Exercises 2

24. Oktober 2011

1. For all $t \in \mathbb{R}$, we have

$$
\sum_{n=0}^{\infty}\left\|\frac{t^{n} A^{n}}{n!}\right\|=\sum_{n=0}^{\infty} \frac{(|t|\|A\|)^{n}}{n!}=e^{\mid t \| A A},
$$

i.e. the series $\sum_{i=0}^{\infty} \frac{t^{i} A^{i}}{i!}$ is absolutely convergent and therefore convergent since $\mathcal{L}(X)$ is complete. Furthermore, we obtain the estimate

$$
\left\|e^{t A}\right\| \leq e^{\mid t\| \| A \|}
$$

which shows $T(t) \in \mathcal{L}(X)$. Obviously, we have $T(0)=\mathrm{Id}$. The absolute convergence of the exponential series allows to compute the product of $T(s)$ and $T(t)$ for $s, t \in \mathbb{R}$ via the Cauchy product formula:

$$
\begin{aligned}
T(s) T(t) & =\sum_{n=0}^{\infty} \frac{s^{n} A^{n}}{n!} \sum_{k=0}^{\infty} \frac{t^{n} A^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{s^{k} A^{k} t^{n-k} A^{n-k}}{k!(n-k)!} \\
& =\sum_{n=0}^{\infty} \frac{A^{n}}{n!} \underbrace{\sum_{k=0}^{n}\binom{n}{k} s^{k} t^{n-k}}_{=(s+t)^{n}}=e^{(s+t) A}=T(s+t) .
\end{aligned}
$$

The semigroup is not only strongly continuous but actually continuous with respect to the operator norm:

$$
\|T(t)-\mathrm{Id}\|=\left\|\sum_{n=1}^{\infty} \frac{t^{n} A^{n}}{n!}\right\| \leq|t|\|A\| \sum_{n=0}^{\infty} \frac{t^{n}\|A\|^{n}}{(n+1)!}=e^{|t|\|A\|}-1 \rightarrow 0 \text { for } t \rightarrow 0 .
$$

Since $T(s) T(t)=T(s+t)$ holds for all $s, t \in \mathbb{R}$, we get $T(-t) T(t)=\mathrm{Id}=$ $T(t) T(-t)$, which is nothing else than $T(-t)=T(t)^{-1}$.
The generator of T is the operator $A: X \rightarrow X$. Consider an arbitrary $f \in X$. Then:

$$
\frac{T(t) f-f}{t}=\frac{1}{t} \sum_{n=1}^{\infty} \frac{t^{n} A^{n} f}{n!}=\sum_{n=0}^{\infty} \frac{t^{n} A^{n+1} f}{(n+1)!}=A f+\underbrace{|t| \sum_{n=1}^{\infty} \frac{t^{n-1} A^{n+1} f}{(n+1)!}}_{\rightarrow 0 \text { for } t \rightarrow 0} \rightarrow A f \text { for } t \rightarrow 0 .
$$

This implies that X is the domain of the generator, and that thereon the generator works like A, indeed really is A.
2. Consider the nilpotent left shift S_{0} on the Hilbert space $X:=L^{2}(0,1)$ and define the strongly continuous semigroup T via $T(t)=e^{t z} S_{0}(t)$ for some positive real number $z>0$. Then we have

$$
\|T(t)\|= \begin{cases}e^{t z} & \text { for } t \in[0,1) \\ 0 & \text { for } t \geq 0\end{cases}
$$

This strongly continuous semigroup is bounded by e^{z}, but not a contraction semigroup.
3. (a) - $S(0)=R^{-1} T(0) R=\mathrm{Id}$.

- $S(t) \in \mathcal{L}(X)$, da $R, R^{-1}, T(t) \in \mathcal{L}(X)(t \geq 0)$.
- $\forall s, t \geq 0$:

$$
\begin{aligned}
S(t+s) & =R^{-1} T(t+s) R=R^{-1} T(t) T(s) R=\left(R^{-1} T(t) R\right)\left(R^{-1} T(s) R\right) \\
& =S(t) S(s)
\end{aligned}
$$

- Choose $f \in X$ arbitrarily. Then $t \mapsto T(t) f$ is continuous and therefore $t \mapsto R^{-1} T(t) R f$ as well.
- Let us denote the infinitesimal generator of S by A_{S} and analogously, the one of T by A_{T}. Then we obtain the following chain of equivalences:

$$
\begin{aligned}
f \in D\left(A_{T}\right) & \Leftrightarrow \lim _{t \rightarrow 0^{+}} \frac{T(t) f-f}{t} \text { exists } \\
& \Leftrightarrow \lim _{t \rightarrow 0^{+}} \frac{R S(t) R^{-1} f-R R^{-1} f}{t} \text { exists } \\
& \Leftrightarrow \lim _{t \rightarrow 0^{+}} R \frac{S(t)\left(R^{-1} f\right)-R^{-1} f}{t} \text { exists } \\
& \Leftrightarrow \lim _{t \rightarrow 0^{+}} \frac{S(t)\left(R^{-1} f\right)-R^{-1} f}{t} \text { exists } \\
& \Leftrightarrow R^{-1} f \in D\left(A_{S}\right)
\end{aligned}
$$

Hence, $D\left(A_{S}\right)=R^{-1} D\left(A_{T}\right)$, and for all $f \in D\left(A_{S}\right)$, we obtain:

$$
A_{S} f=\lim _{t \rightarrow 0^{+}} \frac{S(t) f-f}{t}=R^{-1}\left[\lim _{t \rightarrow 0^{+}} \frac{T(t) R f-R f}{t}\right]=R^{-1} A_{T} R f
$$

- In order to determine the growth bound, consider an arbitrary $\omega>\omega_{0}(T)$. Then there is $M \geq 1$ such that for all $t \geq 0$ the inequality $\|T(t)\| \leq M e^{\omega t}$ holds. This leads to $\|S(t)\| \leq\left\|R^{-1}\right\|\|R\| M e^{\omega t}$ which implies $\omega \geq \omega_{0}(S)$ and finally $\omega_{0}(T) \geq \omega_{0}(S)$. Interchanging the roles of S and T (notice the symmetry of the situation) yields $\omega_{0}(S) \geq \omega_{0}(T)$. This gives us at the end: $\omega_{0}(T)=\omega_{0}(S)$.
(b) We will not show the semigroup properties, they are even easier to see than in the part above. We consider only the strong continuity, generator and growth bound questions:
- Let $f \in X$. Then:

$$
\|S(t) f-f\|=\left\|e^{t z} T(t) f-f\right\| \leq \underbrace{\left|e^{t z}-1\right|}_{\rightarrow 0 \text { for } t \rightarrow 0+\text { locally bounded }} \underbrace{\|T(t) f\|}_{\rightarrow 0}+\underbrace{\|T(t) f-f\|}_{\rightarrow 0} \rightarrow 0
$$

- Denote again the generator of S by A_{S} and the one of T by A_{T}. Then we have for $f \in D\left(A_{T}\right)$: Since $t \mapsto T(t) f$ is differentiable, $t \mapsto e^{t z} T(t) f$ is differentiable due to the product rule. This leads to $D\left(A_{S}\right) \subset D\left(A_{T}\right)$. Since $T(t)=e^{-t z} S(t)$, we obtain by the same argument $D\left(A_{T}\right) \subset D\left(A_{S}\right)$, thus $D\left(A_{T}\right)=D\left(A_{S}\right)$. Finally, for $f \in D\left(A_{S}\right)$, we obtain:

$$
\begin{aligned}
A_{S} f & =\lim _{t \rightarrow 0^{+}} \frac{e^{t z} T(t) f-f}{t}=\lim _{t \rightarrow 0^{+}}\left[\frac{e^{t z}-1}{t} T(t) f+\frac{T(t) f-f}{t}\right] \\
& =z f+A_{T} f,
\end{aligned}
$$

hence $A_{S}=z+A_{T}$.

- For $\omega>\omega_{0}(T)$ there is $M \geq 1$ such that for all $t \geq 0:\|T(t)\| \leq M e^{\omega t}$. This implies $\|S(t)\| \leq M e^{t(\omega+\operatorname{Re}(z))}$, which again leads to $\omega_{0}(S) \leq \omega+\operatorname{Re}(z)$. From this, we gain $\omega_{0}(S) \leq \omega_{0}(T)+\operatorname{Re}(z)$. Using $T(t)=e^{-t z} S(t)$, we obtain $\omega_{0}(T) \leq \omega_{0}(S)-\operatorname{Re}(z)$. In total: $\omega_{0}(S)=\omega_{0}(T)+\operatorname{Re}(z)$.
(c) Again, we omit the semigroup properties and consider strong continuity, the generator and the growth bound:
- Given $f \in X$, denote by u the continuous function $u: t \mapsto T(t) f$. Then $t \mapsto S(t) f=u(\alpha t)$ is as the composition of the continuous mappings $t \mapsto \alpha t$ and u again continuous.
- We obtain $D\left(A_{S}\right)=D\left(A_{T}\right)$ (notation as above) from the observation $\frac{S(t) f-f}{t}=\alpha \frac{T(\alpha t) f-f}{\alpha t}$. This also leads to $A_{S}=\alpha A_{T}$.
- $\|S(t)\| \leq M e^{\alpha \omega t}$ whenever T is of type (M, ω) and $\|T(t)\| \leq M e^{\frac{\omega}{\alpha} t}$ whenever S is of type (M, ω). Thus, $\omega_{0}(S)=\alpha \omega_{0}(T)$.

4. WOULD BE NICE TO KNOW

5. We have to prove, that for $p \in[1, \infty)$ the infinitesimal generator A of the left shift semigroup S on $L^{p}(\mathbb{R})$ is given by

$$
D(A)=W^{1, p}(\mathbb{R}), \quad A f=f^{\prime}
$$

Assume first that $f \in D(A)$, i.e. for $t \rightarrow 0^{+}$the limit $\frac{T(t) f-f}{t}$ exists in $L^{p}(\mathbb{R})$. Now
consider for an arbitrary $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$:

$$
\begin{aligned}
\int_{\mathbb{R}} \varphi(x)(A f)(x) d x & =\lim _{\left(L^{p} \text { conv. }\right)}=\lim _{\rightarrow 0^{+}} \varphi(x) \frac{[T(t) f](x)-f(x)}{t} d x \\
& =\lim _{t \rightarrow 0^{+}} \int_{\mathbb{R}} f(x) \frac{\varphi(x-t)-\varphi(x)}{t} d x \\
& \left(\varphi \in \overline{\overline{\mathcal{C}}}_{(\mathbb{R}))}-\int_{\mathbb{R}} f(x) \varphi^{\prime}(x) d x\right.
\end{aligned}
$$

This shows weak differentiability of f and $L^{p}(\mathbb{R}) \ni A f=f^{\prime}$, i.e. $f \in W^{1, p}(\mathbb{R})$ and $A f=f^{\prime}$ for $f \in D(A)$.
Now assume $f \in W^{1, p}(\mathbb{R})$. We know, that in the one-dimensional case this implies that f can be considered as a continuous function and there exists $g \in L^{p}(\mathbb{R})$ such that for all $x \in \mathbb{R}: f(x)-f(0)=\int_{0}^{x} g(t) d t$. From this, we obtain:

$$
\begin{aligned}
\left\|\frac{T(t) f-f}{t}-g\right\|_{p}^{p} & =\int_{\mathbb{R}}\left|\frac{f(x+t)-f(x)}{t}-g(x)\right|^{p} d x \\
& =\int_{\mathbb{R}}\left|\frac{1}{t} \int_{x}^{x+t}(g(s)-g(x)) d s\right|^{p} d x \\
& \leq \int_{\mathbb{R}} \frac{1}{t} \int_{0}^{t}|g(x+s)-g(x)|^{p} d s d x \\
& =\frac{1}{t} \int_{0}^{t} \int_{\mathbb{R}}|g(x+s)-g(x)|^{p} d x d s \rightarrow 0 \text { for } t \rightarrow 0^{+}
\end{aligned}
$$

because of the strong continuity of the left shift on $L^{p}(\mathbb{R})$. This yields $f \in D(A)$ and $A f=f^{\prime}$ and finishes the proof.
6. Claim: The nilpotent left shift S_{0} on $L^{p}(0,1)$ is a strongly continuous semigroup with generator A, given by

$$
\begin{array}{r}
D(A)=W_{(0)}^{1, p}(0,1):=\left\{f \in L^{p}(0,1): f \text { is continuous, } f(1)=0,\right. \text { and there exists } \\
\left.g \in L^{p}(0,1): f(x)-f(0)=\int_{0}^{x} g(t) d t \text { for all } x \in \mathbb{R}\right\} .
\end{array}
$$

Proof: $S_{0}(0)=\mathrm{Id}, S_{0}(t) \in \mathcal{L}\left(L^{p}(\mathbb{R})\right)$ (more precisely $\left\|S_{0}(t)\right\| \leq 1$) for all $t \geq 0$ and $S_{0}(t+s)=S_{0}(t) S_{0}(s)$ for all $s, t \geq 0$ are easily checked. Thus we consider only strong continuity at $t=0$: Herefore, beware of $\mathcal{C}_{c}^{\infty}(0,1)$ lying dense in $L^{p}(0,1)$ and S_{0} being strongly continuous on $\mathcal{C}_{c}^{\infty}(0,1) \subset L^{p}(0,1)$. Since S_{0} is a contraction semigroup, we have strong continuity on the whole space $L^{p}(0,1)$.

Now consider the generator A : Take $f \in D(A)$. Then we get for $\varphi \in \mathcal{C}_{c}^{\infty}(0,1)$:

$$
\begin{aligned}
\int_{0}^{1} A f(x) \varphi(x) d x & =\lim _{t \rightarrow 0^{+}} \int_{0}^{1} \frac{\left[S_{0}(t) f\right](x)-f(x)}{t} \varphi(x) d x \\
& =\lim _{t \rightarrow 0^{+}}\left[\int_{0}^{1-t} \frac{f(x+t)}{t} \varphi(x) d x-\int_{0}^{1} \frac{f(x)}{t} \varphi(x)\right] \\
& =\lim _{t \rightarrow 0^{+}}\left[\int_{t}^{1} f(x) \frac{\varphi(x-t)}{t} d x-\int_{0}^{1} f(x) \frac{\varphi(x)}{t} d x\right] \\
& =\lim _{t \rightarrow 0^{+}} \int_{0}^{1} f(x) \frac{\varphi(x-t)-\varphi(x)}{t} d x \\
& =-\int_{0}^{1} f(x) \varphi^{\prime}(x) d x
\end{aligned}
$$

where φ shall be extended to \mathbb{R} by 0 . This again yields $f \in W^{1, p}(0,1)$ (i.e. f is continuous and $f(x)-f(0)=\int_{0}^{x} f^{\prime}(t) d t$ where $f^{\prime} \in L^{p}(\mathbb{R})$ is the weak derivative) and $A f=f^{\prime}$. Thus, we know that $D(A) \subset W^{1, p}(0,1)$. Since $S_{0}(t) f \in D(A) \subset$ $W^{1, p}(0,1) \subset \mathcal{C}[0,1]$ for all $t \geq 0$, we must have $f(1)=0$, which finally leads to $D(A) \subset W_{(0)}^{1, p}(0,1)$.
Now consider $f \in W_{(0)}^{1, p}(0,1)$. Then one can write

$$
f(x)=-\int_{x}^{1} f^{\prime}(t) d t \text { for } x \in[0,1]
$$

and we get:

$$
\begin{aligned}
\left\|\frac{S_{0}(t) f-f}{t}-f^{\prime}\right\|_{p}^{p} & =\int_{0}^{1}\left|\frac{1}{t} \int_{x}^{\min \{x+t, 1\}} f^{\prime}(s) d s-f^{\prime}(x)\right|^{p} d x \\
& \leq \int_{0}^{1-t} \frac{1}{t} \int_{0}^{t}\left|f^{\prime}(x+s)-f^{\prime}(x)\right|^{p} d s d x \\
& +\int_{1-t}^{1}\left|\frac{1}{t} \int_{x}^{1} f^{\prime}(s) d s-f^{\prime}(x)\right|^{p} d x \rightarrow 0 \text { for } t \rightarrow 0^{+}
\end{aligned}
$$

due to Lebesgue's theorem and the strong continuity of the shift on $L^{p}(0,1)$. This shows $W_{(0)}^{1, p}(0,1) \subset D(A)$.
7. It is clear, that the nilpotent left shift S_{0} on $\mathcal{C}_{(0)}([0,1])$ is a strongly continuous semigroup.
Claim: The generator A of S_{0} is given by

$$
D(A)=V:=\left\{f \in \mathcal{C}_{(0)}([0,1]): f^{\prime} \in \mathcal{C}_{(0)}([0,1])\right\}, \quad A f=f^{\prime}
$$

Proof: Since $\|\cdot\|_{\infty}$ convergence implies pointwise convergence, $f \in D(A)$ must be differentiable on $[0,1)$. Since f^{\prime} is the uniform limit of continuous functions, f^{\prime}
must also be continuous on $[0,1]$. Finally, for $x=1$, we have for all $t>0$:

$$
\frac{\left[S_{0}(t) f\right](1)-f(1)}{t}=0=\lim _{x \rightarrow 1} f^{\prime}(x)
$$

Thus, we have $D(A) \subset V$ and $A f=f^{\prime}$ for $f \in D(A)$.
The other way around, consider $f \in V$. Let $\varepsilon>0$ be arbitrary. Then there exists $t_{0} \in(0,1)$ such that for all $x \in\left[t_{0}, 1\right]$:

$$
\left|f^{\prime}(x)\right| \leq \frac{\varepsilon}{2}
$$

Since f^{\prime} is uniformly continuous on $[0,1]$, there exists $\delta>0$ such that $|x-y| \leq \delta$ implies $\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \varepsilon$. Thus, for $t \leq \min \left\{\delta, t_{0}\right\}$, we obtain:

- If $x \in[0,1-t]:\left|\frac{f(x+t)-f(x)}{t}-f^{\prime}(x)\right| \leq \frac{1}{t} \int_{0}^{t}\left|f^{\prime}(x+s)-f^{\prime}(x)\right| d s \leq \varepsilon$
- If $x \in[1-t, 1]:\left|\frac{\left[S_{0}(t) f\right](x)-f(x)}{t}-f^{\prime}(x)\right| \leq\left|-\frac{f(x)}{t}-f^{\prime}(x)\right| \leq \frac{\varepsilon}{2} \frac{(1-x)}{t}+\frac{\varepsilon}{2} \leq \varepsilon$

Hence, $\left\|\frac{S_{0}(t) f-f}{t}-f^{\prime}\right\|_{\infty} \leq \varepsilon$ for all $t \leq \min \left\{t_{0}, \delta\right\}$. This proves $f \in D(A)$ and $A f=f^{\prime}$.
8. We denote by \mathcal{F} the Fourier transform on $L^{2}(\mathbb{R})$ and by A the generator of T. This way, we obtain for $f \in L^{2}(\mathbb{R})$:

$$
[\mathcal{F} \circ T(t) f](\xi)=\left[\mathcal{F}\left(g_{t} * f\right)\right](\xi)=\sqrt{2 \pi}\left[\mathcal{F}\left(g_{t}\right)\right](\xi)[\mathcal{F}(f)](\xi)=e^{-t \xi^{2}}[\mathcal{F}(f)](\xi)
$$

which means $\mathcal{F} \circ T(t) \circ \mathcal{F}^{-1}=M_{e^{-t \xi^{2}}}$, where we mean by $M_{e^{-t \xi^{2}}}$ the multiplication operator $g \mapsto e^{-t \xi^{2}} g$. The generator of $\left(M_{e^{-t \xi^{2}}}\right)_{t \geq 0}$ shall be called B. Then we know from the third exercise: $B=\mathcal{F} A \mathcal{F}^{-1}$ and $D(A)=\mathcal{F}^{-1}(D(B))$. Thus,

$$
D(A)=\left\{f \in L^{2}(\mathbb{R}): \mathcal{F} f \in D(B)\right\}
$$

Claim: B is given by

$$
D(B)=\left\{f \in L^{2}(\mathbb{R}): x^{2} f \in L^{2}(\mathbb{R})\right\} \quad B f=-x^{2} f
$$

Proof: Let $f \in D(B)$. This implies: There exists a $g \in L^{2}(\mathbb{R})$ with

$$
\left\|\frac{e^{-t x^{2}}-1}{t} f-g\right\|_{2}^{2} \rightarrow 0
$$

Then for a.e. $x \in \mathbb{R}$ holds: $g(x)=\lim _{t \rightarrow 0^{+}} \frac{e^{-t x^{2}}-1}{t} f(x)=-x^{2} f(x)$, which shows $x^{2} f \in L^{2}(\mathbb{R})$ and $B f=-x^{2} f$.
Now consider $f \in L^{2}(\mathbb{R})$ with $x^{2} f \in L^{2}(\mathbb{R})$. We get:

$$
\begin{aligned}
\left\|\frac{e^{-t x^{2}}-1}{t} f+x^{2} f\right\|_{2}^{2} & =\int_{\mathbb{R}}\left(\frac{e^{-t x^{2}}-1}{t}+x^{2}\right)^{2} f^{2} d x \\
& \leq \int_{\mathbb{R}}\left|x^{2} f\right|^{2}\left(1-e^{-t x^{2}}\right)^{2} d x \rightarrow 0 \text { for } t \rightarrow 0^{+}
\end{aligned}
$$

by Lebesgue's theorem. As integrable majorant, one can take $\left|x^{2} f\right|^{2}$. This gives us $f \in D(B)$ and $B f=-x^{2} f$.

This finally allows us to write

$$
D(A)=\left\{f \in L^{2}(\mathbb{R}): x^{2} \mathcal{F}(f) \in L^{2}(\mathbb{R})\right\}
$$

which is equivalent to $D(A)=H^{2}(\mathbb{R})$. Then, A can be written as $A f=f^{\prime \prime}$ for $f \in H^{2}(\mathbb{R})$.
9. Since $r \geq p, 1+\frac{1}{r}-\frac{1}{p} \leq 1$ and therefore, there exists $q \in[1, \infty]$ such that $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$. Additionally, for $t>0, g_{t} \in L^{q}(\mathbb{R})$ for all $q \in[1, \infty]$ and hence Young's inequality leads us to

$$
\|T(t) f\|_{r}=\left\|g_{t} * f\right\|_{r} \leq\left\|g_{t}\right\|_{q}\|f\|_{p}
$$

which proves $T(t) \in \mathcal{L}\left(L^{p}(\mathbb{R}), L^{r}(\mathbb{R})\right)$ with $\|T(t)\| \leq\left\|g_{t}\right\|_{q}$.

