
Solutions of the exercises – Lecture 1

1. The set of fucntions {sinnx}n∈N ∪ {cosnx}n∈N0 is a complete ortogonal system in L2[−π,π] (this is a
consequence of the famous Stone-Weierstrass approximation theorem). For f ∈ L2[0,π] set

f̃ (t) :=
{

f (t), if t ∈ [0,π],
− f (−t) if t ∈ [−π,0) .

Then for any ε > 0 we have N ∈ N and complex numbers {an}
N
n=1, {bn}

N
n=0 such that

|| f̃ −
N∑

n=1

an sinn · −
N∑

n=0

bn cosn · ||L2[−π,π] < ε.

We easily obtain

|| f̃ −
N∑

n=1

an sinn · −
N∑

n=0

bn cosn · ||L2[−π,π] =
√

2|| f −
N∑

n=1

an sinn · ||L2[0,π]

from which we immediately have the completness of {sinnx}n∈N in L2[0,π]. The ortogonality comes from
the following computation (n,m ∈ N,n , m):∫ π

0
sinnxsinmxdx =

1
2

∫ π

0
cos(n−m)x− cos(n + m)xdx =

1
2

[ sin(n−m)x
n−m

−
sin(n + m)x

n + m

]π
0

= 0.

2. This is a very long exercises. I give only a short overlook. Operator A is formally the same as in
section 1.1 of the lecture, but the domain changes to

D(A) := {g ∈ L2 : g ∈C1[0,π],g′(0) = g′(π) = 0,g′is abs. continuous and g′′ ∈ L2.}

Eigenvalues are λk = −k2,k ∈ N0 with normalized eigenfunctions

f0 =
1
√
π
, fn(x) =

√
2
π

cosnx,n ∈ N.

Now statement of the type of Proposition 1.1 can be obtained:

D(A) = { f ∈ L2 ;
∑
n∈N0

n4|〈 f , fn〉|2 <∞}, A f =
∑
n∈N0

−n2〈 f , fn〉 fn.

The proof of this slightly differ from the lecture (we have now a smaller range R(A) = { f ∈ L2,
∫

[0,π] f dx = 0}
and ”M” is not injective) – it needs only minor modifications.

At the end we will have the same properties (formally with the same arguments) for

etA f =

∞∑
n=0

e−tn2
〈 f , fn〉 fn.

3. This is very easy. Let x ∈ D(A2) then – from the surjectivity of A1 – we have y ∈ D(A1) such that
A1y = A2x. Therefore A2y = A2x and injectivity of A2 implies x = y. So D(A1) = D(A2) and also A1 = A2.

4. I give short answers:
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a) If x ∈ `2 then limn→∞ ||x− xn||`2 = 0 for xn ∈ c00 given as

(xn) j =

{
x j if j ≤ n
0 if j > 0.

b) The condition is supn∈N |mn| <∞. The proof is trivial.

c) The continuous extension goes with

Mmx :=
`2

lim
n→∞

Mmxn.

The proof is again trivial and the norm is

||Mm|| = sup
n∈N
|mn| <∞.

d) The condition is infn∈N |mn| > 0.

e) The condition is supn∈N<mn <∞ and a definition is simply

(etMm x)n := etmn xn, n ∈ N.

5. The only less trivial task is to show the strong continuity (which fails in the case p =∞). Let we have
ε > 0, t ≥ 0 and f ∈ Lp (1 ≤ p <∞) then from the usual approximation theory we have a continuous funcion
with compact support gε : R→ C such that || f −gε ||p ≤ ε. On the other hand from the Lebesgue’s Dominated
Convergence Theorem

||S (t + h)gε −S (t)gε ||p→ 0 as h→ 0.

These considerations with an estimate

||S (t+h) f −S (t) f ||p ≤ ||S (t+h)|||| f −gε ||p + ||S (t+h)gε−S (t)gε ||p + ||S (t)|||| f −gε ||p ≤ 2ε+ ||S (t+h)gε−S (t)ge p||p

implies strong continuity of S in Lp for 1 ≤ p <∞.
In the case p = ∞ let f := χ[0,1] be the characteristic function of [0,1]. Then for any h > 0 we have

||S (h) f − f ||∞ = 1. So S is not strongly continuous on L∞.
6. I give answers only to the last question concerning strong continuity:

a) No. We have similar counterexample as in the previous exercise (p =∞).

b) No. For counterexample it is enough to find a function f ∈Cb(R) with a property

∀n ∈ N | f (n +
1

n + 1
− f (n)| >

1
2
.

This can be obviously satisfied.

c) Yes. It is enough to show the strong continuity at t = 0. Fix ε > 0, f ∈ C0(R). Then we have T > 0
such that | f (t)| < ε for all t ∈ R \ [−T ;T ]. Note that f |[−T−1,T+1] : [−T − 1,T + 1]→ C is uniformly
continuous, therefore

∃δ > 0∀t1, t2 ∈ [−T −1,T + 1], |t1− t2| < δ : | f (t1)− f (t2)| < ε.

Therefore for all 0 ≤ h < δ we get

||S (h) f − f ||∞ = sup
t∈R
| f (t + h)− f (t)| ≤ sup

t∈[−T−1;T ]
| f (t + h)− f (t)|+ 2ε ≤ 3ε.
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7. From the lectures we have that the set what we looking for is { f ∈ BUC(R) : f ′ ∈ BUC(R)}.
8. Answers:

a) Fix t ≥ 0 and let h be h > 0 for t = 0 and h ∈ [−t;∞) \ {0} for t > 0. Define a function fh ∈ BUC(R) as
follows

fh(t) :=


0, t ≤ 0,
t
|h| , 0 < t ≤ |h|,
1, |h| < t.

Then || fh||∞ = 1 and for h > 0 we have

||S (t + h) fh−S (t) fh||∞ ≥ | f (t + h− t)− f (t− t)| = 1 ⇒ ||S (t + h)−S (t)|| ≥ 1

and similarly for h < 0 we have

||S (t + h) fh−S (t) fh||∞ ≥ | f (t + h− t−h)− f (t− t−h)| = 1 ⇒ ||S (t + h)−S (t)|| ≥ 1.

b) We use the notation fk(t) =

√
2
π sinkt for k ∈ N. The following is straightforward

||T (t) fk − fk ||2 = 1− e−tk2
,∀t ≥ 0,k ∈ N.

Therefore
||T (t)− I|| ≥ lim

k→∞
1− e−tk2

= 1, ∀t > 0.

c) Fix t > 0,η := t/2 and h ∈ [−η;∞). Then for any f ∈ L2, || f ||2 = 1 we have (using Parseval’s equality)

||T (t + h) f −T (t) f ||2 =

√√
∞∑

k=1

|e−(t+h)k2
− e−tk2

|2|〈 f , fk〉|2 ≤

√√
∞∑

k=1

|e−(t+h)k2
− e−tk2

|2.

Note that

lim
h→0

∞∑
k=1

|e−(t+h)k2
− e−tk2

|2 = 0

because (this has to be compute in a slight different way for cases η ≤ h < 0 and h ≥ 0)

∞∑
k=1

|e−(t+h)k2
− e−tk2

|2 ≤

∞∑
k=1

e−tk2

so the convergence of
∑∞

k=1 |e
−(t+h)k2

− e−tk2
|2 is uniform on [η,∞] and a summation can be exchanegd

with limit sign. This immediately gives limh→0 ||T (t + h)−T (t)|| = 0.

9. Heuristic answer: etA f defined in the lecture on page 4 is a divergent series (for f ∈ L2 with nonzero
Fourier coefficients).

Another answer: it is well-known that the solution of the heat equation is C∞ at the spatial variable in
any time t > 0. Therefore for initial function f ∈ L2[0,π] \C∞[0,π] the problem has no solution for negative
time.
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