Lecture 6

The Lumer—Phillips Theorem

In the previous lecture we saw the characterisation of generators of strongly continuous semigroups,
called Hille-Yosida theorem. Unfortunately, even in the case of relatively simple problems, it is
practically impossible to check all the properties listed: It is already difficult to estimate the operator
norm of the resolvent, let alone all powers of it. We also have to make sure that our operator is
closed, which also might be a painful task in particular situations.

In this lecture we study a class of operators, for which the above two difficulties may be remedied
in a satisfactory way.

6.1 Dissipative operators

Due to their importance, we now return to the study of contraction semigroups, i.e., semigroups
T where the semigroup operators are contractive, and look for a characterisation of their generator
that does not require explicit knowledge of the resolvent. The following is a key notion towards this
goal.

Definition 6.1. A linear operator A on a Banach space X is called dissipative if

1A =A)f = AllfIl (6.1)
for all A > 0 and f € D(A).

Note that it suffices to establish the validity of the inequality above only for unit vectors f € X,
IIf]l = 1. For f = 0 the inequality is trivial, for f # 0 one can normalise. Note also that we did
not require here the density of the domain or any other analytic properties of the operator. To
familiarise ourselves with dissipative operators we state some of their basic properties.

Proposition 6.2. For a dissipative operator A the following properties hold.

a) A — A is injective for all X\ > 0 and

_ 1
|~ 4] < + gl
for all g in the range ran(A — A) := (A — A)D(A).

b) X\ — A is surjective for some X > 0 if and only if it is surjective for each X > 0. In that case,
one has (0,00) C p(A).

c) A is closed if and only if the range ran(A — A) is closed for some (hence all) X > 0.

d) If ran(A) C D(A), e.g., if A is densely defined, then A is closable. Its closure A is again
dissipative and satisfies ran(A — A) = ran(\ — A) for all A > 0.
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Proof. a) is just a reformulation of estimate (6.1).

To show b) we assume that (Ao — A) is surjective for some Ay > 0. In combination with a), this
yields \g € p(A) and ||R(No, A)|| < %0 The series expansion for the resolvent

Z AO_ k‘R )\ A )k+l
k=0

yields (0,2Xo) C p(A). The dissipativity of A implies that

[R(A A)| <

> =

for 0 < A < 2\g. Proceeding in this way, we see that A — A is surjective for all A > 0, and therefore
(0,00) C p(A).

c¢) The operator A is closed if and only if A — A is closed for some (hence all) A > 0. This is again
equivalent to
(A= A)"t:ran(\A — A) — D(A)

being closed. By a) this operator is bounded. Hence, by the closed graph theorem, see Theorem
2.32, it is closed if and only if its domain, i.e., ran(A — A), is closed.

d) Take a sequence f, € D(A) satisfying f, — 0 and Af, — g. By Proposition 5.2.a) we have to
show that g = 0. The inequality (6.1) implies that

[AA = A) fr + (A = Aw|| = XA fn + v
for every w € D(A) and all A > 0. Passing to the limit as n — oo yields
=2 + (A — Aw| > Alw| and hence H—g w— waH > [|w]).

For A — oo we obtain that
| =g+ wl > [w]

and by choosing w from the domain D(A) arbitrarily close to g € ran(A), we see that
0= gl

Hence g = 0.

In order to verify that A is dissipative, take f € D(A). By definition of the closure of a linear
operator, there exists a sequence f, € D(A) satisfying f,, — f and Af,, — Af when n — oo. Since
A is dissipative and the norm is continuous, this implies that [[(A — A)f]| > || f]| for all A > 0.
Hence A is dissipative. Finally, observe that the range ran(\ — A) is dense in ran(\ — A). Since by
assertion c) ran(\ — A) is closed in X, we obtain the final assertion in d). O

From the resolvent estimate in the Hille-Yosida theorem, Theorem 5.10, it is evident that the
generator of a contraction semigroup satisfies the estimate (6.1), and hence is dissipative. On the
other hand, as we shall see in a moment, many operators can be shown directly to be dissipative
and densely defined. Therefore we reformulate Theorem 5.10 in such a way as to single out the
property that ensures that a densely defined, dissipative operator is a generator.

Theorem 6.3 (Lumer—Phillips). For a densely defined, dissipative operator A on a Banach space
X the following statements are equivalent:
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(i) The closure A of A generates a contraction semigroup.
(ii) The range ran(A — A) is dense in X for some (hence all) X > 0.

Proof. (i) = (ii) The Hille-Yosida theorem, Theorem 5.10, implies that ran(A — A) = X for all
A > 0. Since by Proposition 6.2.d) ran(\A — A) = ran(\ — A), we obtain (ii).

(ii) = (i) By the same argument, the denseness of the range ran(\ — A) implies that (A — A) is

surjective. Proposition 6.2.b) shows that (0,00) C p(A), and dissipativity of A implies the estimate

IR\ A < = for A > 0.

> =

This was required in Theorem 5.10 to assure that A generated a contraction semigroup. O

The above theorem gains its significance when viewed in the context of the abstract Cauchy
problem associated to an operator A.

Remark 6.4. Assume that the operator A is known to be closed, densely defined, and dissipative.
Then the Lumer—Phillips theorem, Theorem 6.3 yields the following fact:

In order to ensure that the (time dependent) initial value problem
u(t) = Au(t), u(0) = ug (ACP)
can be solved for all uy € D(A), it is sufficient to prove that the (stationary) resolvent equation
f-Af=g (RE)

has solutions for all g in some dense subset in the Banach space X. As an example recall the
treatment of the heat equation presented in Section 1.1. In many examples (RE) can be solved
explicitly while (ACP) cannot.

Let us investigate the question further how to decide whether an operator is dissipative. When
introducing dissipative operators, we had aimed for an easy (or at least more direct) way to cha-
racterising generators. Up to now, however, the only way to arrive at the norm inequality (6.1) was
by explicit computation of the resolvent and then deducing the norm estimate

[R(A, A < for A > 0.

> =

Fortunately, there is a simpler method that works particularly well in concrete function spaces
such as Co(€2) or LP(£2, u). Due to its importance and since this is the simplest case, we start with
the Hilbert space case.

Proposition 6.5. Let X be a Hilbert space. An operator A is dissipative if and only if for every
f € D(A) we have
Re(Af, f) <0. (6.2)

Note that in this theorem the important direction is that (6.2) implies dissipativity. Fortunately,
this is also easy to prove.
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Proof. Assume (6.2) is satisfied for f € D(A), || f|| = 1. Then we have

IAf = AfI =2 [(Af = Af, )]
> Re(\f — Af, ) > A

for all A > 0. This proves one of the implications.
To show the converse, we take f € D(A), ||f]| = 1, and assume that |[A\f — Af|| > X for all A > 0.
Consider the normalised elements
Af—Af

PN —Afl

Then for all A > 0 we have
A<M =Afll = (A = Af,gx) = ARe(f, gx) — Re(Af, g5).

By estimating one of the terms on right-hand side trivially we can conclude the following two
inequalities:

A < A — Re<Af7 g>\> and A < >\Re<f7 g)\> + ”Af”

are valid for each A > 0. These yield for A =n
1
Re{Af,gn) <0 and 1 ——[|Af]| < Re(f, gn).

Since the unit ball of a Hilbert space is weakly (sequentially) compact, we can take a weakly
convergent subsequence (gy, ) with weak limit g € H. Then we obtain

llgll <1, Re(Af,g) <0, and Re(f,g) > 1.
Combining these facts, it follows that g = f and that it satisfies (6.2). O

To introduce the general case we start with a Banach space X and its dual space X’. By the
Hahn-Banach theorem, see Theorem 6.16, for every f € X there exists ¢ € X’ such that

o(f) = (f.¢) = IFI” = llo|I?

holds. Hence, for every f € X the following set, called its duality set,

J(f) ={o € X" (f,0) = IfII* = I}, (6.3)
is nonempty. Such sets allow a new characterisation of dissipativity.

Proposition 6.6. An operator A is dissipative if and only if for every f € D(A) there exists
Jj(f) € J(f) such that

Re(Af, j(f)) < 0. (6.4)

If A is the generator of a strongly continuous contraction semigroup, then (6.4) holds for all f €

D(A) and arbitrary ¢ € J(f).



6.2. Examples 65

Proof. Assume (6.4) is satisfied for f € D(A), ||f|| = 1, and some j(f) € J(f). Then (f,j(f)) =
17(f)II* =1 and

IAf = AFI = [N = AF 5D = Re(Af = Af,5(f)) = A

for all A > 0. This proves the important implication. The other implication is only included for the
sake of completeness, you may skip this part on the first reading.

To show the converse, we take f € D(A), ||f|| = 1, and assume that |[A\f — Af|| > A for all A > 0.
Choose ¢y € J(Af — Af) and consider the normalised elements

_ O
O = ol

Then, similarly to the proof of Proposition 6.5, the inequalities

AN = Af[l = (Af = Af,¥a) = ARe(f, ¥5) — Re(Af, ¢n)
< min {)‘ - R6<Af, ¢A>7 A]‘:{e<f7 ¢/\> + HAfH}

are valid for each A > 0. This yields for A =n
1
Re(Af,vn) <0 and 1— EHAJC” < Re(f,vn).

Let 1) be a weak™ accumulation point of (¢,), which exists by the Banach—Alaoglu theorem, see
Theorem 6.17. Then

[¥ <1, Re(Af,¢) <0, and Re(f,v) > 1.

Combining these facts, it follows that 1) belongs to J(f) and satisfies (6.4).

Finally, suppose that A generates a contraction semigroup 7" on X. Then, for every f € D(A) and
arbitrary ¢ € J(f), we have

Re(T'(h)f,¢) _ Re(f, ¢>>
h h

IT(R) I - gl HfHZ) <o.

Re(Af, ¢) = lim ( " h

<1 (
Jim, < lim sup

A\

This completes the proof. O

Remark 6.7. Note that the requirement in (6.4) can be relaxed in many applications to
Re(Af,j(f)) <w (6.5)

for some given w > 0. Operators with this property are called quasi-dissipative. Clearly, if A is
quasi-dissipative, then A — w is dissipative.

6.2 Examples

We continue here with a discussion of these new notions and results in concrete examples. We begin
with identifying the duality sets J(f) for some classical function spaces.
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Example 6.8. 1. Let Q be a locally compact Hausdorff space (for example an open or a closed
subset of RY). Consider

X :=Cy(Q) := {f : f is continuous and vansihes at inﬁnity}.

This is a Banach space with the supremum norm || - ||. For 0 # f € X, the set J(f) C X’
contains (multiples of) all point measures supported by those points sy € Q where |f| reaches
its maximum. More precisely,

{FGo) by : 50 € Q2 and |£(s0)| = | fllac | < I(f). (6.6)

2. Let (2,47, u) be a o-finite measure space, let p € [1,00) and X := LP(Q, .o/, u). Then X' =
LY(Q, o/, p), where % + % = 1. For 0 # f € X define

F(s) - If(s)P2- 27 if f(s
¢@%:{ﬂ)lﬂ)l I£I277 i f(s) #0, 67)

0 otherwise.

Then
peJ(f) CLIQ, o, p).

We note here without proof that for the reflexive LP spaces (i.e., for 1 < p < 00), as for every
Banach space with a strictly convex dual, the sets J(f) are singletons. Hence, for p € (1,00) one
has J(f) = {¢}, while for p = 1 every function ¢ € L*°(Q, o7, u) satisfying

[Dlloc <[[fllx and  @(s) [f(s)] = fs) I flln if f(s) #0

belongs to J(f), i.e., on the set {s € Q: f(s) = 0} we can give arbitrary values to ¢ as long as
they are smaller than ||f||;.

3. It is easy, but important, to determine J(f) in case of f € H, H a Hilbert space. After the
canonical identification of H with its dual H’, the duality set of f € H is

J(f) =A{r}-
Hence, a linear operator on H is dissipative if and only if
Re(Af, f) <0
for all f € D(A) in accordance with Proposition 6.5.

Let us list now some important operators where dissipativity can be tested. For simplicity, we
concentrate here only on the point how to test dissipativity.

Example 6.9. Consider the Laplace operator with Dirichlet boundary conditions from Section
1.1, i.e., we take X = L?(0,7) and consider the operator

42
(Af)(@) = f"(z) = 5 f(@)
with domain
D(A) = {f € L2(0,7) : f cont. differentiable on [0, 7],
f" exists a.e., f" e L2, f'(x) — f'(0) = [ f"(s)ds for z € [0, 7]
and £(0) = f(r) = o}.
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Clearly,

m m

(Af,f) = / £7(5)F(s) ds = — / ()T () ds = — |2 <0,

0 0
showing the dissipativity of A.
The previous example immediately gives rise to certain generalisations.

Example 6.10. Let A = M,, be a multiplication operator on ¢? with the sequence m = (my,).
Then A is dissipative if and only if Rem,, < 0 for all n € N.

Let us analyse now the second derivative in the space of continuous functions. We consider however
Neumann boundary conditions.

Example 6.11. Let us consider in X := C([0, 1]) the Laplace operator with Neumann boundary
conditions given by

Af=f", D(A):={feC*([0,1) : f(0)=f(1)=0}.

To show dissipativity, we use the description of J(f) from Example 6.8.1. Take f € D(A) and
so € [0, 1] such that |f(so)| = ||f]|. Then by (6.6) we have f(s0)ds, € J(f). Clearly, the real-valued
function

g(w) = Re (F(s0) f ()
takes its maximum at 2 = sg, meaning that if so € (0,1), then
Re( ", [(50)d0) = (Re fls0)f) " (s0) = 9" (s0) < 0.

If s = 0 or sp = 1, then the boundary condition f’(sp) = 0 implies ¢'(s9) = 0, and hence g”(sp) <0
also in these cases. Hence A is dissipative.

Example 6.12. Consider now the first derivative in various function spaces.
1. Let X = L?(R) and Af = f’ with
D(A) = CL{(R) := {f € C'(R) : the support of f is compact}.
Then
(Af.1) = / / ~{f.Af) = ~TAFT)

for f € D(A), showing that

(AL +(AL ) =0, e, (Af [f)€iR
This means that both A and —A are dissipative.

2. Turning our attention to the space of continuous functions, consider

X = C([0,1]) = {f € C([0,1]) : f(1) =0}
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and Af = f' with D(4) = {f € C([0,1])NX : f' € X}. Suppose [ takes its maximum at
s0 € [0,1]. Similarly to Example 6.11 define again the real-valued function

9(x) = Re (f(s0) ()

Then in case sg € (0, 1) it follows that

Re( ", 7(50)d0) = (Re f(50)) (50) = (s0) = 0.

Since by definition ¢’(1) = 0, we only have to check the case when sy = 0. But then clearly
d'(s0) < 0. Hence A is dissipative.

6.3 Perturbations

As an application, let us mention some basic perturbation results. The idea behind perturbation
theorems is always the same: We start with a generator A and assume that the operator B is “nice
enough”. Then A + B generates a semigroup. Let us clarify what “nice enough” could mean here.

As a warm-up, let us recall the results from Exercise 5.5.

Theorem 6.13. If A generates a semigroup T of type (M,w) and B € £ (X), then A+ B with
D(A+ B) = D(A) generates a semigroup S of type (M,w + || B||).

Proof. First we change to the operator to A — w and then use the renorming procedure presented
in Exercise C.4. Then we can assume without the loss of generality that A generates a semigroup
of type (1,0), i.e., a contraction semigroup.

As a next step, we show that the operator A + B has non-empty resolvent set. More precisely, if
A > 0, we can use the identity

A—A-B=(I-BR\A)N\-A), (6.8)

showing that if [|BR(\, A)|| < 1, then A € p(A + B) and

R(\ A+ B) = R(\ A) i (BR(\, A))". (6.9)
n=0

By assumption, A is a generator of a contraction semigroup, and hence A||R(X, A)|| < 1. Hence, if
A > ||B||, then A € p(A + B) and (6.9) holds.

We present here two strategies to continue.
a) Clearly, A+ B — || BJ| is dissipative, i.e.,

Re((A+ B)f,5(f)) = Re(Af, 5 (f)) + Re(Bf,5(f)) <O+ [[B - [[£]l - 7 (/)]

by the dissipativity of A and the boundedness of B. Since, A — (A+ B) is surjective for A > || B||,
we have by the Lumer—Phillips theorem, Theorem 6.3 that A+ B generates a semigroup of type
(L, |[BI))-

b) We may also use the results of Exercise C.5 and see that for A and B the conditions of Chernoff’s
theorem, Theorem 5.12 are satisfied. Hence, A + B generates a semigroup. See also Exercise
5.5. O
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Clearly, we can immediately extend the previous proof to some unbounded perturbations.

Theorem 6.14. Let A generate a contraction semigroup and let B be dissipative. Suppose D(A) C
D(B) and that there is a A > 0 with the property that BR(\, A) € Z(X) and

|IBR(X,A)|l < 1.
Then A+ B with domain D(A + B) = D(A) generates a contraction semigroup.

We close this lecture by the following example: Recall from Lecture 2 the Gaussian semigroup T’
on LP(R), where p € [1,00). For f € LP(R) we have

L [ pe " ay ite>o0
e ¢ i ,
vVt Y Y
R

(T f) (@) = (g: % [)(x) =

and T00)f := f.
The generator of 1" is the Laplace operator
Af=f". D(A)=W"(R).

The semigroup T' consists of contractions, or equivalently, A is dissipative (cf. Example 6.9). If
v € L*®(R), then the multiplication operator B = M, is bounded on LP(R). So by Theorem 6.13
the operator A + B with domain W?P?(R) generates a semigroup. However, we want to consider
not necessarily bounded multiplications operators, say we suppose v € LI(R) for some ¢ > 1. To
establish the estimate ||BR(A,A)|| < 1 we first need to make sure that the for f € LP(R) the
function v - R(\, A) f belongs to LP(R). To show that one may use Holder’s inequality:

[o- RO A) fllp < lollq - (1RO A) Fl (6.10)

where % = % + %, and here we have to suppose ¢ > p. This shows that we need to estimate the

operator norm of

R\ A) : LP(R) — L' (R).

To this end, recall from (the solution of) Exercise 2.9 that

1T fl < et 3G £, = ct % | £, forall £ > 0.

By using this estimation and by taking the Laplace transform of T'(¢)f (see Proposition 2.26.a))
we obtain the following estimate for the resolvent:

1RO Al < el £, / £ e N dt = o f,0(1— &) A% (6.11)
0

if 2—1(1 <1,ie.,ifg> % Now we are prepared for the following result:

Proposition 6.15. Consider the Laplace operator A with D(A) = W2P(R). Let ¢ > p and let
v € LYR) be a function with Rev < 0. Define B := M, the multiplication operator by v with
domain D(B) = LP(R) NL"(R) (where % =14 %) Then A + B with domain W?P(R) generates a
contraction semigroup.

Proof. We check the conditions of Theorem 6.14. The dissipativity of B follows from the assumption
on the range of v. The condition ||BR(A,A)|| < 1 for X large follows from inequalities (6.10) and
(6.11) and from the assumption that ¢ > p > % O
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6.4 Supplement

The Hahn—Banach Theorem

Let X be a Banach space. A linear functional ¢ : X — C is called bounded if there is a constant
such that

[N < M f] forall feX.

The set
X' = {(;5 : ¢ is a bounded linear functional on X}

of all bounded linear functionals is a linear space, and becomes a Banach space with the functional
norm

9] = sup [¢(a) = sup [{f.4)].

lIri<t llri<t

Here we used the convenient notation ¢(f) = (f, ¢). If ¢ € X’ then

[(f. ol < oIl - I£]

holds for all f € X. The space X' is called the dual space of X. That X’ is large enough for every
Banach space is highly non-trivial, and is actually the statement of the Hahn-Banach! theorem.
Note however that in specific examples the dual space can be determined.

Theorem 6.16 (Hahn-Banach). Let X be a Banach space, and let X' be its dual space. Then the
following assertions are true:

a) For f € X, f # 0 there is ¢ € X' with ¢(f) = ||f|| and ||¢|| = 1. Or, which is the same, for
every 0 # f € X there is ¢ € X' with ¢(f) = ||f||> = ||¢]*.

b) For f,g € X one has f = g if and only if (f,¢) = (g,¢) for all p € X'.

c) A subspaceY is dense in X if and only the zero functional is the only bounded linear functional
that vanishes on Y.

The Banach—Alaoglu Theorem
Let ¢,,¢ € X'. We call ¢, weak*-convergent to ¢ if for all f € X

(f,on — @) — 0 holds as n — oc.

The functional ¢ is called the weak*-limit of the sequence, and if exists, then it is obviously unique.
We call ¢ a weak*-accumulation point of the sequence (¢,,) if for all f € X and € > 0 there is a
subsequence (¢, ) with

[(fsén, — )| <e forall keN.

Obviously, if (¢,,) has a weak*-convergent subsequence ¢, then ¢ is an accumulation point of the
sequence. The converse implication is in general not true. The next rather weak formulation of a
central result from functional analysis suffices for our purposes.

'H. Hahn: Uber lineare Gleichungssysteme in linearen R&umen. Journal fiir die reine und angewandte Mathematik
157 (1927), 214-229. and S. Banach: Sur les fonctionelles linéaires. In: Studia Mathematica 1 (1929), 211-216.
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Theorem 6.17 (Banach-Alaoglu?). Let X be a Banach space and consider its dual space. Let
Bi={¢peX :|¢] <1} CX

be the unit ball in X'. Then every sequence (¢,) C B’ has a weak*-accumulation point in B'. If X
is reflexive or separable, then every sequence (¢,) C B’ has a weak®-convergent subsequence with
limit in B’.

6.5 Exercises

1. Let Q = (0,7) x (0,7) and define on L?(f2) the operator A as
Af =Af, D(A):={f e C*Q) : the support of f is compact} .
Show that A is dissipative and its closure generates a contraction semigroup.

2. Let X =C[-1,0)and 0 < 7y < 72 < ... < 7, = 1. Consider the operator Af := f" with

n
D(A) == {f € Cl[=1,0] = f'(0) = Zcz’f(—ﬂ')}7
i=1
where ¢; € C, i = 1,...,n. This operator plays an important role in the theory of delay differential

equations. Show that A is quasi-dissipative.

3. Give a necessary and sufficient condition on m :  — C such that the multiplication operator
M,, is dissipative (with maximal domain) in LP((2).

4. Suppose that A generates a contraction semigroup and B : D(B) — X satisfies D(A) C D(B)
and has the following property: There is a € [0, %) and b > 0 such that

|Bx|| < a||Az|| + bljz|| for all z € D(A).
Prove that for large A > 0 one has | BR(\, A)|| < 1.

5. Let X = Co(R) and Af = f” + f' with D(A) = {f € C3(R)N X : f”+ f' € X}. Show that it
generates a contraction semigroup.

L. Alaoglu, Weak topologies of normed linear spaces. Ann. Math. 41 (1940), 252-267.



