RATIONAL APPROXIMATIONS OF SEMIGROUPS WITHOUT SCALING AND SQUARING

FRANK NEUBRANDER

In this project we will discuss how to find for all $q \geq 1$ distinct complex numbers b_i and λ_i with $1 \leq i \leq q$ and $\operatorname{Re}(\lambda_i) > 0$ such that for any generator (A, D(A)) of a bounded, strongly continuous semigroup T(t) on Banach space X with resolvent $R(\lambda, A) := (\lambda I - A)^{-1}$ the expression $\frac{b_1}{t}R(\frac{\lambda_1}{t}, A) + \frac{b_2}{t}R(\frac{\lambda_2}{t}, A) + \cdots + \frac{b_q}{t}R(\frac{\lambda_q}{t}, A)$ provides an excellent approximation of the semigroup T(t) on $D(A^{2q-1})$.

References

[1] F. Neubrander, K. Özer, T. Sandmaier, Rational Approximations of Semigroups without Scaling and Squaring, preprint, submitted, 2011.