Solutions of the exercises - Lecture 1

1. The set of fucntions $\{\sin n x\}_{n \in \mathbb{N}} \cup\{\cos n x\}_{n \in \mathbb{N}_{0}}$ is a complete ortogonal system in $\mathbf{L}^{2}[-\pi, \pi]$ (this is a consequence of the famous Stone-Weierstrass approximation theorem). For $f \in \mathbf{L}^{2}[0, \pi]$ set

$$
\tilde{f}(t):= \begin{cases}f(t), & \text { if } t \in[0, \pi] \\ -f(-t) & \text { if } t \in[-\pi, 0)\end{cases}
$$

Then for any $\epsilon>0$ we have $N \in \mathbb{N}$ and complex numbers $\left\{a_{n}\right\}_{n=1}^{N},\left\{b_{n}\right\}_{n=0}^{N}$ such that

$$
\left\|\tilde{f}-\sum_{n=1}^{N} a_{n} \sin n \cdot-\sum_{n=0}^{N} b_{n} \cos n \cdot\right\|_{\mathbf{L}^{2}[-\pi, \pi]}<\epsilon .
$$

We easily obtain

$$
\left\|\tilde{f}-\sum_{n=1}^{N} a_{n} \sin n \cdot-\sum_{n=0}^{N} b_{n} \cos n \cdot\right\|_{\mathbf{L}^{2}[-\pi, \pi]}=\sqrt{2}\left\|f-\sum_{n=1}^{N} a_{n} \sin n \cdot\right\|_{\mathbf{L}^{2}[0, \pi]}
$$

from which we immediately have the completness of $\{\sin n x\}_{n \in \mathbb{N}}$ in $\mathbf{L}^{2}[0, \pi]$. The ortogonality comes from the following computation $(n, m \in \mathbb{N}, n \neq m)$:

$$
\int_{0}^{\pi} \sin n x \sin m x \mathrm{~d} x=\frac{1}{2} \int_{0}^{\pi} \cos (n-m) x-\cos (n+m) x \mathrm{~d} x=\frac{1}{2}\left[\frac{\sin (n-m) x}{n-m}-\frac{\sin (n+m) x}{n+m}\right]_{0}^{\pi}=0 .
$$

2. This is a very long exercises. I give only a short overlook. Operator A is formally the same as in section 1.1 of the lecture, but the domain changes to

$$
D(A):=\left\{g \in \mathbf{L}^{2}: g \in C^{1}[0, \pi], g^{\prime}(0)=g^{\prime}(\pi)=0, g^{\prime} \text { is abs. continuous and } g^{\prime \prime} \in L^{2} .\right\}
$$

Eigenvalues are $\lambda_{k}=-k^{2}, k \in \mathbb{N}_{0}$ with normalized eigenfunctions

$$
f_{0}=\frac{1}{\sqrt{\pi}}, \quad f_{n}(x)=\sqrt{\frac{2}{\pi}} \cos n x, n \in \mathbb{N}
$$

Now statement of the type of Proposition 1.1 can be obtained:

$$
D(A)=\left\{f \in \mathbf{L}^{2} ; \sum_{n \in \mathbb{N}_{0}} n^{4}\left|\left\langle f, f_{n}\right\rangle\right|^{2}<\infty\right\}, \quad A f=\sum_{n \in \mathbb{N}_{0}}-n^{2}\left\langle f, f_{n}\right\rangle f_{n}
$$

The proof of this slightly differ from the lecture (we have now a smaller range $R(A)=\left\{f \in \mathbf{L}^{2}, \int_{[0, \pi]} f \mathrm{~d} x=0\right\}$ and " M " is not injective) - it needs only minor modifications.

At the end we will have the same properties (formally with the same arguments) for

$$
\mathrm{e}^{t A} f=\sum_{n=0}^{\infty} \mathrm{e}^{-t n^{2}}\left\langle f, f_{n}\right\rangle f_{n}
$$

3. This is very easy. Let $x \in D\left(A_{2}\right)$ then - from the surjectivity of A_{1} - we have $y \in D\left(A_{1}\right)$ such that $A_{1} y=A_{2} x$. Therefore $A_{2} y=A_{2} x$ and injectivity of A_{2} implies $x=y$. So $D\left(A_{1}\right)=D\left(A_{2}\right)$ and also $A_{1}=A_{2}$.
4. I give short answers:
a) If $x \in \ell^{2}$ then $\lim _{n \rightarrow \infty}\left\|x-x^{n}\right\|_{\ell^{2}}=0$ for $x^{n} \in c_{0} 0$ given as

$$
\left(x^{n}\right)_{j}= \begin{cases}x_{j} & \text { if } j \leq n \\ 0 & \text { if } j>0 .\end{cases}
$$

b) The condition is $\sup _{n \in \mathbb{N}}\left|m_{n}\right|<\infty$. The proof is trivial.
c) The continuous extension goes with

$$
\overline{M_{m}} x:=\lim _{n \rightarrow \infty}^{\ell^{2}} M_{m} x^{n}
$$

The proof is again trivial and the norm is

$$
\left\|\overline{M_{m}}\right\|=\sup _{n \in \mathbb{N}}\left|m_{n}\right|<\infty .
$$

d) The condition is $\inf _{n \in \mathbb{N}}\left|m_{n}\right|>0$.
e) The condition is $\sup _{n \in \mathbb{N}} \mathfrak{R} m_{n}<\infty$ and a definition is simply

$$
\left(\mathrm{e}^{t M_{m}} x\right)_{n}:=\mathrm{e}^{t m_{n}} x_{n}, \quad n \in \mathbb{N} .
$$

5. The only less trivial task is to show the strong continuity (which fails in the case $p=\infty$). Let we have $\epsilon>0, t \geq 0$ and $f \in \mathbf{L}^{p}(1 \leq p<\infty)$ then from the usual approximation theory we have a continuous funcion with compact support $g_{\epsilon}: \mathbb{R} \rightarrow \mathbb{C}$ such that $\left\|f-g_{\epsilon}\right\|_{p} \leq \epsilon$. On the other hand from the Lebesgue's Dominated Convergence Theorem

$$
\left\|S(t+h) g_{\epsilon}-S(t) g_{\epsilon}\right\|_{p} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

These considerations with an estimate
$\|S(t+h) f-S(t) f\|_{p} \leq\|S(t+h)\|\| \| f-g_{\epsilon}\left\|_{p}+\right\| S(t+h) g_{\epsilon}-S(t) g_{\epsilon}\left\|_{p}+\right\| S(t)\| \| f-g_{\epsilon}\left\|_{p} \leq 2 \epsilon+\right\| S(t+h) g_{\epsilon}-S(t) g_{e} p \|_{p}$ implies strong continuity of S in \mathbf{L}^{p} for $1 \leq p<\infty$.

In the case $p=\infty$ let $f:=\chi_{[0,1]}$ be the characteristic function of $[0,1]$. Then for any $h>0$ we have $\|S(h) f-f\|_{\infty}=1$. So S is not strongly continuous on \mathbf{L}^{∞}.
6. I give answers only to the last question concerning strong continuity:
a) No. We have similar counterexample as in the previous exercise $(p=\infty)$.
b) No. For counterexample it is enough to find a function $f \in C_{b}(\mathbb{R})$ with a property

$$
\forall n \in \mathbb{N} \quad \left\lvert\, f\left(\left.n+\frac{1}{n+1}-f(n) \right\rvert\,>\frac{1}{2}\right.\right.
$$

This can be obviously satisfied.
c) Yes. It is enough to show the strong continuity at $t=0$. Fix $\epsilon>0, f \in C_{0}(\mathbb{R})$. Then we have $T>0$ such that $|f(t)|<\epsilon$ for all $t \in \mathbb{R} \backslash[-T ; T]$. Note that $\left.f\right|_{[-T-1, T+1]}:[-T-1, T+1] \rightarrow \mathbb{C}$ is uniformly continuous, therefore

$$
\exists \delta>0 \forall t_{1}, t_{2} \in[-T-1, T+1],\left|t_{1}-t_{2}\right|<\delta \quad: \quad\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right|<\epsilon .
$$

Therefore for all $0 \leq h<\delta$ we get

$$
\|S(h) f-f\|_{\infty}=\sup _{t \in \mathbb{R}}|f(t+h)-f(t)| \leq \sup _{t \in[-T-1 ; T]}|f(t+h)-f(t)|+2 \epsilon \leq 3 \epsilon .
$$

7. From the lectures we have that the set what we looking for is $\left\{f \in \operatorname{BUC}(\mathbb{R}): f^{\prime} \in \mathrm{BUC}(\mathbb{R})\right\}$.
8. Answers:
a) Fix $t \geq 0$ and let h be $h>0$ for $t=0$ and $h \in[-t ; \infty) \backslash\{0\}$ for $t>0$. Define a function $f_{h} \in \operatorname{BUC}(\mathbb{R})$ as follows

$$
f_{h}(t):= \begin{cases}0, & t \leq 0 \\ \frac{t}{|h|}, & 0<t \leq|h| \\ 1, & |h|<t\end{cases}
$$

Then $\left\|f_{h}\right\|_{\infty}=1$ and for $h>0$ we have

$$
\left\|S(t+h) f_{h}-S(t) f_{h}\right\|_{\infty} \geq|f(t+h-t)-f(t-t)|=1 \Rightarrow\|S(t+h)-S(t)\| \geq 1
$$

and similarly for $h<0$ we have

$$
\left\|S(t+h) f_{h}-S(t) f_{h}\right\|_{\infty} \geq|f(t+h-t-h)-f(t-t-h)|=1 \Rightarrow\|S(t+h)-S(t)\| \geq 1
$$

b) We use the notation $f_{k}(t)=\sqrt{\frac{2}{\pi}} \sin k t$ for $k \in \mathbb{N}$. The following is straightforward

$$
\left\|T(t) f_{k}-f_{k}\right\|_{2}=1-\mathrm{e}^{-t k^{2}}, \forall t \geq 0, k \in \mathbb{N}
$$

Therefore

$$
\|T(t)-I\| \geq \lim _{k \rightarrow \infty} 1-\mathrm{e}^{-t k^{2}}=1, \forall t>0
$$

c) Fix $t>0, \eta:=t / 2$ and $h \in[-\eta ; \infty)$. Then for any $f \in \mathbf{L}^{2},\|f\|_{2}=1$ we have (using Parseval's equality)

$$
\|T(t+h) f-T(t) f\|_{2}=\sqrt{\sum_{k=1}^{\infty}\left|\mathrm{e}^{-(t+h) k^{2}}-\mathrm{e}^{-t k^{2}}\right|^{2}\left|\left\langle f, f_{k}\right\rangle\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|\mathrm{e}^{-(t+h) k^{2}}-\mathrm{e}^{-t k^{2}}\right|^{2}}
$$

Note that

$$
\lim _{h \rightarrow 0} \sum_{k=1}^{\infty}\left|\mathrm{e}^{-(t+h) k^{2}}-\mathrm{e}^{-t k^{2}}\right|^{2}=0
$$

because (this has to be compute in a slight different way for cases $\eta \leq h<0$ and $h \geq 0$)

$$
\sum_{k=1}^{\infty}\left|\mathrm{e}^{-(t+h) k^{2}}-\mathrm{e}^{-t k^{2}}\right|^{2} \leq \sum_{k=1}^{\infty} \mathrm{e}^{-t k^{2}}
$$

so the convergence of $\sum_{k=1}^{\infty}\left|\mathrm{e}^{-(t+h) k^{2}}-\mathrm{e}^{-t k^{2}}\right|^{2}$ is uniform on $[\eta, \infty]$ and a summation can be exchanegd with limit sign. This immediately gives $\lim _{h \rightarrow 0}\|T(t+h)-T(t)\|=0$.
9. Heuristic answer: $\mathrm{e}^{t A} f$ defined in the lecture on page 4 is a divergent series (for $f \in \mathbf{L}^{2}$ with nonzero Fourier coefficients).

Another answer: it is well-known that the solution of the heat equation is C^{∞} at the spatial variable in any time $t>0$. Therefore for initial function $f \in \mathbf{L}^{2}[0, \pi] \backslash C^{\infty}[0, \pi]$ the problem has no solution for negative time.

