SOLUTION 1

Exercise 1 Since

$$\int_0^\pi \sin(nx)\sin(mx)dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{\pi}{2} & \text{if } m = n \end{cases}$$

so system $\{\sin(nx) \ n \in \mathbb{N}\}\$ is orthogonal system in $L^2(0,\pi)$ and $\|\sin(nx)\| = \sqrt{\frac{\pi}{2}}$ for all $n \in \mathbb{N}$. We have result: set of continuously differentiable functions which has $f(0) = f(\pi) = 0$ is dense in $L^2(0,\pi)$. Each a function of this set admits an uniformly convergent Fourier series expension. Therefore, system $\{\sin(nx) \ n \in \mathbb{N}\}\$ is complete orthogonal system in $L^2(0,\pi)$.

Exercise 2

Similarly as in section 1.1, we rewrite equation as the following

$$\dot{u}(t) = Au(t), \quad t > 0$$

in the Hilbert space $L^2(0,\pi)$. The operator A is defined

$$(Ag)(x) = g''(x)$$

with domain

$$D(A) = \{g \in L^2(0,\pi) : g \text{ is continuously differentiable on } [0,\pi], g'' \text{ exists a.e}, g'' \in L^2(0,\pi), g'(0) = g'(\pi) = 0\}.$$

We also have eigenvalues $-n^2$ with corresponding eigenvectors

$$f_n(x) = \sqrt{\frac{2}{\pi}} \cos(nx)$$
 for $n = 1, 2, ...$

System $\{\frac{1}{\pi}, f_n(x)\}$ is a complete orthogonal system in $L^2(0, \pi)$. Perform steps as in section 1.1, we will show that

$$D(A) = \{ f \in L^2(0,\pi) : \sum_{n=1}^{\infty} n^4 | < f, f_n > |^2 < \infty \}$$
$$A = \sum_{n=1}^{\infty} -n^2 < f, f_n > f_n$$
$$e^{tA}f = \sum_{n=1}^{\infty} e^{-tn^2} < f, f_n > f_n$$

Trinh Viet Duoc

Email address: tvduoc@gmail.com.

is also solution of equation above . Note that A action $\frac{1}{\pi}$ equal to zero.

Exercise 3

For $x \in D(A_2)$ putting $y = A_2 x \in X$, since A_1 is surjective and A_2 extend A_1 so there is $x_1 \in D(A_1)$ such that $A_1 x_1 = A_2 x_1 = y$. This lead to $x_1 = x$ by reason A_2 is injective. Therefore $A_1 = A_2$.

Exercise 4

a) Evidently c_{00} is linear subspace of l^2 . For $x = (x_n) \in l^2$, putting $x^{(n)} = (x_1, \ldots, x_n, 0, \ldots) \in c_{00}$ for all $n \in \mathbb{N}$. We have

$$||x - x^{(n)}||^2 = \sum_{k=n+1}^{\infty} |x_k|^2$$

Because $x \in l^2$ so $||x - x^{(n)}||^2$ tend to zero as $n \to \infty$. Thus, c_{00} is dense linear space in l^2 .

- b) If m is bounded then M_m is continuous on c_{00} . Otherwise direction, assume that M_m is continuous on c_{00} . We choose $e^{(n)} \in c_{00}$ which has position n^{th} equal to 1 and other positions equal to 0. Then $||e^{(n)}|| = 1$ for all n, since M_m is continuous on c_{00} so that $||M_m e^{(n)}|| = |m_n| \leq ||M_m||$ for all n. Thus, m is bounded. Conclusion, M_m is continuous on c_{00} iff m is bounded. And on c_{00} then $||M_m|| = \sup\{|m_n|, n \in \mathbb{N}\}$.
- c) For $x \in l^2$ there exists a sequence $x^{(n)} \in c_{00}$ which $x^{(n)}$ converge to x in l^2 . M_m is continuous on c_{00} so sequence $M_m x^{(n)}$ is Cauchy sequence in l^2 . Thus, we can define

$$M_m x = \lim_{n \to \infty} M_m x^{(n)}$$
 for all $x \in l^2$

We see easy the limit on the right-hand side independ on sequences $x^{(n)}$ which converge to x and M_m is linear operator on l^2 . For all n we have

$$\|M_m x^{(n)}\| \le \|M_m\|_{c_{00}} \|x^{(n)}\|$$

So as $n \to \infty$ then $||M_m x|| \le ||M_m||_{c_{00}} ||x||$. Therefore, M_m is continuously linear on l^2 . From item b) we have $||M_m|| = \sup\{|m_n|, n \in \mathbb{N}\}.$

- d) M_m has continuous inverse iff M_m is bijective on l^2 iff m is bounded and $m_n \neq 0$ for all n.
- e) M_m is continuous on l^2 so e^{tM_m} converge for the operator norm. With basis $e^{(n)}$ we have

$$e^{tM_m}x = \sum_{n=1}^{\infty} e^{tm_n}x_n e^{(n)}$$

Exercise 5

Assume f is continuous with compact supp f. Then f is uniformly continuous so

$$\lim_{t \to 0^+} \|S(t)f - f\|_{\infty} = \lim_{t \to 0^+} \sup_{x \in \mathbb{R}} |f(t + x) - f(x)| = 0$$

On the other hand $||S(t)f - f||_p \le C ||S(t)f - f||_{\infty}$. Thus,

$$\lim_{t \to 0^+} \|S(t)f - f\|_p = 0$$

Because set continuous functions which has compact "supp", is dense in L^p with $p \in [1, \infty)$ so S(t) is strongly continuous semigroup on L^p .

Note that $\operatorname{supp} f = \operatorname{closure} \{ x \in \mathbb{R} : f(x) \neq 0 \}.$

As $p = \infty$ then S(t) is not strongly continuous. Indeed, choose $f \in L^{\infty}$ as follow

$$f(x) = \begin{cases} 3 & \text{if } x \in [0,3] \\ 0 & \text{if else} \end{cases}$$

For 0 < t < 1 we have

$$|f(t+x) - f(x)| = \begin{cases} 0 & \text{if } x < -t \\ 3 & \text{if } -t \le x < 0 \\ 0 & \text{if } 0 \le x \le 3 - t \\ 3 & \text{if } 3 - t < x \le 3 \\ 0 & \text{if } 3 < x \end{cases}$$

 $\operatorname{essup}(S(t)f - f) = \inf\{M \text{ such that } \lambda\{x : |f(t + x) - f(x)| > M\} = 0\} = 3.$ Then $\lim_{t \to 0^+} \operatorname{essup}(S(t)f - f) = 3.$ This lead to $t \mapsto S(t)$ is not strongly continuous.

Exercise 6

Evidently, S is semigroup on spaces $F_b(\mathbb{R})$, $C_b(\mathbb{R})$, $C_0(\mathbb{R})$ and these spaces are Banach space and invariant under S(t) for all $t \geq 0$.

a) S is not strongly continuous semigroup on $F_b(\mathbb{R})$. Indeed, choose

$$f(x) = \begin{cases} 3 & \text{if } x = 0\\ 0 & \text{if else} \end{cases}$$

Then $x \in F_b(\mathbb{R})$, for all t > 0 then $||S(t)f - f||_{\infty} = 3$. So S is not strongly continuous semigroup on $F_b(\mathbb{R})$ at t = 0. This lead to S is not strongly continuous semigroup on $F_b(\mathbb{R})$.

b) S is not strongly continuous semigroup on $C_b(\mathbb{R})$. Indeed, choose $f = \sin(x^2) \in C_b(\mathbb{R})$. Then

$$||S(t)f - f|| = \sup_{x \in \mathbb{R}} |\sin(t + x)^2 - \sin(x)^2|$$
$$= 2\sup_{x \in \mathbb{R}} \left| \sin\frac{t^2 + 2tx}{2} \cos\frac{t^2 + 2tx + 2x^2}{2} \right|$$

Let x satisfy $t^2 + 2tx = \frac{\pi}{2}$, we obtain

$$||S(t)f - f|| \ge \sqrt{2} \left| \cos\left(\frac{\pi}{4} + \frac{(\pi - 2t^2)^2}{16t^2}\right) \right| = \sqrt{2} \left| \cos\left(\frac{\pi^2}{16t^2} + \frac{t^2}{4}\right) \right|$$

Chosen $t_n = \frac{\pi}{4\sqrt{2n\pi}} \to 0$ as $n \to \infty$ but

$$\lim_{n \to \infty} \|S(t_n)f - f\| \ge \lim_{n \to \infty} \sqrt{2} \left| \cos\left(2n\pi + \frac{\pi}{128n}\right) \right| = \sqrt{2}$$

This lead to S is not strongly continuous semigroup on $C_b(\mathbb{R})$.

c) For each $f \in C_0(\mathbb{R})$ then f is uniformly continuous by reason f is vanishing at infinity. Thus, as t is small enough we have

$$||S(t)f - f||_{\infty} = \sup_{x \in R} |f(t + x) - f(x)|$$

is also very small. Therefore S is strongly continuous semigroup on $C_0(\mathbb{R})$.

Exercise 7

Since S(t) is strongly continuous semigroup on BUC(\mathbb{R}) so $t \mapsto S(t)f$ is differentiable iff S(t)f is differentiable at t = 0. The limit

$$\lim_{h \to 0^+} \frac{S(h)f - f}{h}$$

must exists in the sup-norm of X. Therefore, f must exists pointwise derivative on \mathbb{R} . Then, we have

$$\sup_{x \in \mathbb{R}} \left| \frac{f(h+x) - f(x)}{x} - f'(x) \right| = \sup_{x \in \mathbb{R}} \left| f'(\theta) - f'(x) \right|$$

where we apply Largrange theorem and $\theta \in (x, x + h)$. So

$$\lim_{h \to 0^+} \sup_{x \in \mathbb{R}} \left| \frac{f(h+x) - f(x)}{x} - f'(x) \right| = \lim_{h \to 0^+} \sup_{x \in \mathbb{R}} |f'(\theta) - f'(x)| = 0$$

iff f' is uniformly continuous on \mathbb{R} . Therefore, set of those $f \in \text{BUC}(\mathbb{R})$ for which $t \to S(t)f$ is differentiable, is f functions which f' is uniformly continuous on \mathbb{R} .

Exercise 8

a) The functions $f_k(x) = \sin(kx) \in BUC(\mathbb{R})$ and $||f_k||_{\infty} = 1$ for all $k \in \mathbb{N}$. For all k and $t_0 \ge 0$ we have

$$||S(t) - S(t_0)|| \ge ||S(t)f_k - S(t_0)f_k||_{\infty} = \sup_{x \in \mathbb{R}} \left| 2\sin\frac{k(t-t_0)}{2}\cos\left(\frac{k(t+t_0) + 2kx}{2}\right) \right|$$
$$= \left| 2\sin\frac{k(t-t_0)}{2} \right|$$

Choose sequence $t_k = t_0 + \frac{1}{k} \to t_0$ as $k \to \infty$ but

$$\lim_{k \to \infty} \|S(t_k) - S(t_0)\| \ge 2\sin\frac{1}{2} > 0$$

Therefore, $t \mapsto S(t)$ is nowhere continuous for the operator norm.

b) We have

$$T(t)f = e^{tA}f = \sum_{n=1}^{\infty} e^{-tn^2} < f, f_n > f_n$$

Thus,

$$\|T(t)f_k - f_k\|_2^2 = 1 - e^{-tk^2} \text{ for } k \in \mathbb{N}$$

Choose sequence $t_k = \frac{1}{\sqrt{k}} \to 0$ as $k \to \infty$ but
$$\lim_{k \to \infty} \|T(t_k) - I\| \ge 1 - e^{-1} > 0$$

Therefore, $t \mapsto T(t)$ is not continuous for the operator norm at t = 0.

c) Consider $t_0 > 0$, for all $f \in L^2(0, \pi)$ has ||f|| = 1. We have

$$||T(t)f - T(t_0)f||_2^2 = \sum_{n=1}^{\infty} (e^{-tn^2} - e^{-t_0n^2})| < f, f_n > |^2$$
$$\leq \sum_{n=1}^{\infty} (e^{-tn^2} - e^{-t_0n^2})$$

Hence

$$||T(t) - T(t_0)||^2 \le \sum_{n=1}^{\infty} (e^{-tn^2} - e^{-t_0n^2}) =: J$$

We only consider $t \in [t_0 - h, t_0 + h]$ with h small enough such that $t_0 - h > 0$. On this interval series J converge uniformly. So we can interchange summation and limit. This implies that $||T(t) - T(t_0)||$ tend to 0 as $t \to t_0$. Therefore $t \mapsto T(t)$ is continuous for the operator norm at t > 0.

Exercise 9

T(t) is not possible to define the heat semigroup for negative time values. Because we define

$$T(t)f = e^{tA}f = \sum_{n=1}^{\infty} e^{-tn^2} < f, f_n > f_n$$

which the series on the right-hand side diverge in $L^2(0,\pi)$ as t < 0.