Yegor Dikarev

Dear ISEM Team! Here are my solutions for the 1st lecture.
ex. 1. Prove that $\sin (n x), n \in \mathbb{N}$, form a complete orthogonal system in $L^{2}(0, \pi)$, compute the L^{2} norms.

Proof. Let $f_{n}(x)=\sin (n x)$, then consider scalar product in $L^{2}(0, \pi)$ as

$$
\begin{aligned}
& \left(f_{n}, f_{m}\right)=\int_{0}^{\pi} f_{n}(x) \overline{f_{m}(x)} d x=\int_{0}^{\pi} \sin (n x) \sin (m x) d x=\frac{1}{2} \int_{0}^{\pi}(\cos (n-m) x-\cos (n+m) x) d x= \\
= & \frac{1}{2}\left(\int_{0}^{\pi} \cos (n-m) x d x-\int_{0}^{\pi} \cos (n+m) x d x\right)=\frac{1}{2}\left(\left.\frac{\sin (n-m) x}{n-m}\right|_{0} ^{\pi}-\left.\frac{\sin (n+m) x}{n+m}\right|_{0} ^{\pi}\right)=0 .
\end{aligned}
$$

Thus, $f_{n}(x)=\sin (n x)$ is orthogonal system, and it is complete because system $f_{n}(x)=$ $\sqrt{\frac{2}{\pi}} \sin (n x)$ is dense in $L^{2}(0, \pi)$ (see 1.1 in lection 1) Computing the L^{2} norms.

$$
\begin{aligned}
\left\|f_{n}\right\|_{2}=\left(\int_{0}^{\pi} \sin ^{2}(n x) d x\right)^{\frac{1}{2}} & =\left(\int_{0}^{\pi} \frac{1-\cos (2 n x)}{2} d x\right)^{\frac{1}{2}}= \\
& \left(\left.\frac{x}{2}\right|_{0} ^{\pi}-\frac{1}{2} \int_{0}^{\pi} \cos (2 n x) d x\right)^{\frac{1}{2}}==\left(\frac{\pi}{2}-\left.\frac{1}{4} \sin (2 n x)\right|_{0} ^{\pi}\right)^{\frac{1}{2}}=\sqrt{\frac{\pi}{2}}
\end{aligned}
$$

ex. 3. Let X be a Banach space and $A_{1}: X \rightarrow X$ and $A_{2}: X \rightarrow X$ linear maps such that 1. $D\left(A_{1}\right) \subset D\left(A_{2}\right)$ and A_{1} is a restriction of A_{2}. 2. A_{1} is surjective and A_{2} is injective. Show that $A_{1}=A_{2}$.

Proof. To prove that the operators are equivalent, we have to show that their domains are equal. According to Property 1, we have to show that $D\left(A_{2}\right) \subset D\left(A_{1}\right)$. We have $D\left(A_{1}\right) \subset$ $D\left(A_{2}\right)$, consequently, because of the linearity of operators $\operatorname{Im} A_{1} \subset \operatorname{Im} A_{2} . A_{1}$ is surjective, therefore $\operatorname{Im} A_{1}=X$ and $\operatorname{Im} A_{2}=X$. Let $x \in D\left(A_{2}\right) \backslash D\left(A_{1}\right)$, then $A_{2} x=A_{1} x_{0}, x_{0} \in D\left(A_{1}\right)$ (A_{1} is surjective), but $A_{1} x_{0}=A_{2} x_{0}$, then $A_{2} x=A_{2} x_{0}$ and $A_{2}\left(x-x_{0}\right)=0$, hence $x=x_{0} \in D\left(A_{2}\right) \backslash D\left(A_{1}\right)$. Thus, $D\left(A_{2}\right) \subset D\left(A_{1}\right)$ and $D\left(A_{2}\right)=D\left(A_{1}\right)$.
ex. 5. Let $p \in[1, \infty)$ and consider the Banach space $L^{p}(\mathbb{R})$. Prove that the formula

$$
(S(t) f)(x)=f(t+x) \text { for } f \in L^{p}, x \in \mathbb{R}, t \geq 0
$$

defines a strongly continuous semigroup on L^{p}. What happens for $p=\infty$?

Proof. To prove that $S(t)$ defines a strongly continuous semigroup, we have to check the properties from the semigroup definition.

1. $(S(t+s) f)(x)=f(x+t+s)=f((x+s)+t)=(S(t) f)(x+s)=(S(s)(S(t) f))(x)=$ $(S(t) S(s) f)(x)$.
2. $(S(0) f)(x)=f(x+0)=f(x)$.
3. $S(f)$ is continuous, because $f \in B U C(\mathbb{R})$ (see 1.2 in Lecture 1).
