Exercises 2

24. Oktober 2011

1. For all t € R, we have
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Le. the series Y 7, % is absolutely convergent and therefore convergent since
L(X) is complete. Furthermore, we obtain the estimate

et < cltIAl
which shows T'(t) € L£(X). Obviously, we have T'(0) = Id. The absolute convergence

of the exponential series allows to compute the product of T'(s) and T'(¢) for s,¢t € R
via the Cauchy product formula:
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The semigroup is not only strongly continuous but actually continuous with respect
to the operator norm:
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|T(t) — 1d|| = Z < |t] || 4] Z ”+ ﬂ , = el Al —1 = 0 for t — 0.
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Since T'(s)T'(t) = T(s + t) holds for all s, € R, we get T'(—t)T(t) = Id =
T(t)T(—t), which is nothing else than T'(—t) = T ()7L

The generator of T is the operator A : X — X. Consider an arbitrary f € X.
Then:

Tf-f_1 lt”A”f ALy = 1A"+1 f
t _tz Z (n+1)! Af""t’Z — Af for t — 0.
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This implies that X is the domain of the generator, and that thereon the generator
works like A, indeed really is A.

2. Consider the nilpotent left shift Sy on the Hilbert space X := L?(0,1) and define
the strongly continuous semigroup T' via T(t) = e'*Sy(t) for some positive real
number z > 0. Then we have

e’ forte|0,1),
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0 fort >0

This strongly continuous semigroup is bounded by e?, but not a contraction semi-
group.

3. (a) S(0) = R7'T(0)R = Id.
S(t) € £L(X), da R, R, T(t) € L(X) (t > 0).

e Vs, t > 0:

Sit+s)=R'T({t+s)R=R'TH)T(s)R= (R 'T(t)R) (R"'T(s)R)
= S(t)S(s)

Choose f € X arbitrarily. Then t — T'(t)f is continuous and therefore
t RTIT(t)Rf as well.

Let us denote the infinitesimal generator of S by Ag and analogously, the
one of T' by A7. Then we obtain the following chain of equivalences:

feD(Ar) < lim rwr=7 exists
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< lim S(t)<R f) RT exists
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& R7Mf € D(Ag)
Hence, D(Ag) = R~'D(Ar), and for all f € D(Ag), we obtain:

SWS~f _ i [ TWRS = RI]
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Agf = lim R'ArRf
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e In order to determine the growth bound, consider an arbitrary w > wo(T).

Then there is M > 1 such that for all ¢ > 0 the inequality ||T(t)|| < Me*!

holds. This leads to [|S(¢)|| < ||[R™!|| | R|| Me*" which implies w > wo(S5)

and finally wo(7") > wo(.9). Interchanging the roles of S and T (notice the

symmetry of the situation) yields wy(S) > wo(7T'). This gives us at the end:
wo(T) = wo(S).



(b) We will not show the semigroup properties, they are even easier to see than in
the part above. We consider only the strong continuity, generator and growth
bound questions:

e Let f € X. Then:

IS f = fll = ||e*TW) f = f|| < |e* =1 |T®F +|TE)f —fl -0
—0 for t—0+locally bounded —0

e Denote again the generator of S by Ag and the one of T' by Ap. Then
we have for f € D(Ar): Since t — T(t)f is differentiable, t — e*T'(t)f
is differentiable due to the product rule. This leads to D(Ag) C D(Ar).
Since T'(t) = e~ *S(t), we obtain by the same argument D(Ar) C D(Ag),
thus D(Ar) = D(Ag). Finally, for f € D(Ag), we obtain:

asf = iy, HGT < i [t 4 O
=zf + Arf,

hence Ag = z + Arp.
e For w > wy(T) there is M > 1 such that for all t > 0: ||T'(¢)|| < Me*t. This
implies ||S(t)|| < Met@tRe(2) which again leads to wy(S) < w 4 Re(z).
From this, we gain wo(S) < wo(T) + Re(z). Using T(t) = e t*S(t), we
obtain wy(T) < wp(S) — Re(z). In total: wo(S) = wo(T) + Re(2).
(¢) Again, we omit the semigroup properties and consider strong continuity, the
generator and the growth bound:

e Given f € X, denote by u the continuous function u : t — T'(t)f. Then
t — S(t)f = u(at) is as the composition of the continuous mappings
t — at and u again continuous.

e We obtain D(Ag) = D(Ar) (notation as above) from the observation
S(t)tfff = aT(ai)tfff. This also leads to Ag = aAr.

o ||S(t)|| < Me®“ whenever T is of type (M,w) and |T'(t)|| < Mes? when-
ever S is of type (M,w). Thus, wo(S) = awe(T).

. WOULD BE NICE TO KNOW

. We have to prove, that for p € [1,00) the infinitesimal generator A of the left shift
semigroup S on LP(R) is given by

D(A) =W (R), Af=f.

Assume first that f € D(A), i.e. for t — 0" the limit % exists in LP(R). Now



consider for an arbitrary ¢ € C°(R):

_ [T f1(z) — f(z)
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This shows weak differentiability of f and LP(R) > Af = f/,i.e. f € W'P(R) and
Af = f' for f € D(A).

Now assume f € W1P(R). We know, that in the one-dimensional case this implies
that f can be considered as a continuous function and there exists g € LP(R) such
that for all z € R: f(z) — f(0) = [; g(t) dt. From this, we obtain:

Hwa—f_gp:/'ﬂx+w—ﬂm
P R

t t
-,

1 t
s//m@+@—ampwm
Rt Jo

dzx

—g()

p

1
dzx

T+t
L[ () = gt as

1 t
:t//]g(:r—i—s)—g(m)]p dx ds — 0 for t — 07
0o JR

because of the strong continuity of the left shift on LP(R). This yields f € D(A)
and Af = f’ and finishes the proof.

6. Claim: The nilpotent left shift Sy on LP(0, 1) is a strongly continuous semigroup
with generator A, given by

D(A) = W(lo’f(O, 1):={f € LP(0,1) : f is continuous, f(1) = 0, and there exists
g€ LP0,1): f(x)— f(0) :/ g(t) dt for all x € R}.
0

Proof: Sp(0) = Id, Sp(t) € L(LP(R)) (more precisely || So(t)|| < 1) for all £ > 0 and
So(t + s) = So(t)So(s) for all s,t > 0 are easily checked. Thus we consider only
strong continuity at ¢ = 0: Herefore, beware of C2>°(0,1) lying dense in LP(0,1)
and Sp being strongly continuous on C°(0,1) C LP(0,1). Since Sy is a contraction
semigroup, we have strong continuity on the whole space LP(0,1).



Now consider the generator A: Take f € D(A). Then we get for ¢ € C°(0,1):

1 1 .
/0 Af(z)e(x) de = lim [So(®)f)(=) = ( )cp(a:) dx

= Jim, U f(xft o) d - / | MW]

where ¢ shall be extended to R by 0. This again yields f € W'P(0,1) (ie. f is
continuous and f(x) = [y f'(t) dt where f € LP(R) is the weak derivative)
and Af = f’. Thus, we know that D(A) C WhP(0,1). Since So(t)f € D(A) C
WhP(0,1) C C[0,1] for all t > 0, we must have f(1) = 0, which finally leads to

D(A) C W (0,1).

Now consider f € W(O’f (0,1). Then one can write

—/lf'(t) dt for x € [0,1]

and we get:
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due to Lebesgue’s theorem and the strong continuity of the shift on LP(0,1). This
shows W(lo’f(O, 1) C D(A).

. It is clear, that the nilpotent left shift So on C(g)([0,1]) is a strongly continuous
semigroup.
Claim: The generator A of Sy is given by

D(A) =V = {f €Cy([0,1]): f € C)([0,1])}, Af =}

Proof: Since |||, convergence implies pointwise convergence, f € D(A) must be
differentiable on [0,1). Since f’ is the uniform limit of continuous functions, f’

dx — 0 for t = 0"




must also be continuous on [0, 1]. Finally, for z = 1, we have for all ¢ > 0:

So®AD =B _ ) _ iy ().

t z—1

Thus, we have D(A) C V and Af = [’ for f € D(A).
The other way around, consider f € V. Let € > 0 be arbitrary. Then there exists
to € (0,1) such that for all x € [to, 1]:

/(@) <

Since f’ is uniformly continuous on [0, 1], there exists § > 0 such that |z —y| < o
implies | f'(z) — f'(y)| < e. Thus, for t < min{d, ¢}, we obtain:
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Hence, Soi f’ < ¢ for all ¢ < min{tp,d}. This proves f € D(A) and
Af =1

. We denote by F the Fourier transform on L?(R) and by A the generator of T. This
way, we obtain for f € L*(R):

[F o T(t) £1(€) = [Flge * HIE) = V2r[F(g))(€)[F(£)(€) = e [F(H)I(E),

which means FoT'(t)oF 1 = M__,e2, where we mean by M__,. the multiplication

operator g — € —t€? g. The generator of (M, _ 42 )i>0 shall be called B. Then we know
from the third exercise: B = FAF ! and D(A) = F~1(D(B)). Thus,

D(A)={f e L*R): Ff € D(B)}.
Claim: B is given by

D(B) ={f € L*(R) : 2*f € L*(R)} Bf = —2*f.
Proof: Let f € D(B). This implies: There exists a g € L*(R) with

—ta? 2
e —1
; f—gll —0.
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7ta:2

7 =L f(z) = —22f(x), which shows

Then for a.e. z € R holds: g(z) = lim;_,o+ ©
22f € L*(R) and Bf = —2%f.
Now consider f € L?(R) with 22f € L?(R). We get:
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by Lebesgue’s theorem. As integrable majorant, one can take |x2 f !2. This gives us
f € D(B) and Bf = —22f.

This finally allows us to write
D(A) = {f € L*(R) : 2°F(f) € L*(R)},

which is equivalent to D(A) = H?(R). Then, A can be written as Af = f” for
f € H*(R).

. Since r > p, 1+ % — % < 1 and therefore, there exists ¢ € [1,00] such that
%4— % =1+ % Additionally, for t > 0, g, € L4(R) for all ¢ € [1,00] and hence
Young’s inequality leads us to

1T fIl, = llge = fll, < llgellg 11,

which proves T(t) € L(LP(R), L"(R)) with |T(t)] < |lg:]l,-



