SOLUTION 1

Exercise 1

Since

$$
\int_{0}^{\pi} \sin (n x) \sin (m x) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{\pi}{2} & \text { if } m=n\end{cases}
$$

so system $\{\sin (n x) n \in \mathbb{N}\}$ is orthogonal system in $L^{2}(0, \pi)$ and $\|\sin (n x)\|=\sqrt{\frac{\pi}{2}}$ for all $n \in \mathbb{N}$. We have result: set of continuously differentiable functions which has $f(0)=f(\pi)=0$ is dense in $L^{2}(0, \pi)$. Each a function of this set admits an uniformly convergent Fourier series expension. Therefore, system $\{\sin (n x) n \in \mathbb{N}\}$ is complete orthogonal system in $L^{2}(0, \pi)$.

Exercise 2

Similarly as in section 1.1, we rewrite equation as the following

$$
\dot{u}(t)=A u(t), \quad t>0
$$

in the Hilbert space $L^{2}(0, \pi)$. The operator A is defined

$$
(A g)(x)=g^{\prime \prime}(x)
$$

with domain

$$
\begin{gathered}
D(A)=\left\{g \in L^{2}(0, \pi): g \text { is continuously differentiable on }[0, \pi], g^{\prime \prime} \text { exists a.e, } g^{\prime \prime} \in\right. \\
\left.L^{2}(0, \pi), g^{\prime}(0)=g^{\prime}(\pi)=0\right\} .
\end{gathered}
$$

We also have eigenvalues $-n^{2}$ with corresponding eigenvectors

$$
f_{n}(x)=\sqrt{\frac{2}{\pi}} \cos (n x) \text { for } n=1,2, \ldots
$$

System $\left\{\frac{1}{\pi}, f_{n}(x)\right\}$ is a complete orthogonal system in $L^{2}(0, \pi)$. Perform steps as in section 1.1, we will show that

$$
\begin{gathered}
D(A)=\left\{f \in L^{2}(0, \pi): \sum_{n=1}^{\infty} n^{4}\left|<f, f_{n}>\right|^{2}<\infty\right\} \\
A=\sum_{n=1}^{\infty}-n^{2}<f, f_{n}>f_{n} \\
e^{t A} f=\sum_{n=1}^{\infty} e^{-t n^{2}}<f, f_{n}>f_{n}
\end{gathered}
$$

[^0]is also solution of equation above. Note that A action $\frac{1}{\pi}$ equal to zero.

Exercise 3

For $x \in D\left(A_{2}\right)$ putting $y=A_{2} x \in X$, since A_{1} is surjective and A_{2} extend A_{1} so there is $x_{1} \in D\left(A_{1}\right)$ such that $A_{1} x_{1}=A_{2} x_{1}=y$. This lead to $x_{1}=x$ by reason A_{2} is injective. Therefore $A_{1}=A_{2}$.

Exercise 4

a) Evidently c_{00} is linear subspace of l^{2}. For $x=\left(x_{n}\right) \in l^{2}$, putting $x^{(n)}=\left(x_{1}, \ldots, x_{n}, 0, \ldots\right) \in$ c_{00} for all $n \in \mathbb{N}$. We have

$$
\left\|x-x^{(n)}\right\|^{2}=\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{2}
$$

Because $x \in l^{2}$ so $\left\|x-x^{(n)}\right\|^{2}$ tend to zero as $n \rightarrow \infty$. Thus, c_{00} is dense linear space in l^{2}.
b) If m is bounded then M_{m} is continuous on c_{00}. Otherwise direction, assume that M_{m} is continuous on c_{00}. We choose $e^{(n)} \in c_{00}$ which has position $\mathrm{n}^{\text {th }}$ equal to 1 and other positions equal to 0 . Then $\left\|e^{(n)}\right\|=1$ for all n, since M_{m} is continuous on c_{00} so that $\left\|M_{m} e^{(n)}\right\|=\left|m_{n}\right| \leq\left\|M_{m}\right\|$ for all n. Thus, m is bounded. Conclusion, M_{m} is continuous on c_{00} iff m is bounded. And on c_{00} then $\left\|M_{m}\right\|=\sup \left\{\left|m_{n}\right|, n \in \mathbb{N}\right\}$.
c) For $x \in l^{2}$ there exists a sequence $x^{(n)} \in c_{00}$ which $x^{(n)}$ converge to x in $l^{2} . M_{m}$ is continuous on c_{00} so sequence $M_{m} x^{(n)}$ is Cauchy sequence in l^{2}. Thus, we can define

$$
M_{m} x=\lim _{n \rightarrow \infty} M_{m} x^{(n)} \text { for all } x \in l^{2}
$$

We see easy the limit on the right-hand side independ on sequences $x^{(n)}$ which converge to x and M_{m} is linear operator on l^{2}. For all n we have

$$
\left\|M_{m} x^{(n)}\right\| \leq\left\|M_{m}\right\|_{c_{00}}\left\|x^{(n)}\right\|
$$

So as $n \rightarrow \infty$ then $\left\|M_{m} x\right\| \leq\left\|M_{m}\right\|_{c_{00}}\|x\|$. Therefore, M_{m} is continuously linear on l^{2}. From item b) we have $\left\|M_{m}\right\|=\sup \left\{\left|m_{n}\right|, n \in \mathbb{N}\right\}$.
d) M_{m} has continuous inverse iff M_{m} is bijective on l^{2} iff m is bounded and $m_{n} \neq 0$ for all n.
e) M_{m} is continuous on l^{2} so $e^{t M_{m}}$ converge for the operator norm. With basis $e^{(n)}$ we have

$$
e^{t M_{m}} x=\sum_{n=1}^{\infty} e^{t m_{n}} x_{n} e^{(n)}
$$

Exercise 5

Assume f is continous with compact $\operatorname{supp} f$. Then f is uniformly continuous so

$$
\lim _{t \rightarrow 0^{+}}\|S(t) f-f\|_{\infty}=\lim _{t \rightarrow 0^{+}} \sup _{x \in \mathbb{R}}|f(t+x)-f(x)|=0
$$

On the other hand $\|S(t) f-f\|_{p} \leq C\|S(t) f-f\|_{\infty}$. Thus,

$$
\lim _{t \rightarrow 0^{+}}\|S(t) f-f\|_{p}=0
$$

Because set continuous functions which has compact "supp", is dense in L^{p} with $p \in$ $[1, \infty)$ so $S(t)$ is strongly continuous semigroup on L^{p}.
Note that $\operatorname{supp} f=\operatorname{closure}\{x \in \mathbb{R}: f(x) \neq 0\}$.
As $p=\infty$ then $S(t)$ is not strongly continuous. Indeed, choose $f \in L^{\infty}$ as follow

$$
f(x)= \begin{cases}3 & \text { if } x \in[0,3] \\ 0 & \text { if else }\end{cases}
$$

For $0<t<1$ we have

$$
|f(t+x)-f(x)|= \begin{cases}0 & \text { if } x<-t \\ 3 & \text { if }-t \leq x<0 \\ 0 & \text { if } 0 \leq x \leq 3-t \\ 3 & \text { if } 3-t<x \leq 3 \\ 0 & \text { if } 3<x\end{cases}
$$

$\operatorname{essup}(S(t) f-f)=\inf \{M$ such that $\lambda\{x:|f(t+x)-f(x)|>M\}=0\}=3$. Then $\lim _{t \rightarrow 0^{+}} \operatorname{essup}(S(t) f-f)=3$. This lead to $t \mapsto S(t)$ is not strongly continuous.

Exercise 6

Evidently, S is semigroup on spaces $F_{b}(\mathbb{R}), C_{b}(\mathbb{R}), C_{0}(\mathbb{R})$ and these spaces are Banach space and invariant under $S(t)$ for all $t \geq 0$.
a) S is not strongly continuous semigroup on $F_{b}(\mathbb{R})$. Indeed, choose

$$
f(x)= \begin{cases}3 & \text { if } x=0 \\ 0 & \text { if else }\end{cases}
$$

Then $x \in F_{b}(\mathbb{R})$, for all $t>0$ then $\|S(t) f-f\|_{\infty}=3$. So S is not strongly continuous semigroup on $F_{b}(\mathbb{R})$ at $t=0$. This lead to S is not strongly continuous semigroup on $F_{b}(\mathbb{R})$.
b) S is not strongly continuous semigroup on $C_{b}(\mathbb{R})$. Indeed, choose $f=\sin \left(x^{2}\right) \in$ $C_{b}(\mathbb{R})$. Then

$$
\begin{aligned}
\|S(t) f-f\| & =\sup _{x \in \mathbb{R}}\left|\sin (t+x)^{2}-\sin (x)^{2}\right| \\
& =2 \sup _{x \in \mathbb{R}}\left|\sin \frac{t^{2}+2 t x}{2} \cos \frac{t^{2}+2 t x+2 x^{2}}{2}\right|
\end{aligned}
$$

Let x satisfy $t^{2}+2 t x=\frac{\pi}{2}$, we obtain

$$
\|S(t) f-f\| \geq \sqrt{2}\left|\cos \left(\frac{\pi}{4}+\frac{\left(\pi-2 t^{2}\right)^{2}}{16 t^{2}}\right)\right|=\sqrt{2}\left|\cos \left(\frac{\pi^{2}}{16 t^{2}}+\frac{t^{2}}{4}\right)\right|
$$

Chosen $t_{n}=\frac{\pi}{4 \sqrt{2 n \pi}} \rightarrow 0$ as $n \rightarrow \infty$ but

$$
\lim _{n \rightarrow \infty}\left\|S\left(t_{n}\right) f-f\right\| \geq \lim _{n \rightarrow \infty} \sqrt{2}\left|\cos \left(2 n \pi+\frac{\pi}{128 n}\right)\right|=\sqrt{2}
$$

This lead to S is not strongly continuous semigroup on $C_{b}(\mathbb{R})$.
c) For each $f \in C_{0}(\mathbb{R})$ then f is uniformly continuous by reason f is vanishing at infinity. Thus, as t is small enough we have

$$
\|S(t) f-f\|_{\infty}=\sup _{x \in R}|f(t+x)-f(x)|
$$

is also very small. Therefore S is strongly continuous semigroup on $C_{0}(\mathbb{R})$.

Exercise 7

Since $S(t)$ is strongly continuous semigroup on $\operatorname{BUC}(\mathbb{R})$ so $t \mapsto S(t) f$ is differentiable iff $S(t) f$ is differentiable at $t=0$. The limit

$$
\lim _{h \rightarrow 0^{+}} \frac{S(h) f-f}{h}
$$

must exists in the sup-norm of X. Therefore, f must exists pointwise derivative on \mathbb{R}. Then, we have

$$
\sup _{x \in \mathbb{R}}\left|\frac{f(h+x)-f(x)}{x}-f^{\prime}(x)\right|=\sup _{x \in \mathbb{R}}\left|f^{\prime}(\theta)-f^{\prime}(x)\right|
$$

where we apply Largrange theorem and $\theta \in(x, x+h)$. So

$$
\lim _{h \rightarrow 0^{+}} \sup _{x \in \mathbb{R}}\left|\frac{f(h+x)-f(x)}{x}-f^{\prime}(x)\right|=\lim _{h \rightarrow 0^{+}} \sup _{x \in \mathbb{R}}\left|f^{\prime}(\theta)-f^{\prime}(x)\right|=0
$$

iff f^{\prime} is uniformly continuous on \mathbb{R}. Therefore, set of those $f \in \operatorname{BUC}(\mathbb{R})$ for which $t \rightarrow S(t) f$ is differentiable, is f functions which f^{\prime} is uniformly continuous on \mathbb{R}.

Exercise 8

a) The functions $f_{k}(x)=\sin (k x) \in \operatorname{BUC}(\mathbb{R})$ and $\left\|f_{k}\right\|_{\infty}=1$ for all $k \in \mathbb{N}$. For all k and $t_{0} \geq 0$ we have

$$
\begin{aligned}
\left\|S(t)-S\left(t_{0}\right)\right\| \geq\left\|S(t) f_{k}-S\left(t_{0}\right) f_{k}\right\|_{\infty} & =\sup _{x \in \mathbb{R}}\left|2 \sin \frac{k\left(t-t_{0}\right)}{2} \cos \left(\frac{k\left(t+t_{0}\right)+2 k x}{2}\right)\right| \\
& =\left|2 \sin \frac{k\left(t-t_{0}\right)}{2}\right|
\end{aligned}
$$

Choose sequence $t_{k}=t_{0}+\frac{1}{k} \rightarrow t_{0}$ as $k \rightarrow \infty$ but

$$
\lim _{k \rightarrow \infty}\left\|S\left(t_{k}\right)-S\left(t_{0}\right)\right\| \geq 2 \sin \frac{1}{2}>0
$$

Therefore, $t \mapsto S(t)$ is nowhere continuous for the operator norm.
b) We have

$$
T(t) f=e^{t A} f=\sum_{n=1}^{\infty} e^{-t n^{2}}<f, f_{n}>f_{n}
$$

Thus,

$$
\left\|T(t) f_{k}-f_{k}\right\|_{2}^{2}=1-e^{-t k^{2}} \text { for } k \in \mathbb{N}
$$

Choose sequence $t_{k}=\frac{1}{\sqrt{k}} \rightarrow 0$ as $k \rightarrow \infty$ but

$$
\lim _{k \rightarrow \infty}\left\|T\left(t_{k}\right)-I\right\| \geq 1-e^{-1}>0
$$

Therefore, $t \mapsto T(t)$ is not continuous for the operator norm at $t=0$.
c) Consider $t_{0}>0$, for all $f \in L^{2}(0, \pi)$ has $\|f\|=1$. We have

$$
\begin{aligned}
\left\|T(t) f-T\left(t_{0}\right) f\right\|_{2}^{2} & =\sum_{n=1}^{\infty}\left(e^{-t n^{2}}-e^{-t_{0} n^{2}}\right)\left|<f, f_{n}>\right|^{2} \\
& \leq \sum_{n=1}^{\infty}\left(e^{-t n^{2}}-e^{-t_{0} n^{2}}\right)
\end{aligned}
$$

Hence

$$
\left\|T(t)-T\left(t_{0}\right)\right\|^{2} \leq \sum_{n=1}^{\infty}\left(e^{-t n^{2}}-e^{-t_{0} n^{2}}\right)=: J
$$

We only consider $t \in\left[t_{0}-h, t_{0}+h\right]$ with h small enough such that $t_{0}-h>0$. On this interval series J converge uniformly. So we can interchange summation and limit. This implies that $\left\|T(t)-T\left(t_{0}\right)\right\|$ tend to 0 as $t \rightarrow t_{0}$. Therefore $t \mapsto T(t)$ is continuous for the operator norm at $t>0$.

Exercise 9

$T(t)$ is not possible to define the heat semigroup for negative time values. Because we define

$$
T(t) f=e^{t A} f=\sum_{n=1}^{\infty} e^{-t n^{2}}<f, f_{n}>f_{n}
$$

which the series on the right-hand side diverge in $L^{2}(0, \pi)$ as $t<0$.

[^0]: Trinh Viet Duoc
 Email address: tvduoc@gmail.com.

