. Hence $D(A_S) = D(A_T)$ and $A_S = \alpha A_T$.

Exercise 5

In the sequel we shall use that the space $W^{1,p}(\mathbb{R})$ as defined in Lecture 2 coincides with the usual Sobolev space

$$W^{1,p}(\mathbb{R}) = \{ f \in L^p(\mathbb{R}) \mid \exists g \in L^p(\mathbb{R}) \forall \varphi \in C_c^{\infty}(\mathbb{R}) : \int_{\mathbb{R}} f\varphi' = -\int_{\mathbb{R}} g\varphi \}$$

modulo the usual identification of functions that are equal almost everywhere with respect to the Lebesgue-measure on \mathbb{R} . For $f \in W^{1,p}(\mathbb{R})$, the function g as in the definition of $W^{1,p}(\mathbb{R})$ above, is uniquely determined and coincides with the derivative of f as defined in Lecture 2. For a proof, see for example [G. Leoni, A First Course In Sobolev Spaces, AMS 2000, Theorem 7.13].

Now, let $p \in [1, \infty)$ and let A be the generator of the left shift semigroup S on $L^p(\mathbb{R})$. Define another unbounded operator B on $L^p(\mathbb{R})$ by

$$D(B) := W^{1,p}(\mathbb{R}), \quad Bf = f'.$$

Proposition 2.13 claims A = B. In a first step we will show $A \subset B$ and then use Exercise 3 from Lecture 2 to conclude.

Take $f \in D(A)$. For $\varphi \in C_c^{\infty}(\mathbb{R})$ the Dominated Convergence Theorem yields

$$\int_{\mathbb{R}} f(x)\varphi'(x) \, \mathrm{d}x = \int_{\mathbb{R}} f(x) \lim_{h \searrow 0} \frac{\varphi(x-h) - \varphi(x)}{-h} \, \mathrm{d}x$$
$$= -\lim_{h \searrow 0} \int_{\mathbb{R}} f(x) \frac{\varphi(x-h) - \varphi(x)}{h} \, \mathrm{d}x.$$

Substitute y := x - h. Then,

$$\int_{\mathbb{R}} f(x)\varphi'(x) \, \mathrm{d}x = -\lim_{h \searrow 0} \int_{\mathbb{R}} \varphi(y) \frac{f(y+h) - f(y)}{h} \, \mathrm{d}y$$
$$= -\int_{\mathbb{R}} \varphi(y) (Af)(y) \, \mathrm{d}y,$$

where the last step is justified by the fact that $\varphi \in C_c^{\infty}(\mathbb{R}) \subset L^{p'}(\mathbb{R})$ and $\lim_{h \searrow 0} \frac{f(\cdot+h)-f}{h} = Af$ holds in $L^p(\mathbb{R})$ as A is the generator of S. The last equation tells us $f \in W^{1,p}(\mathbb{R}) = D(B)$ and Af = f' = Bf. Since $f \in D(A)$ was arbitrarily chosen, we have shown that A is a restriction of B. Hence, 1 - A is a restriction of 1 - B if we endow 1 - A and 1 - B with the canonical domains D(1 - A) := D(A) and D(1 - B) := D(B). As $||S(t)f||_p = ||f||_p$ holds for all $t \ge 0$ and all $f \in L^p(\mathbb{R})$, the semigroup S is of type (1,0). By means of Proposition 2.26a) we conclude $1 \in \rho(A)$. In particular, the operator 1 - A is surjective.

Now, suppose that $f \in D(B)$ satisfies (1-B)f = 0. By definition of B we get that f belongs to $W^{1,p}(\mathbb{R})$ and satisfies f = f' in the sense of $W^{1,p}(\mathbb{R})$. By identifying f with its continuous version and using the equality

$$f(t) - f(0) = \int_0^t f'(s) \, \mathrm{d}s = \int_0^t f(s) \, \mathrm{d}s,$$

we find that f is continuously differentiable and satisfies f = f' in the classical sense. Elementary calculus tells us $f(t) = f(0)e^t$ for all $t \in \mathbb{R}$. But as f also belongs to $L^p(\mathbb{R})$, we conclude f = 0. Thus, 1 - B is injective.

We have eventually shown that the surjective operator 1-A is a restriction of the injective operator 1-B. Exercise 3 from Lecture 1 yields 1-A = 1-B which is equivalent to A = B. \Box

Exercise 6

Proposition 2.14.

The nilpotent left shift S_0 is a strongly continuous semigroup on $L^p(0,1)$.

Proof. Because of $||S_0(t)f|| \le ||f||$ and

$$S_0(t)(f+g)(s) = (f+g)(s+t) = f(s+t) + g(s+t)$$

if $s + t \leq 1$ or

$$S_0(t)(f+g)(s) = 0 = S_0(t)f(s) + S_0(t)g(s)$$

if s + t > 1, S_0 clearly maps to $\mathcal{L}(L^p(0, 1))$. Also

$$S_{0}(s+t)f(x) = \begin{cases} f(s+t+x) & \text{if } s+t+x \leq 1\\ 0 & \text{if } s+t+x \leq 1 \end{cases}$$
$$= \begin{cases} f(s+(t+x)) & \text{if } s+(t+x) \leq 1\\ 0 & \text{if } s+(t+x) \leq 1 \end{cases}$$
$$= S_{0}(s)S_{0}(t)f(x)$$

and $S_0(0) = I$, which shows the semigroup property. Finally, to show that $t \mapsto S_0(t)f$ is continuous for some $f \in L^p((0,1))$, define

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \leq 1\\ 0 & \text{if } x > 1, \end{cases}$$

then clearly $\tilde{f} \in L^p(\mathbb{R})$ and $S_0(t)f = S(t)\tilde{f}$ on (0,1) where S is the left shift on $L^p(\mathbb{R})$. But according to Proposition 2.12 the left shift semigroup S is strongly continuous on $L^p(\mathbb{R})$, so the mapping $t \mapsto S(t)\tilde{f}$ is continuous as a mapping to $L^p(\mathbb{R})$, but then it is especially continuous as a mapping to $L^p(0,1)$, where $S(t)\tilde{f}$ coincides with $S_0(t)f$, as $\|\cdot\|_{L^p(0,1)} \leq \|\cdot\|_{L^p(\mathbb{R})}$, which shows the strong cotinuity of S_0 .

Proposition 2.15.

The generator A of the nilpotent left shift S_0 on $L^p(0,1)$ is given by

$$D(A) = W_{(0)}^{1,p}(0,1), \qquad Af = f'.$$

Proof.

As parts of this proof will be derived from analogous properties of the usual left-shift S on $L^p(\mathbb{R})$, let A_S and A_{S_0} be the generators of S and S_0 . Analogously to Exercise 5, we can first show that $D(A_{S_0}) \subset W^{1,p}(0,1)$. So let $f \in D(A_{S_0}), \varphi \in C_c^{\infty}(0,1)$, then by dominated Convergence

$$\begin{split} \int_{0}^{1} f(x)\varphi'(x)dx &= \int_{0}^{1} f(x)\lim_{h\searrow 0} \frac{\varphi(x-h) - \varphi(x)}{-h}dx \\ &= -\lim_{h\searrow 0} \int_{0}^{1} f(x)\frac{\varphi(x-h) - \varphi(x)}{h}dx \\ &= -\lim_{h\searrow 0} (\int_{0}^{1-h} f(x)\frac{\varphi(x-h) - \varphi(x)}{h}dx \\ &+ \int_{1-h}^{1} f(x)\frac{\varphi(x-h) - \varphi(x)}{h}dx) \\ &= -\lim_{h\searrow 0} \int_{0}^{1-h} \varphi(y)\frac{f(y+h) - f(y)}{h}dy \\ &= -\int_{0}^{1} \varphi(y)\lim_{h\searrow 0} \chi_{(0,1-h)}\frac{f(y+h) - f(y)}{h}dy \\ &= -\int_{0}^{1} \varphi(y)A_{S_{0}}f(y)dy, \end{split}$$

where we substituted y := x+h in line 4. This shows $D(A_{S_0}) \subset W^{1,p}(0,1)$. But to be differentiable, $S_0(t)f$ in particular has to be continuous, enforcing the additional condition f(1) = 0, because $(S_0(t)f)(1-t) = f(1)$ and $(S_0(t)f)(x) = 0$ for all x > 1-t, so this is necessary for it to be continuous in x = 1-t. This shows, that $D(A_{S_0}) \subset W^{1,p}_{(0)}(0,1)$. If on the other hand the condition f(1) = 0 is fullfilled in addition to $f \in W^{1,p}(0,1)$, then we may again define \tilde{f} from above, because then \tilde{f} is continuous on $(0,\infty)$ and weakly differentiable with

$$\tilde{f}'(x) = \begin{cases} f'(x) & \text{if } x \le 1\\ 0 & \text{if } x > 1, \end{cases}$$

which, together with Proposition 2.13, means that $S(t)\tilde{f}$ is differentiable on $(0,\infty)$, but then also $S_0(t)f$ has to be differentiable on (0,1), finally giving us $D(A) = W_{(0)}^{1,p}(0,1)$. The same argument also gives us

$$A_{S_0}f = \frac{d}{dt}S_0(t)f\Big|_{t=0} = \frac{t}{dt}S(t)\tilde{f}\Big|_{t=0} = A_S\tilde{f} = \tilde{f}' = f'$$

on (0, 1).

Е		
-	_	_

Exercise 7

The nilpotent left shift semigroup $S_0(t)$ on $C_{(0)}([0,1])$ is given by

$$(S_0(t)f)(s) = \begin{cases} f(s+t) & \text{if } s \in [0,1], \ s+t \le 1, \\ 0 & \text{if } s \in [0,1], \ s+t > 1. \end{cases}$$

It is clear that $S_0(t) \in \mathcal{L}(\mathcal{C}_{(0)}([0,1]))$ and $||S_0(t)||_{\mathcal{L}(\mathcal{C}_{(0)}([0,1]))} \leq 1$. To determine the generator A, we investigate

$$\lim_{h \searrow 0} \frac{S_0(h)f - f}{h} \quad \text{in } \mathcal{C}_{(0)}([0,1]),$$

where the limit is considered in $C_{(0)}([0, 1])$, i.e., for the supremum-norm. The candidate for A is Af = f' with domain

 $\mathcal{D} = \left\{ h \in \mathcal{C}_{(0)}([0,1]) \colon h \text{ is differentiable on } [0,1] \text{ and } h' \in \mathcal{C}_{(0)}([0,1]) \right\},\$

where differentiability in x = 0 and x = 1 is meant to be right- and left differentiability, respectively.

We begin with $D(A) \subseteq \mathcal{D}$. So let f be in D(A), which means that the above limit exists in $C_{(0)}([0,1])$. Calling the limit function $g \in C_{(0)}([0,1])$, we have

$$\lim_{h \searrow 0} \frac{S_0(h)f - f}{h} = g \quad \text{in } \mathcal{C}_{(0)}([0,1]).$$

Since uniform convergence is stronger than pointwise convergence and with Lemma 2.6, we also have

$$\lim_{h \to 0} \frac{(S_0(h)f)(x) - f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) \stackrel{!}{=} g(x)$$

for every $x \in (0, 1)$, and

$$\lim_{h \searrow 0} \frac{(S_0(h)f)(0) - f(0)}{h} = \lim_{h \searrow 0} \frac{f(0+h) - f(0)}{h} = f'(0) \stackrel{!}{=} g(0).$$

This means that f must be differentiable on [0, 1) (right differentiable in x = 0) and its derivative f' is exactly g on [0, 1) and thus continuous. By continuity of g on the whole interval [0, 1], we may continuously prolong f' into x = 1 with f'(1) = g(1) = 0. This even implies left differentiability in x = 1, since by continuity of f' the limit in

$$\lim_{h \neq 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \neq 0} f'(\xi) \quad \text{for some } \xi \in (1+h, 1)$$

exists and is equal to f'(1) = 0 (we applied the Mean Value Theorem here). Hence,

 $f \in \{h \in \mathcal{C}_{(0)}([0,1]) : h \text{ is differentiable on } [0,1] \text{ and } h' \in \mathcal{C}_{(0)}([0,1])\}$

and $D(A) \subseteq \mathcal{D}$.

Conversely, in order to show $\mathcal{D} \subseteq D(A)$, let f be in \mathcal{D} . Then, using again the Mean Value Theorem and uniform continuity of f' on the compact interval [0, 1], we have

$$\lim_{h \searrow 0} \frac{f(\cdot + h) - f(\cdot)}{h} = f'(\cdot) \quad \text{uniformly on } [0, 1).$$

In x = 1, it holds that $(S_0(h)f)(1) = 0$ for every h > 0 by definition, which means that

$$\frac{(S_0(h)f)(1) - f(1)}{h} = \frac{-f(1)}{h} = \frac{0}{h} = 0 = f'(0),$$

such that uniform convergence in

$$\lim_{h \searrow 0} \frac{S_0(h)f - f}{h} = f' \text{ in } \mathcal{C}_{(0)}([0,1])$$

is preserved and we find $\mathcal{D} \subseteq D(A)$.

Summing up, we have shown that the generator A of $S_0(t)$ is given by Af = f' with domain

 $D(A) = \{h \in \mathcal{C}_{(0)}([0,1]) : h \text{ is differentiable on } [0,1] \text{ and } h' \in \mathcal{C}_{(0)}([0,1]) \}.$

Exercise 8

Exercise 8

The generator (A, D(A)) of the Gaussian semigroup $(T(t))_{t\geq 0}$ on $L^2(\mathbb{R})$ is given by $A: H^2(\mathbb{D}) \subset L^2(\mathbb{D}) \to L^2(\mathbb{D})$

$$A \colon H^2(\mathbb{R}) \subset L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad u \mapsto u'$$

where $H^2(\mathbb{R}) = W^{2,2}(\mathbb{R})$, see e. g. Section 3.2 of [AF03].

Proof

Recall that T(t)f for $f \in L^2(\mathbb{R})$ and t > 0 is given by convolution of f with the mapping

$$g_t \colon \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{4\pi t}} \mathrm{e}^{-\frac{x^2}{4t}}.$$

Then

$$\mathcal{F}(T(t)f) = \sqrt{2\pi}\hat{g}_t\hat{f}$$

where \mathcal{F} denotes the Fourier transform on $L^2(\mathbb{R})$. Let *h* denote the Laplace transform of g_t with respect to *t*, i. e.

$$h: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}, \quad (\lambda, x) \mapsto \int_0^\infty e^{-\lambda t} g_t(x) \mathrm{d}t.$$

The Fourier transform of h with respect to x is

$$\hat{h}(\lambda,\xi) = \int_0^\infty e^{-\lambda s} \hat{g}_s(\xi) ds = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\lambda s} e^{-\xi^2 s} ds = \frac{1}{\sqrt{2\pi}} \frac{1}{\lambda + \xi^2}.$$

Now, Proposition 2.26 of the lecture notes implies that the resolvent $R(\lambda, A)$ satisfies

$$\mathcal{F}(R(\lambda, A)f) = \mathcal{F} \int_0^\infty e^{-\lambda s} g_s * f ds = \frac{1}{\lambda + \xi^2} \hat{f}$$

for $\lambda > 0$ and $f \in L^2(\mathbb{R})$. The domain of A coincides with the range of $R(\lambda, A)$ which in turn coincides with $H^2(\mathbb{R})$, see e. g. Section 7.62 in [AF03]. For $u \in D(A)$ and $f \in L^2(\mathbb{R})$ we have $(\lambda - A)u = f$ if and only if $\hat{u} = (\lambda + \xi^2)^{-1}\hat{f}$ and thus $(\lambda + \xi^2)\hat{u} = \hat{f}$. Injectivity of the Fourier transform implies $(\lambda - A)u = \lambda u - u''$ whence the claim follows.

Exercise 9

We want to prove that for each t > 0 the Operator T(t) defined by the Gaussian semigroup (Proposition 2.17) is a bounded operator from $L^{p}(\mathbb{R})$ to $L^{r}(\mathbb{R})$, where r is in the interval $[p, \infty]$.

For $f \in L^p(\mathbb{R})$ and by using Young's inequality for convolutions we get

$$||T(t)f||_r = ||g_t * f||_p \le ||g_t||_q \cdot ||f||_p$$

with $1 + \frac{1}{r} = \frac{1}{q} + \frac{1}{p}$. Since $r \ge p$ we can conclude

$$q = \frac{1}{1 + \frac{1}{r} - \frac{1}{p}} \ge 1,$$

so $|| \cdot ||_q$ is well defined as a norm.

We finish the proof by showing $g_t \in L^q(\mathbb{R})$ for every $q \in [1, \infty]$ and t > 0. By Remark 2.16 part 2 we already know $g_t \in L^1(\mathbb{R})$ und obviously $g_t \in L^\infty(\mathbb{R})$. With usage of the Lyapunov inequality we get $g_t \in L^q(\mathbb{R})$ for every $q \in [1, \infty]$ and t > 0, so

$$||T(t)||_{\mathcal{L}(L^p(\mathbb{R}), L^r(\mathbb{R}))} \le ||g_t||_q < \infty,$$

hence T(t) is bounded for every t > 0.

References

[AF03] Robert A. Adams and John J. F. Fournier, *Sobolev spaces*, second ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.