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1. For all t ∈ R, we have

∞∑
n=0

∥∥∥∥ tnAnn!

∥∥∥∥ =

∞∑
n=0

(|t| ‖A‖)n

n!
= e|t|‖A‖,

i.e. the series
∑∞

i=0
tiAi

i! is absolutely convergent and therefore convergent since
L(X) is complete. Furthermore, we obtain the estimate∥∥etA∥∥ ≤ e|t|‖A‖
which shows T (t) ∈ L(X). Obviously, we have T (0) = Id. The absolute convergence
of the exponential series allows to compute the product of T (s) and T (t) for s, t ∈ R
via the Cauchy product formula:

T (s)T (t) =
∞∑
n=0

snAn

n!

∞∑
k=0

tnAn

n!
=
∞∑
n=0

n∑
k=0

skAktn−kAn−k

k!(n− k)!

=
∞∑
n=0

An

n!

n∑
k=0

(
n

k

)
sktn−k︸ ︷︷ ︸

=(s+t)n

= e(s+t)A = T (s+ t).

The semigroup is not only strongly continuous but actually continuous with respect
to the operator norm:

‖T (t)− Id‖ =

∥∥∥∥∥
∞∑
n=1

tnAn

n!

∥∥∥∥∥ ≤ |t| ‖A‖
∞∑
n=0

tn ‖A‖n

(n+ 1)!
= e|t|‖A‖ − 1→ 0 for t→ 0.

Since T (s)T (t) = T (s + t) holds for all s, t ∈ R, we get T (−t)T (t) = Id =
T (t)T (−t), which is nothing else than T (−t) = T (t)−1.
The generator of T is the operator A : X → X. Consider an arbitrary f ∈ X.
Then:

T (t)f − f
t

=
1

t

∞∑
n=1

tnAnf

n!
=

∞∑
n=0

tnAn+1f

(n+ 1)!
= Af + |t|

∞∑
n=1

tn−1An+1f

(n+ 1)!︸ ︷︷ ︸
→0 for t→0

→ Af for t→ 0.
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This implies that X is the domain of the generator, and that thereon the generator
works like A, indeed really is A.

2. Consider the nilpotent left shift S0 on the Hilbert space X := L2(0, 1) and define
the strongly continuous semigroup T via T (t) = etzS0(t) for some positive real
number z > 0. Then we have

‖T (t)‖ =

{
etz for t ∈ [0, 1),

0 for t ≥ 0

This strongly continuous semigroup is bounded by ez, but not a contraction semi-
group.

3. (a) • S(0) = R−1T (0)R = Id.

• S(t) ∈ L(X), da R,R−1, T (t) ∈ L(X) (t ≥ 0).

• ∀s, t ≥ 0:

S(t+ s) = R−1T (t+ s)R = R−1T (t)T (s)R =
(
R−1T (t)R

) (
R−1T (s)R

)
= S(t)S(s)

• Choose f ∈ X arbitrarily. Then t 7→ T (t)f is continuous and therefore
t 7→ R−1T (t)Rf as well.

• Let us denote the infinitesimal generator of S by AS and analogously, the
one of T by AT . Then we obtain the following chain of equivalences:

f ∈ D(AT )⇔ lim
t→0+

T (t)f − f
t

exists

⇔ lim
t→0+

RS(t)R−1f −RR−1f
t

exists

⇔ lim
t→0+

R
S(t)(R−1f)−R−1f

t
exists

⇔ lim
t→0+

S(t)(R−1f)−R−1f
t

exists

⇔ R−1f ∈ D(AS)

Hence, D(AS) = R−1D(AT ), and for all f ∈ D(AS), we obtain:

ASf = lim
t→0+

S(t)f − f
t

= R−1
[

lim
t→0+

T (t)Rf −Rf
t

]
= R−1ATRf

• In order to determine the growth bound, consider an arbitrary ω > ω0(T ).
Then there is M ≥ 1 such that for all t ≥ 0 the inequality ‖T (t)‖ ≤Meωt

holds. This leads to ‖S(t)‖ ≤
∥∥R−1∥∥ ‖R‖Meωt which implies ω ≥ ω0(S)

and finally ω0(T ) ≥ ω0(S). Interchanging the roles of S and T (notice the
symmetry of the situation) yields ω0(S) ≥ ω0(T ). This gives us at the end:
ω0(T ) = ω0(S).
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(b) We will not show the semigroup properties, they are even easier to see than in
the part above. We consider only the strong continuity, generator and growth
bound questions:

• Let f ∈ X. Then:

‖S(t)f − f‖ =
∥∥etzT (t)f − f

∥∥ ≤ ∣∣etz − 1
∣∣︸ ︷︷ ︸

→0 for t→0+

‖T (t)f‖︸ ︷︷ ︸
locally bounded

+‖T (t)f − f‖︸ ︷︷ ︸
→0

→ 0

• Denote again the generator of S by AS and the one of T by AT . Then
we have for f ∈ D(AT ): Since t 7→ T (t)f is differentiable, t 7→ etzT (t)f
is differentiable due to the product rule. This leads to D(AS) ⊂ D(AT ).
Since T (t) = e−tzS(t), we obtain by the same argument D(AT ) ⊂ D(AS),
thus D(AT ) = D(AS). Finally, for f ∈ D(AS), we obtain:

ASf = lim
t→0+

etzT (t)f − f
t

= lim
t→0+

[
etz − 1

t
T (t)f +

T (t)f − f
t

]
= zf +AT f,

hence AS = z +AT .

• For ω > ω0(T ) there is M ≥ 1 such that for all t ≥ 0: ‖T (t)‖ ≤Meωt. This
implies ‖S(t)‖ ≤ Met(ω+Re(z)), which again leads to ω0(S) ≤ ω + Re(z).
From this, we gain ω0(S) ≤ ω0(T ) + Re(z). Using T (t) = e−tzS(t), we
obtain ω0(T ) ≤ ω0(S)− Re(z). In total: ω0(S) = ω0(T ) + Re(z).

(c) Again, we omit the semigroup properties and consider strong continuity, the
generator and the growth bound:

• Given f ∈ X, denote by u the continuous function u : t 7→ T (t)f . Then
t 7→ S(t)f = u(αt) is as the composition of the continuous mappings
t 7→ αt and u again continuous.

• We obtain D(AS) = D(AT ) (notation as above) from the observation
S(t)f−f

t = αT (αt)f−fαt . This also leads to AS = αAT .

• ‖S(t)‖ ≤Meαωt whenever T is of type (M,ω) and ‖T (t)‖ ≤Me
ω
α
t when-

ever S is of type (M,ω). Thus, ω0(S) = αω0(T ).

4. would be nice to know

5. We have to prove, that for p ∈ [1,∞) the infinitesimal generator A of the left shift
semigroup S on Lp(R) is given by

D(A) = W 1,p(R), Af = f ′.

Assume first that f ∈ D(A), i.e. for t→ 0+ the limit T (t)f−f
t exists in Lp(R). Now
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consider for an arbitrary ϕ ∈ C∞c (R):∫
R
ϕ(x)(Af)(x) dx =

(Lp conv.)
lim
t→0+

∫
R
ϕ(x)

[T (t)f ](x)− f(x)

t
dx

= lim
t→0+

∫
R
f(x)

ϕ(x− t)− ϕ(x)

t
dx

=
(ϕ∈Cc(R))

−
∫
R
f(x)ϕ′(x) dx

This shows weak differentiability of f and Lp(R) 3 Af = f ′, i.e. f ∈W 1,p(R) and
Af = f ′ for f ∈ D(A).
Now assume f ∈W 1,p(R). We know, that in the one-dimensional case this implies
that f can be considered as a continuous function and there exists g ∈ Lp(R) such
that for all x ∈ R: f(x)− f(0) =

∫ x
0 g(t) dt. From this, we obtain:∥∥∥∥T (t)f − f

t
− g
∥∥∥∥p
p

=

∫
R

∣∣∣∣f(x+ t)− f(x)

t
− g(x)

∣∣∣∣p dx
=

∫
R

∣∣∣∣1t
∫ x+t

x
(g(s)− g(x)) ds

∣∣∣∣p dx
≤
∫
R

1

t

∫ t

0
|g(x+ s)− g(x)|p ds dx

=
1

t

∫ t

0

∫
R
|g(x+ s)− g(x)|p dx ds→ 0 for t→ 0+

because of the strong continuity of the left shift on Lp(R). This yields f ∈ D(A)
and Af = f ′ and finishes the proof.

6. Claim: The nilpotent left shift S0 on Lp(0, 1) is a strongly continuous semigroup
with generator A, given by

D(A) = W 1,p
(0) (0, 1) := {f ∈ Lp(0, 1) : f is continuous, f(1) = 0, and there exists

g ∈ Lp(0, 1) : f(x)− f(0) =

∫ x

0
g(t) dt for all x ∈ R}.

Proof: S0(0) = Id, S0(t) ∈ L(Lp(R)) (more precisely ‖S0(t)‖ ≤ 1) for all t ≥ 0 and
S0(t + s) = S0(t)S0(s) for all s, t ≥ 0 are easily checked. Thus we consider only
strong continuity at t = 0: Herefore, beware of C∞c (0, 1) lying dense in Lp(0, 1)
and S0 being strongly continuous on C∞c (0, 1) ⊂ Lp(0, 1). Since S0 is a contraction
semigroup, we have strong continuity on the whole space Lp(0, 1).
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Now consider the generator A: Take f ∈ D(A). Then we get for ϕ ∈ C∞c (0, 1):∫ 1

0
Af(x)ϕ(x) dx = lim

t→0+

∫ 1

0

[S0(t)f ](x)− f(x)

t
ϕ(x) dx

= lim
t→0+

[∫ 1−t

0

f(x+ t)

t
ϕ(x) dx−

∫ 1

0

f(x)

t
ϕ(x)

]
= lim

t→0+

[∫ 1

t
f(x)

ϕ(x− t)
t

dx−
∫ 1

0
f(x)

ϕ(x)

t
dx

]
= lim

t→0+

∫ 1

0
f(x)

ϕ(x− t)− ϕ(x)

t
dx

= −
∫ 1

0
f(x)ϕ′(x) dx

where ϕ shall be extended to R by 0. This again yields f ∈ W 1,p(0, 1) (i.e. f is
continuous and f(x)− f(0) =

∫ x
0 f
′(t) dt where f ′ ∈ Lp(R) is the weak derivative)

and Af = f ′. Thus, we know that D(A) ⊂ W 1,p(0, 1). Since S0(t)f ∈ D(A) ⊂
W 1,p(0, 1) ⊂ C[0, 1] for all t ≥ 0, we must have f(1) = 0, which finally leads to
D(A) ⊂W 1,p

(0) (0, 1).

Now consider f ∈W 1,p
(0) (0, 1). Then one can write

f(x) = −
∫ 1

x
f ′(t) dt for x ∈ [0, 1]

and we get:∥∥∥∥S0(t)f − ft
− f ′

∥∥∥∥p
p

=

∫ 1

0

∣∣∣∣∣1t
∫ min{x+t,1}

x
f ′(s) ds− f ′(x)

∣∣∣∣∣
p

dx

≤
∫ 1−t

0

1

t

∫ t

0

∣∣f ′(x+ s)− f ′(x)
∣∣p ds dx

+

∫ 1

1−t

∣∣∣∣1t
∫ 1

x
f ′(s) ds− f ′(x)

∣∣∣∣p dx→ 0 for t→ 0+

due to Lebesgue’s theorem and the strong continuity of the shift on Lp(0, 1). This
shows W 1,p

(0) (0, 1) ⊂ D(A).

7. It is clear, that the nilpotent left shift S0 on C(0)([0, 1]) is a strongly continuous
semigroup.
Claim: The generator A of S0 is given by

D(A) = V := {f ∈ C(0)([0, 1]) : f ′ ∈ C(0)([0, 1])}, Af = f ′

Proof: Since ‖·‖∞ convergence implies pointwise convergence, f ∈ D(A) must be
differentiable on [0, 1). Since f ′ is the uniform limit of continuous functions, f ′
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must also be continuous on [0, 1]. Finally, for x = 1, we have for all t > 0:

[S0(t)f ](1)− f(1)

t
= 0 = lim

x→1
f ′(x).

Thus, we have D(A) ⊂ V and Af = f ′ for f ∈ D(A).
The other way around, consider f ∈ V . Let ε > 0 be arbitrary. Then there exists
t0 ∈ (0, 1) such that for all x ∈ [t0, 1]:∣∣f ′(x)

∣∣ ≤ ε

2
.

Since f ′ is uniformly continuous on [0, 1], there exists δ > 0 such that |x− y| ≤ δ
implies |f ′(x)− f ′(y)| ≤ ε. Thus, for t ≤ min{δ, t0}, we obtain:

• If x ∈ [0, 1− t]:
∣∣∣f(x+t)−f(x)t − f ′(x)

∣∣∣ ≤ 1
t

∫ t
0 |f

′(x+ s)− f ′(x)| ds ≤ ε

• If x ∈ [1− t, 1]:
∣∣∣ [S0(t)f ](x)−f(x)

t − f ′(x)
∣∣∣ ≤ ∣∣∣−f(x)

t − f
′(x)

∣∣∣ ≤ ε
2
(1−x)
t + ε

2 ≤ ε

Hence,
∥∥∥S0(t)f−f

t − f ′
∥∥∥
∞
≤ ε for all t ≤ min{t0, δ}. This proves f ∈ D(A) and

Af = f ′.

8. We denote by F the Fourier transform on L2(R) and by A the generator of T . This
way, we obtain for f ∈ L2(R):

[F ◦ T (t)f ](ξ) = [F(gt ∗ f)](ξ) =
√

2π[F(gt)](ξ)[F(f)](ξ) = e−tξ
2
[F(f)](ξ),

which means F ◦T (t)◦F−1 = M
e−tξ2 , where we mean by M

e−tξ2 the multiplication

operator g 7→ e−tξ
2
g. The generator of (M

e−tξ2 )t≥0 shall be called B. Then we know
from the third exercise: B = FAF−1 and D(A) = F−1(D(B)). Thus,

D(A) = {f ∈ L2(R) : Ff ∈ D(B)}.

Claim: B is given by

D(B) = {f ∈ L2(R) : x2f ∈ L2(R)} Bf = −x2f.

Proof: Let f ∈ D(B). This implies: There exists a g ∈ L2(R) with∥∥∥∥∥e−tx
2 − 1

t
f − g

∥∥∥∥∥
2

2

→ 0.

Then for a.e. x ∈ R holds: g(x) = limt→0+
e−tx

2−1
t f(x) = −x2f(x), which shows

x2f ∈ L2(R) and Bf = −x2f .
Now consider f ∈ L2(R) with x2f ∈ L2(R). We get:∥∥∥∥∥e−tx

2 − 1

t
f + x2f

∥∥∥∥∥
2

2

=

∫
R

(
e−tx

2 − 1

t
+ x2

)2

f2 dx

≤
∫
R

∣∣x2f ∣∣2 (1− e−tx2)2 dx→ 0 for t→ 0+
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by Lebesgue’s theorem. As integrable majorant, one can take
∣∣x2f ∣∣2. This gives us

f ∈ D(B) and Bf = −x2f .

This finally allows us to write

D(A) = {f ∈ L2(R) : x2F(f) ∈ L2(R)},

which is equivalent to D(A) = H2(R). Then, A can be written as Af = f ′′ for
f ∈ H2(R).

9. Since r ≥ p, 1 + 1
r −

1
p ≤ 1 and therefore, there exists q ∈ [1,∞] such that

1
p + 1

q = 1 + 1
r . Additionally, for t > 0, gt ∈ Lq(R) for all q ∈ [1,∞] and hence

Young’s inequality leads us to

‖T (t)f‖r = ‖gt ∗ f‖r ≤ ‖gt‖q ‖f‖p ,

which proves T (t) ∈ L(Lp(R), Lr(R)) with ‖T (t)‖ ≤ ‖gt‖q.
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