#### Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

EPIRK

Adaptivity

Parallelization

# Tailoring exponential integrators for computational efficiency

John Loffeld, Mayya Tokman

University of California at Merced

May 14, 2012

Outline

EPIRK metho

Adaptivit

Parallelization

Implementation has a significant impact on CPU efficiency of an integrator.

#### Basic idea

 Choose coefficients not just for order, but also implementation

#### Outline

- Description and implementation of EPIRK methods
- Krylov adaptivity friendly methods
- Brief description of work so far on parallel implementation

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

EPIRK methods

Adaptivit

Parallelization

$$Y_{i} = y_{0} + a_{i1}\psi_{i1}(g_{i1}hJ)hf(y_{0}) + \sum_{j=2}^{i-1} a_{ij}\psi_{ij}(g_{ij}hJ)h\Delta^{j-1}r(y_{0})$$

$$i = 1, ..., (s-1)$$

$$y(x_{0} + h) = y_{0} + b_{1}\psi_{s1}(g_{s1}hJ)hf(y_{0}) + \sum_{j=2}^{s} b_{j}\psi_{sj}(g_{sj}hJ)h\Delta^{j-1}r(y_{0}),$$

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

EPIRK methods

Adaptivity

Parallelization

$$Y_{i} = y_{0} + a_{i1}\psi_{i1}(g_{i1}hJ)hf(y_{0}) + \sum_{j=2}^{i-1} a_{ij}\psi_{ij}(g_{ij}hJ)h\Delta^{j-1}r(y_{0})$$

$$i = 1, ..., (s-1)$$

$$y(x_{0} + h) = y_{0} + b_{1}\psi_{s1}(g_{s1}hJ)hf(y_{0}) + \sum_{j=2}^{s} b_{j}\psi_{sj}(g_{sj}hJ)h\Delta^{j-1}r(y_{0}),$$

$$\psi_{ij}(z) = \sum_{k=1}^{s} \rho_{ijk} \varphi_k(z), \quad \varphi_0(z) = e^z, \quad \varphi_k(z) = z \varphi_{k+1}(z) + \frac{1}{k!}$$

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK methods

Adaptivity

Parallelization

$$Y_{i} = y_{0} + a_{i1}\psi_{i1}(g_{i1}hJ)hf(y_{0}) + \sum_{j=2}^{i-1} a_{ij}\psi_{ij}(g_{ij}hJ)h\Delta^{j-1}r(y_{0})$$

$$i = 1, ..., (s-1)$$

$$y(x_{0} + h) = y_{0} + b_{1}\psi_{s1}(g_{s1}hJ)hf(y_{0}) + \sum_{i=2}^{s} b_{j}\psi_{sj}(g_{sj}hJ)h\Delta^{j-1}r(y_{0}),$$

$$\psi_{ij}(z) = \sum_{k=1}^{s} p_{ijk} \varphi_k(z), \quad \varphi_0(z) = e^z, \quad \varphi_k(z) = z \varphi_{k+1}(z) + \frac{1}{k!}$$
  
  $r(y) = f(y) - f(y_0) - f'(y_0)(y - y_0),$ 

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

EPIRK methods

Adaptivity

Parallelization

$$Y_{i} = y_{0} + a_{i1}\psi_{i1}(g_{i1}hJ)hf(y_{0}) + \sum_{j=2}^{i-1} a_{jj}\psi_{ij}(g_{ij}hJ)h\Delta^{j-1}r(y_{0})$$

$$i = 1, ..., (s-1)$$

$$y(x_{0} + h) = y_{0} + b_{1}\psi_{s1}(g_{s1}hJ)hf(y_{0}) + \sum_{i=2}^{s} b_{j}\psi_{sj}(g_{sj}hJ)h\Delta^{j-1}r(y_{0}),$$

$$\psi_{ij}(z) = \sum_{k=1}^{s} p_{ijk} \varphi_k(z), \quad \varphi_0(z) = e^z, \quad \varphi_k(z) = z \varphi_{k+1}(z) + \frac{1}{k!}$$
  
 
$$r(y) = f(y) - f(y_0) - f'(y_0)(y - y_0),$$

- The  $\psi(ghJ)v$  terms are estimated using Krylov subspace projection.
  - g coefficients are useful for controlling Krylov cost

Tailoring exponential integrators for computational efficiency

**FPIRK** methods

$$Y_{i} = y_{0} + a_{i1}\psi_{i1}(g_{i1}hJ)hf(y_{0}) + \sum_{j=2}^{i-1} a_{ij}\psi_{ij}(g_{ij}hJ)h\Delta^{j-1}r(y_{0})$$

$$i = 1, .... (s-1)$$

$$i = 1, ..., (s - 1)$$

$$y(x_0 + h) = y_0 + b_1 \psi_{s1}(g_{s1}hJ)hf(y_0) + \sum_{j=2}^{3} b_j \psi_{sj}(g_{sj}hJ)h\Delta^{j-1}r(y_0),$$

$$\begin{aligned} \psi_{ij}(z) &= \sum_{k=1}^{s} p_{ijk} \varphi_k(z), \quad \varphi_0(z) = e^z, \quad \varphi_k(z) = z \varphi_{k+1}(z) + \frac{1}{k!} \\ r(y) &= f(y) - f(y_0) - f'(y_0)(y - y_0), \end{aligned}$$

- The  $\psi(ghJ)v$  terms are estimated using Krylov subspace projection.
  - g coefficients are useful for controlling Krylov cost
- Derive order conditions using B-series
  - Mathematica routines based on Butcher trees





## Brief overview of Krylov approximation of f(A)v

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK methods

Adaptivit

Parallelizatio

A is  $N \times N$ . Project f(A)v onto the Krylov subspace

$$K_m = span\{v, Av, A^2v, ..., A^{m-1}v\}$$

Use the Arnoldi iteration to generate

- $lue{}$  orthonormalized Krylov basis  $V_m$
- $\blacksquare H_m = V_m^T A V_m$

f(A)v is approximated as

$$f(A)v \approx VV^{T} f(A)v$$

$$= VV^{T} f(A)VV^{T}v$$

$$\approx Vf(H)V^{T}v$$

$$= ||v||_{2}Vf(H)e_{1}$$

## Reducing CPU cost

Tailoring exponential integrators for computational efficiency

John Loffel Mayya Tokman

Outlin

FPIRK

methods Adaptivit

Parallelization

Krylov projections are the greatest CPU cost.

Therefore, to reduce cost

- Minimize the # of Krylov projections per step
- Minimize the # of Krylov vectors per projection

# Minimizing # of Krylov projections

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK methods

Adaptivit

Parallelization

The H matrix is scale-invariant, i.e.

$$\lambda H = V^T \lambda A V$$

Therefore,

$$f(\lambda A)v \approx ||v||_2 V f(\lambda H)e_1$$

EPIRK4:

$$Y_{1} = y_{0} + a_{11}h\varphi_{1}(\frac{1}{3}hJ)f(y_{0})$$

$$Y_{2} = y_{0} + a_{21}h\varphi_{1}(\frac{2}{3}hJ)f(y_{0}) + a_{22}h\varphi_{2}(\frac{2}{3}hJ)r(Y_{1})$$

$$y_{1} = y_{0} + h\varphi_{1}(hJ)f(y_{0}) + b_{1}h\varphi_{2}(hJ)r(Y_{1})$$

$$+ b_{2}h[6\varphi_{3}(hJ) - \varphi_{2}(hJ)](-2r(Y_{1}) + r(Y_{2}))$$

- Three Krylov projections instead of six
- Basis sizes generally get smaller as move from blue to red

## Minimizing # of Krylov vectors

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK methods

Adaptivit

Parallelization

Scaling the Jacobian affects convergence

■ Choice of Ψ-function affects convergence

2D Advection-Diffusion-Reaction problem

$$u_t = \frac{1}{100}(u_{xx} + u_{yy}) + 10(u_x + u_y) + 100u(u - \frac{1}{2})(1 - u)$$

with homogeneous Neumann boundary conditions and initial conditions

$$u_0 = 256(xy(1-x)(1-y))^2 + 0.3$$

| h      | $\varphi_1(hJ)f(y_0)$ | $\varphi_2(hJ)f(y_0)$ | $\varphi_3(hJ)f(y_0)$ |
|--------|-----------------------|-----------------------|-----------------------|
| 0.01   | 49                    | 46                    | 42                    |
| 0.005  | 30                    | 27                    | 24                    |
| 0.0025 | 19                    | 17                    | 15                    |

## Example method

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

EPIRK methods

Adaptivit

Parallelization

■ Seek high order for low # of projections

- Minimize magnitude of *g* coefficients
  - Specifically, the maximum g coefficient of each projection

#### Example - EpiRK5S3

$$\begin{bmatrix} g_{11} & & \\ g_{21} & g_{22} & \\ g_{31} & g_{32} & g_{33} \end{bmatrix} = \begin{bmatrix} 0.42 & & \\ 0.86 & 0.5 & \\ 1.0 & 0.73 & 0.33 \end{bmatrix}$$

Classical order five

## Numerical comparison

Tailoring exponential integrators for computational efficiency

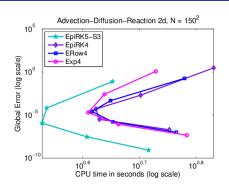
John Loffel Mayya Tokman

O..41:--

EPIRK metho<u>ds</u>

Adaptivit

Parallelization



|              | Proj. 1 | Proj. 2 | Proj. 3 | time | % diff |
|--------------|---------|---------|---------|------|--------|
| h = 0.02:    |         |         |         |      |        |
| EPIRK5S3     | 50      | 36      | 22      | 3.8  |        |
| EPIRK4       | 51      | 45      | 45      | 5.5  | 43%    |
| h = 0.005:   |         |         |         |      |        |
| EPIRK5S3     | 30      | 22      | 14      | 3.6  |        |
| EPIRK4       | 30      | 26      | 25      | 4.5  | 23%    |
| h = 0.00125: |         |         |         |      |        |
| EPIRK5S3     | 13      | 9       | 7       | 5.6  |        |
| EPIRK4       | 13      | 10      | 10      | 5.9  | 6%     |

### The "C"

Tailoring exponential integrators for computational efficiency

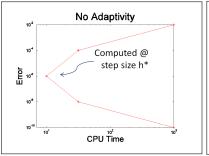
John Loffeld Mayya Tokman

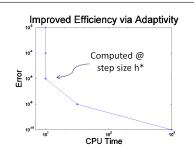
Outline

EPIRK

Adaptivity

Parallelization





■ At step size h\*, CPU cost is minimum

## Two approaches to dealing with the "C"

Tailoring exponential integrators for computational efficiency

Adaptivity

■ Keep step size below *h*\*

- More RHS and Jacobian calculations
- Can't scale cost specifically to each  $\varphi(hJ)v$  term

Subdivide the projected term

$$\varphi_0(A)v = e^A v = \underbrace{e^B e^B ... e^B v}_{\text{n times}}, \quad B = \frac{1}{n}A$$

- n chosen to balance # projections vs. basis size
- Fewer RHS and Jacobian calculations

# Extending to $\varphi_k$

Tailoring exponential integrators for computational efficiency

Adaptivity

 $u(t) = \varphi_0(tA)v_0 + t\varphi_1(tA)v_1 + ... + t^p\varphi_p(tA)v_p$  can be iteratively computed

$$u(t_{k+1}) = \tau_k^{p} \varphi_p(\tau_k A) w_p + \sum_{j=0}^{p-1} \frac{\tau_k^j}{j!} w_j, \quad t_{k+1} = t_k + \tau_k,$$

where

$$w_j = A^j u(t_k) + \sum_{i=1}^j A^{j-i} \sum_{l=0}^{j-i} \frac{t_k^l}{l!} v_{i+l}, \quad j = 0, 1, ...., p$$

At t=1

$$u(1) = \varphi_0(A)v_0 + \varphi_1(A)v_1 + \dots + \varphi_p(A)v_p$$

- $\bullet$   $\tau_k$  analogous to 1/n
- Sofroniou and Spaletta 06, Niesen and Wright 11



## "Horizontal" vs. "vertical" evaluation

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK method

Adaptivity

Parallelizatio

#### EPIRK4:

$$Y_{1} = y_{0} + a_{11}h\varphi_{1}(\frac{1}{3}hJ)f(y_{0})$$

$$Y_{2} = y_{0} + a_{21}h\varphi_{1}(\frac{2}{3}hJ)f(y_{0}) + a_{22}h\varphi_{2}(\frac{2}{3}hJ)r(Y_{1})$$

$$y_{1} = y_{0} + h\varphi_{1}(hJ)f(y_{0}) + b_{1}h\varphi_{2}(hJ)r(Y_{1})$$

$$+ b_{2}h[6\varphi_{3}(hJ) - \varphi_{2}(hJ)](-2r(Y_{1}) + r(Y_{2}))$$

For "horizontal" (stage-wise)

- All g coefficients must be the same in a stage
- Good if early stages have small *g* coefficients
- More polynomial terms in the iteration

For "vertical" (per-vector)

- Must compute at interim  $u(t_k = g_{ii})$
- Exposes falloff in basis size as go from blue to red



## The "vertical" approach

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outline

Outilli

Adaptivity

$$u(t_k = g_{ij}) = g_{ij}^k \varphi_k(g_{ij}A) v_k + g_{ij}^l \varphi_l(g_{ij}A) v_l$$
  
$$\varphi_k(g_{ij}A) v_k + \varphi_l(g_{ij}A) v_l = ???$$

 $u(t_k = g_{ij}) = g_{ij}^k \varphi_k(g_{ij}A) v_k$  $\varphi_k(g_{ii}A) v_k = u(g_{ii})/g_{ii}^k$ 

## Two example methods

Tailoring exponential integrators for computational efficiency

John Loffeld, Mayya Tokman

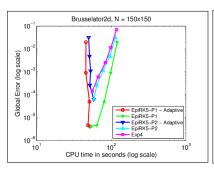
Outlin

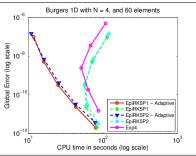
Outline

Adaptivity

Parallelization

Two fifth-order adaptive methods were built with the "vertical" approach - "EPIRK5P1" and "EPIRK5P2"





Adaptivity provides significant savings

## Adaptivity - future work

Tailoring exponential integrators for computational efficiency

John Loffelo Mayya Tokman

Outlin

EPIRK method

Adaptivity

Parallelization

#### Current choice of $\tau$ is suboptimal

- Current error estimator derived from Taylor polynomials
  - Though a free parameter is fit during iteration according to actual error
- More accurate error estimator would improve efficiency
- Use polynomial approximation instead of Krylov?
  - Cost scales linearly with iteration instead of quadratically

#### **Parallelization**

Tailoring exponential integrators for computational efficiency

John Loffeld Mayya Tokman

Outlin

EPIRK method

Adaptivi

Parallelization

- Building SUNDIALS-compatible serial and parallel C++ implementation of EPIRK methods
  - Problems written for SUNDIALS can be run on our integrator
- Compatibility with SUNDIALS forces vector-based parallelization
  - Good scalability
  - Poor arithmetic density
- Three basic operations
  - Linear sum no communication!
  - f(y) and Jv functions problem author's concern
  - Dot products implemented using mpi\_allreduce() high communication!



## Dot products

Tailoring exponential integrators for computational efficiency

Parallelization

Dot products in the Arnoldi iteration are the main communication cost.

- Modified Gram-Schmidt is more stable but requires k reductions for the k+1-th Arnoldi iteration
- Classical Gram-Schmidt is less stable but can be done with one reduction-tree per Arnoldi iteration
  - Big scalability improvement
  - Deal with impending loss of orthogonality by restarting
    - On exponential integrators, this has low penalty
- For difficult problems, resort to Householder orthogonalization
  - Very numerically robust
  - No dot products, scales well
  - High flop count, 2-3x slower than Gram-Schmidt



Tailoring exponential integrators for computational efficiency

> ohn Loffeld Mayya Tokman

Outline

EPIRK

Adaptivit

Parallelization

Thank you!