1. We first prove that $\sin(nx)$, $n \in \mathbb{N}$, form a complete system in $L^2(0, \pi)$. The proof of this fact is based on the following statement.

Theorem. The trigonometric system e^{inx} , $n \in \mathbb{Z}$, is complete in $L^2(-\pi, \pi)$. [RY, Theorem 2, p. 8]

Suppose that

$$\int_{0}^{\pi} f(x)\sin(nx)\,\mathrm{d}x = 0$$

for some square integrable function f defined on $[0, \pi]$ and $n \in \mathbb{N}$. It is to be shown that f = 0 almost everywhere. It is easily seen that

$$\int_{0}^{\pi} f(x)e^{inx} \, \mathrm{d}x - \int_{0}^{\pi} f(x)e^{-inx} \, \mathrm{d}x = \int_{0}^{\pi} f(x)e^{inx} \, \mathrm{d}x - \int_{-\pi}^{0} f(-x)e^{inx} \, \mathrm{d}x =$$
$$= \int_{-\pi}^{\pi} \widetilde{f}(x)e^{inx} \, \mathrm{d}x = 0, \quad n \in \mathbb{N}.$$

Here \tilde{f} is an odd extension of f on the interval $[-\pi, \pi]$, i.e.,

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in [0, \pi], \\ -f(-x), & x \in [-\pi, 0]. \end{cases}$$

On the other hand

$$\int_{0}^{\pi} f(x)e^{inx} \, \mathrm{d}x - \int_{0}^{\pi} f(x)e^{-inx} \, \mathrm{d}x = \int_{-\pi}^{0} f(-x)e^{-inx} \, \mathrm{d}x - \int_{0}^{\pi} f(x)e^{-inx} \, \mathrm{d}x =$$
$$= -\int_{-\pi}^{\pi} \widetilde{f}(x)e^{-inx} \, \mathrm{d}x = 0, \quad n \in \mathbb{N}.$$

Since \tilde{f} is an odd function, its mean on $[-\pi,\pi]$ is zero. We conclude from what has already been showed that \tilde{f} is orthogonal to each element of the complete system e^{inx} , $n \in \mathbb{Z}$, hence that \tilde{f} vanishes a.e. on $[-\pi,\pi]$, and finally that f = 0 a.e. on $[0,\pi]$.

Since $\sqrt{\frac{2}{\pi}}\sin(nx)$, $n \in \mathbb{N}$, form an orthonormal system in $L^2(0,\pi)$ (see Lecture 1, p. 3) then $\sin(nx)$, $n \in \mathbb{N}$ stay an orthogonal system with L^2 -norms $\sqrt{\frac{\pi}{2}}$.

[RY] R. M. Young. 1980. An Introduction to Nonharmonic Fourier Series, Academic press: New York, London, Toronto, Sydney, San Francisco. 3. Suppose, contrary to our claim, that A_1 is a nontrivial restriction of A_2 , i.e., $A_1 \subset A_2$ and $A_1 \neq A_2$. Then there exists an element $x \in X$ such that $x \in D(A_2)$ and $x \notin D(A_1)$. Since A_1 is surjective, one can find a vector $y \in D(A_1)$ with the property that $A_1y = A_2x$. Next, since A_1 is a restriction of A_2 , one gets $A_2y = A_1y = A_2x$. Using injectivity of A_2 , one arrives at the equality x = y, which is impossible, since $x \in D(A_2) \setminus D(A_1)$ and $y \in D(A_1)$.

Stepan Man'ko, L'viv, Ukraine.