In this survey talk I will present several extremal problems, and some solutions, concerning convex lattice polytopes. A typical example is to determine the minimal volume that a convex lattice polytope can have if it has exactly n vertices. Other examples are the minimal surface area, or the minimal lattice width in the same class of polytopes. These problems are related to a question of V.I. Arnold from 1980 asking for the number of (equivalence classes of) lattice polytopes of volume V in d-dimensional space, where two convex lattice polytopes are equivalent if one can be carried to the other by a lattice preserving affine transformation.