1. We first prove that $\sin (n x), n \in \mathbb{N}$, form a complete system in $\mathrm{L}^{2}(0, \pi)$. The proof of this fact is based on the following statement.
Theorem. The trigonometric system $e^{i n x}, n \in \mathbb{Z}$, is complete in $\mathrm{L}^{2}(-\pi, \pi)$. [RY, Theorem 2, p. 8]

Suppose that

$$
\int_{0}^{\pi} f(x) \sin (n x) \mathrm{d} x=0
$$

for some square integrable function f defined on $[0, \pi]$ and $n \in \mathbb{N}$. It is to be shown that $f=0$ almost everywhere. It is easily seen that

$$
\begin{array}{r}
\int_{0}^{\pi} f(x) e^{i n x} \mathrm{~d} x-\int_{0}^{\pi} f(x) e^{-i n x} \mathrm{~d} x=\int_{0}^{\pi} f(x) e^{i n x} \mathrm{~d} x-\int_{-\pi}^{0} f(-x) e^{i n x} \mathrm{~d} x= \\
=\int_{-\pi}^{\pi} \widetilde{f}(x) e^{i n x} \mathrm{~d} x=0, \quad n \in \mathbb{N} .
\end{array}
$$

Here \widetilde{f} is an odd extension of f on the interval $[-\pi, \pi]$, i.e.,

$$
\tilde{f}(x)= \begin{cases}f(x), & x \in[0, \pi] \\ -f(-x), & x \in[-\pi, 0]\end{cases}
$$

On the other hand

$$
\begin{array}{r}
\int_{0}^{\pi} f(x) e^{i n x} \mathrm{~d} x-\int_{0}^{\pi} f(x) e^{-i n x} \mathrm{~d} x=\int_{-\pi}^{0} f(-x) e^{-i n x} \mathrm{~d} x-\int_{0}^{\pi} f(x) e^{-i n x} \mathrm{~d} x= \\
=-\int_{-\pi}^{\pi} \widetilde{f}(x) e^{-i n x} \mathrm{~d} x=0, \quad n \in \mathbb{N} .
\end{array}
$$

Since \tilde{f} is an odd function, its mean on $[-\pi, \pi]$ is zero. We conclude from what has already been showed that \widetilde{f} is orthogonal to each element of the complete system $e^{i n x}, n \in \mathbb{Z}$, hence that \widetilde{f} vanishes a.e. on $[-\pi, \pi]$, and finally that $f=0$ a.e. on $[0, \pi]$.

Since $\sqrt{\frac{2}{\pi}} \sin (n x), n \in \mathbb{N}$, form an orthonormal system in $\mathrm{L}^{2}(0, \pi)$ (see Lecture 1 , p. 3) then $\sin (n x), n \in \mathbb{N}$ stay an orthogonal system with L^{2} norms $\sqrt{\frac{\pi}{2}}$.
[RY] R. M. Young. 1980. An Introduction to Nonharmonic Fourier Series, Academic press: New York, London, Toronto, Sydney, San Francisco.
3. Suppose, contrary to our claim, that A_{1} is a nontrivial restriction of A_{2}, i.e., $A_{1} \subset A_{2}$ and $A_{1} \neq A_{2}$. Then there exists an element $x \in X$ such that $x \in D\left(A_{2}\right)$ and $x \notin D\left(A_{1}\right)$. Since A_{1} is surjective, one can find a vector $y \in D\left(A_{1}\right)$ with the property that $A_{1} y=A_{2} x$. Next, since A_{1} is a restriction of A_{2}, one gets $A_{2} y=A_{1} y=A_{2} x$. Using injectivity of A_{2}, one arrives at the equality $x=y$, which is impossible, since $x \in D\left(A_{2}\right) \backslash D\left(A_{1}\right)$ and $y \in D\left(A_{1}\right)$.

Stepan Man'ko, L’viv, Ukraine.

