Leja interpolation for matrix functions

Peter Kandolf

Innovative Time Integrators

May 14, 2012

Newton Aim

Problem

Exponential integrator schemes require the evaluation or approximation of a matrix function acting on vectors. We denote this action by

$$\phi(A)v$$
, $A \in \mathbb{R}^{d \times d}$, $v \in \mathbb{R}^d$,

for some analytic function ϕ .

Newton Aim

Problem

Exponential integrator schemes require the evaluation or approximation of a matrix function acting on vectors. We denote this action by

$$\phi(A)v$$
, $A \in \mathbb{R}^{d \times d}$, $v \in \mathbb{R}^d$,

for some analytic function ϕ .

Ansatz

Polynomial interpolation with Leja points.

Overview

Newton

- Polynomial interpolation with Newton's scheme

Ansatz

Let f be a function, analytic in an open set $K \subset \mathbb{C}$ and $\{\xi_i\}_{i=0}^n$ points in K. The Newton interpolation uses the ansatz

$$p(x) = a_0 + a_1(x - \xi_0) + a_2(x - \xi_0)(x - \xi_1) + \dots$$
$$\dots + a_n(x - \xi_0) \cdots (x - \xi_n).$$

Divided differences

We define the divided differences $f[\xi_j, ..., \xi_k]$ of f at the points $\{\xi_i\}_{i=0}^n$ as

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

Ansatz

Let f be a function, analytic in an open set $K \subset \mathbb{C}$ and $\{\xi_i\}_{i=0}^n$ points in K. The Newton interpolation uses the ansatz

$$p(x) = a_0 + a_1(x - \xi_0) + a_2(x - \xi_0)(x - \xi_1) + \dots$$
$$\dots + a_n(x - \xi_0) \cdots (x - \xi_n).$$

Divided differences

We define the divided differences $f[\xi_j, ..., \xi_k]$ of f at the points $\{\xi_i\}_{i=0}^n$ as

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

Rewritten

With the divided differences the scheme can be written in a more stable and compact from (reduction of round-off errors)

$$p_n(x) = f[\xi_0] + \sum_{j=1}^n f[\xi_0, \dots, \xi_j] \prod_{k=0}^{j-1} (x - \xi_k).$$

Remark

- It is easy to compute p_{n+1} from p_n .
- Optimally conditioned interpolation for Chebyshev points.

Rewritten

With the divided differences the scheme can be written in a more stable and compact from (reduction of round-off errors)

$$p_n(x) = f[\xi_0] + \sum_{j=1}^n f[\xi_0, \dots, \xi_j] \prod_{k=0}^{j-1} (x - \xi_k).$$

Remark

- It is easy to compute p_{n+1} from p_n .
- Optimally conditioned interpolation for Chebyshev points.

Leja points Newton interpolation 2

Rewritten

With the divided differences the scheme can be written in a more stable and compact from (reduction of round-off errors)

$$p_n(x) = f[\xi_0] + \sum_{j=1}^n f[\xi_0, \dots, \xi_j] \prod_{k=0}^{j-1} (x - \xi_k).$$

Remark

- It is easy to compute p_{n+1} from p_n .
- Optimally conditioned interpolation for Chebyshev points.

Overview

Newton

- 2 Introduction to Leja points
- 3 Extension to the matrix case

Aim

Define a sequence of points with same convergence properties as Chebyshev points, but computational advantages

Definition (Leja points)

Let $K \subset \mathbb{C}$ be a compact set then the sequence of Leja points $\{\xi_i\}_{i=0}^{\infty}$ for K is defined recursively as:

- ξ_0 can be chosen arbitrary, normally $|\xi_0| = \max_{z \in K} |z|$
- ξ_m is then defined as

$$\xi_m \in \underset{z \in K}{\operatorname{arg\,max}} \prod_{i=0}^{m-1} |z - \xi_i|, \quad m > 0.$$

Aim

Define a sequence of points with same convergence properties as Chebyshev points, but computational advantages

Definition (Leja points)

Let $K \subset \mathbb{C}$ be a compact set then the sequence of Leja points $\{\xi_i\}_{i=0}^{\infty}$ for K is defined recursively as:

- ξ_0 can be chosen arbitrary, normally $|\xi_0| = \max_{z \in K} |z|$
- ξ_m is then defined as

$$\xi_m \in \underset{z \in K}{\operatorname{arg\,max}} \prod_{i=0}^{m-1} |z - \xi_i|, \quad m > 0.$$

Aim

Define a sequence of points with same convergence properties as Chebyshev points, but computational advantages

Definition (Leja points)

Let $K \subset \mathbb{C}$ be a compact set then the sequence of Leja points $\{\xi_i\}_{i=0}^{\infty}$ for K is defined recursively as:

- ξ_0 can be chosen arbitrary, normally $|\xi_0| = \max_{z \in K} |z|$
- ξ_m is then defined as

$$\xi_m \in \underset{z \in K}{\operatorname{arg\,max}} \prod_{i=0}^{m-1} |z - \xi_i|, \quad m > 0.$$

Aim

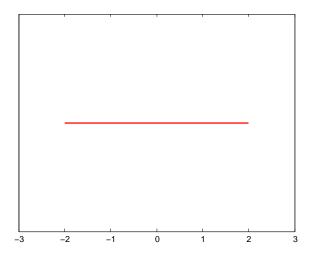
Define a sequence of points with same convergence properties as Chebyshev points, but computational advantages

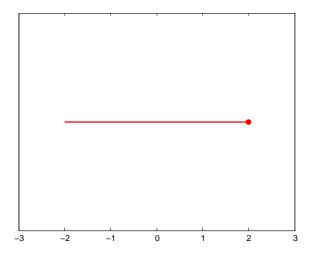
Definition (Leja points)

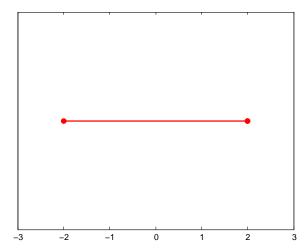
Let $K \subset \mathbb{C}$ be a compact set then the sequence of Leja points $\{\xi_i\}_{i=0}^{\infty}$ for K is defined recursively as:

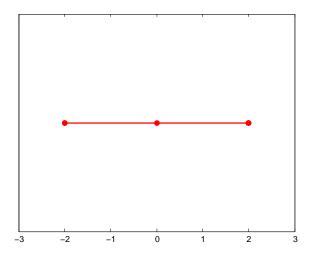
- ξ_0 can be chosen arbitrary, normally $|\xi_0| = \max_{z \in K} |z|$
- ξ_m is then defined as

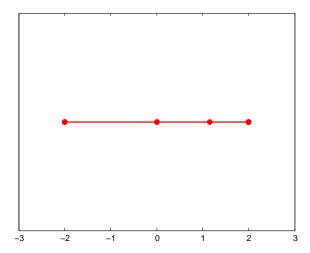
$$\xi_m \in \underset{z \in K}{\operatorname{arg\,max}} \prod_{i=0}^{m-1} |z - \xi_i|, \quad m > 0.$$

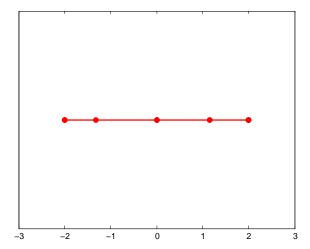


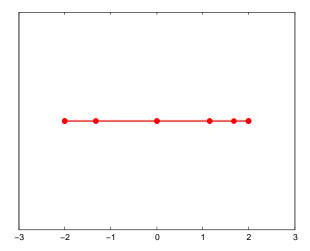


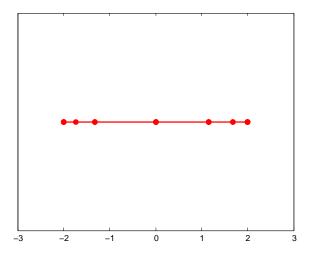


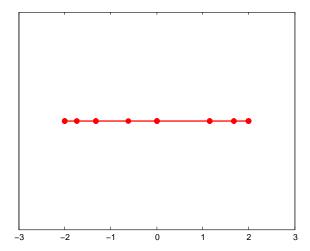


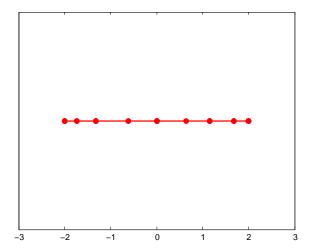


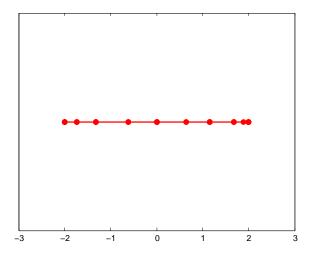


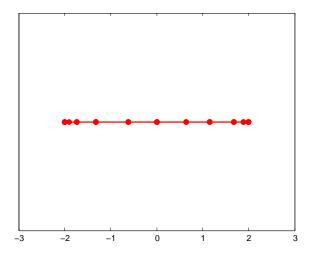












Computation

Computation of Leja points

- For $K \subset \mathbb{C}$ compact, $\{\xi_i\} \in \partial K$.
- Replace K by discrete $S_M \subset \partial K$ with $|S_M| = M$.

• For our purposes m Leja points in [-2, 2].

Computation

Computation of Leja points

- For $K \subset \mathbb{C}$ compact, $\{\xi_i\} \in \partial K$.
- Replace K by discrete $S_M \subset \partial K$ with $|S_M| = M$.

• For our purposes m Leja points in [-2, 2].

Computation

Computation of Leja points

- For $K \subset \mathbb{C}$ compact, $\{\xi_i\} \in \partial K$.
- Replace K by discrete $S_M \subset \partial K$ with $|S_M| = M$.

Remark

• For our purposes m Leja points in [-2, 2].

Convergence

For entire functions super-linear convergence can be shown.

Stability

Let $T: \mathbb{C}^{m+1} \to \mathbb{P}_m$ map a sequence of points $\{\xi_i\}$ to the interpolation polynomial in Newton form.

- \bullet cond(T) grows exponentially for arbitrary points.
- For Leja points we get $\lim_{m\to\infty} \operatorname{cond}(T)^{1/m} = 1$.

Convergence

For entire functions super-linear convergence can be shown.

Stability

Let $T: \mathbb{C}^{m+1} \to \mathbb{P}_m$ map a sequence of points $\{\xi_i\}$ to the interpolation polynomial in Newton form.

- \bullet cond(T) grows exponentially for arbitrary points.
- For Leja points we get $\lim_{m\to\infty} \operatorname{cond}(T)^{1/m} = 1$.

Convergence

For entire functions super-linear convergence can be shown.

Stability

Let $T: \mathbb{C}^{m+1} \to \mathbb{P}_m$ map a sequence of points $\{\xi_i\}$ to the interpolation polynomial in Newton form.

- \bullet cond(T) grows exponentially for arbitrary points.
- For Leja points we get $\lim_{m\to\infty} \operatorname{cond}(T)^{1/m} = 1$.

Convergence

For entire functions super-linear convergence can be shown.

Stability

Let $T: \mathbb{C}^{m+1} \to \mathbb{P}_m$ map a sequence of points $\{\xi_i\}$ to the interpolation polynomial in Newton form.

- \bullet cond(T) grows exponentially for arbitrary points.
- For Leja points we get $\lim_{m\to\infty} \operatorname{cond}(T)^{1/m} = 1$.

Newton

Example for cond(T) on [-2, 2]

Nodes	equidistant	rand. chosen	Chebyshev	Leja
10	1.79e + 01	8.27e+06	2.43e+00	4.49e+00
50	1.86e + 12	3.88e+40	3.45e+00	1.40e + 01
100	8.94e + 26	8.18e + 74	3.89e+00	2.01e+01
150	6.19e + 41	8.54e + 115	4.15e+00	3.99e+01

Example for cond(T) on [-2, 2]

Nodes	equidistant	rand. chosen	Chebyshev	Leja
10	1.79e + 01	8.27e+06	2.43e+00	4.49e+00
50	1.86e + 12	3.88e + 40	3.45e+00	1.40e+01
100	8.94e + 26	8.18e + 74	3.89e+00	2.01e+01
150	6.19e + 41	8.54e + 115	4.15e+00	3.99e+01

Example for cond(T) on [-2, 2]

Nodes	equidistant	rand. chosen	Chebyshev	Leja
10	1.79e + 01	8.27e+06	2.43e+00	4.49e+00
50	1.86e + 12	3.88e + 40	3.45e + 00	1.40e + 01
100	8.94e + 26	8.18e + 74	3.89e + 00	2.01e+01
150	6.19e + 41	8.54e + 115	4.15e + 00	3.99e+01

Example for cond(T) on [-2, 2]

Nodes	equidistant	rand. chosen	Chebyshev	Leja
10	1.79e+01	8.27e+06	2.43e+00	4.49e+00
50	1.86e + 12	3.88e + 40	3.45e + 00	1.40e + 01
100	8.94e + 26	8.18e + 74	3.89e + 00	2.01e+01
150	6.19e + 41	8.54e + 115	4.15e + 00	3.99e + 01

Example for cond(T) on [-2, 2]

Nodes	equidistant	rand. chosen	Chebyshev	Leja
10	1.79e+01	8.27e+06	2.43e+00	4.49e+00
50	1.86e + 12	3.88e + 40	3.45e + 00	1.40e + 01
100	8.94e + 26	8.18e + 74	3.89e + 00	2.01e+01
150	6.19e + 41	8.54e + 115	4.15e+00	3.99e + 01

Overview

Newton

- 2 Introduction to Leja points
- 3 Extension to the matrix case

Preliminaries

- Let f be analytic in $K = B(0, R_{max}) \subset \mathbb{C}$
- Let $\{p_m\} \in \mathbb{P}_m$ be the polynomial interpolation to f in the

Preliminaries

- Let f be analytic in $K = B(0, R_{max}) \subset \mathbb{C}$
- Let $\{p_m\} \in \mathbb{P}_m$ be the polynomial interpolation to f in the Leja points of K

Preliminaries

- Let f be analytic in $K = B(0, R_{max}) \subset \mathbb{C}$
- Let $\{p_m\} \in \mathbb{P}_m$ be the polynomial interpolation to f in the Leja points of K

The sequence $\{p_m\}$ converges asymptotically like the best uniform approximation polynomial to f in K.

Convergence

Let $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ and $\sigma(A) \subset B(0, R)$ for some $0 < R < R_{max}$. Then $\{p_m(A)v\}$ converges to f(A)v.

$$\limsup_{m \to \infty} \|f(A)v - p_m(A)v\|_2^{1/m} = 0$$

Convergence

Let $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$ and $\sigma(A) \subset B(0,R)$ for some $0 < R < R_{max}$. Then $\{p_m(A)v\}$ converges to f(A)v.

Corollary

For an entire functions f this means that

$$\limsup_{m\to\infty} \|f(A)v - p_m(A)v\|_2^{1/m} = 0$$

and therefore super-linear convergence.

Overview

Newton

- 2 Introduction to Leja points
- 3 Extension to the matrix case
- Computation

Computation of φ -functions

Leja points

Problem

We want to compute $\varphi_k(hA)v$ for the entire functions

$$\varphi_k(\tau z) = \tau^{-k} \int_0^{\tau} e^{(\tau - s)z} \frac{s^{k-1}}{(k-1)!} ds, \quad k \ge 1.$$

up to a specified tolerance.

Newton

Leja interpolation of φ -functions

Input: A, v, h, tol, k

Compute rough estimate of spectrum $h\sigma(A)$:

$$(-a, -ib), (0, -ib), (0, ib), (a, ib)$$
 $a, b \ge 0$

If: $a \ge b$ Newton interpolation on real Leja points in [-a, 0]

a < b Newton interpolation on conjugate pairs of Leja points in $D = \{z \in D : \Re z = -a/2, \Im z \in [-b, b]\}$ (real arithmetic).

Output: approximation of $\varphi_k(hA)v$ with accuracy to

Newton

Leja interpolation of φ -functions

Input: A, v, h, tol, k

Compute rough estimate of spectrum $h\sigma(A)$:

$$(-a, -ib), (0, -ib), (0, ib), (a, ib)$$
 $a, b \ge 0$

Newton

Leja interpolation of φ -functions

Input: A, v, h, tol, k

Compute rough estimate of spectrum $h\sigma(A)$:

$$(-a, -ib), (0, -ib), (0, ib), (a, ib)$$
 $a, b \ge 0$

If: $a \geq b$ Newton interpolation on real Leja points in [-a, 0]

Newton

Leja interpolation of φ -functions

Input: A, v, h, tol, k

Compute rough estimate of spectrum $h\sigma(A)$:

$$(-a, -ib), (0, -ib), (0, ib), (a, ib)$$
 $a, b \ge 0$

If: $a \ge b$ Newton interpolation on real Leja points in [-a, 0]

a < b Newton interpolation on conjugate pairs of Leja points in $D = \{z \in D : \Re z = -a/2, \Im z \in [-b, b]\}$ (real arithmetic).

Output: approximation of $\varphi_k(hA)v$ with accuracy to

Newton

Leja interpolation of φ -functions

Input: A, v, h, tol, k

Compute rough estimate of spectrum $h\sigma(A)$:

$$(-a, -ib), (0, -ib), (0, ib), (a, ib)$$
 $a, b \ge 0$

If: $a \ge b$ Newton interpolation on real Leja points in [-a, 0]

a < b Newton interpolation on conjugate pairs of Leja points in $D = \{z \in D : \Re z = -a/2, \Im z \in [-b, b]\}$ (real arithmetic).

Output: approximation of $\varphi_k(hA)v$ with accuracy tol

Newton

Newton interpolation

Computation of divided differences d_i at shifted $\varphi_k(h(c - \gamma \xi_i))$.

while:
$$\|e_m\| \le tol$$
 $q_m = (hA - \xi_{m-1})q_{m-1},$ $p_m(hA)v = p_{m-1}(hA)v + d_mq_m,$ $\|e_m\| = \|p_m(hA)v - p_{m-1}(hA)v\| = |d_m| \cdot \|q_m\|$

Newton

Newton interpolation

Computation of divided differences d_i at shifted $\varphi_k(h(c-\gamma\xi_i))$. Initialise: $q_0 = v$, $p_0(hA)v = d_0q_0$

while:
$$||e_m|| \leq tol$$

$$q_{m} = (hA - \xi_{m-1})q_{m-1},$$

$$p_{m}(hA)v = p_{m-1}(hA)v + d_{m}q_{m},$$

$$||e_{m}|| = ||p_{m}(hA)v - p_{m-1}(hA)v|| =$$

return:
$$p_m(hA)v$$
, $||e_m|$

Newton

Newton interpolation

Computation of divided differences d_i at shifted $\varphi_k(h(c-\gamma\xi_i))$.

Initialise: $q_0 = v$, $p_0(hA)v = d_0q_0$

while: $||e_m|| \leq tol$

$$q_m = (hA - \xi_{m-1})q_{m-1},$$

 $p_m(hA)v = p_{m-1}(hA)v + d_mq_m,$

$$||e_m|| = ||p_m(hA)v - p_{m-1}(hA)v|| = |d_m| \cdot ||q_m||$$

Newton interpolation

Computation of divided differences d_i at shifted $\varphi_k(h(c - \gamma \xi_i))$.

Initialise: $q_0 = v$, $p_0(hA)v = d_0q_0$

while: $||e_m|| \leq tol$

$$q_m = (hA - \xi_{m-1})q_{m-1},$$

 $p_m(hA)v = p_{m-1}(hA)v + d_mq_m,$

$$||e_m|| = ||p_m(hA)v - p_{m-1}(hA)v|| = |d_m| \cdot ||q_m||$$

return: $p_m(hA)v$, $||e_m||$

Example

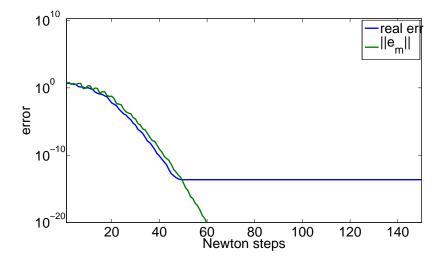
Example (2D advection-diffusion)

Computation of $e^{hA}v$ with polynomial interpolation in Leja points for:

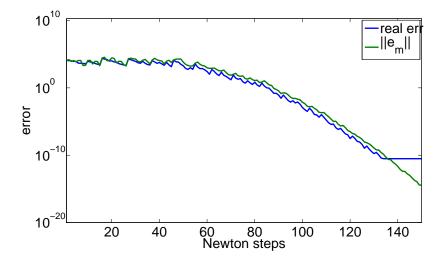
- *dimension of A:* 10.000 × 10.000,
- Peclet number 0.303,
- $v = [1, ..., 1]^{\mathsf{T}}$,
- h = 5e-4,
- tolerance 1e-12.

Leja points

Example - 2D advection-diffusion, h = 5e-4



Example - 2D advection-diffusion, h = 30e-4



Substepping

Substeps

To overcome the humb problem we compute L substeps and recover $\varphi_k(hA)v$ from $\varphi_k(\tau hA)v$ with $\tau=1/L$.

Example

$$y = v$$
 $for j = 1 : L$
 $y = e^{\frac{h}{L}A}y$
 end

Substepping

Substeps

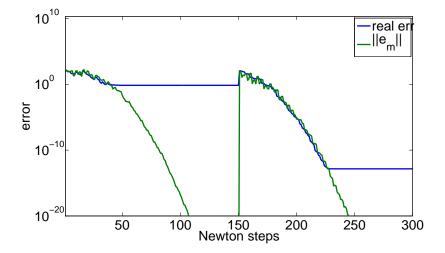
To overcome the humb problem we compute L substeps and recover $\varphi_k(hA)v$ from $\varphi_k(\tau hA)v$ with $\tau=1/L$.

Example

$$y = v$$

for $j = 1 : L$
 $y = e^{\frac{h}{L}A}y$
end

Example - 2D advection-diffusion, h = 30e-4



Overview

Newton

- 1 Polynomial interpolation with Newton's scheme
- 2 Introduction to Leja points
- 3 Extension to the matrix case
- 4 Computation
- 5 Future work

Newton

New error estimate

- shows correct asymptotic behaviour,
- obtains the accurate number of substeps,
- obtains the minimal degree of interpolation.

Newton

New error estimate

- shows correct asymptotic behaviour,
- obtains the accurate number of substeps,
- obtains the minimal degree of interpolation.

Newton

New error estimate

- shows correct asymptotic behaviour,
- obtains the accurate number of substeps,
- obtains the minimal degree of interpolation.

Newton

New error estimate

- shows correct asymptotic behaviour,
- obtains the accurate number of substeps,
- obtains the minimal degree of interpolation.

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Newton

Parallelisation

- primary matrix-vector multiplications
- multiply-accumulate functionality
- parallel data access
- data transfer
- data types

Standard computation

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

- easy to implement with low storage demands
- vulnerable to round-off errors
- stable computation via matrix function

Standard computation

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

- easy to implement with low storage demands
- vulnerable to round-off errors
- stable computation via matrix function

Standard computation

Leja points

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

- easy to implement with low storage demands
- vulnerable to round-off errors
- stable computation via matrix function

Standard computation

Leja points

$$f[\xi_j,\ldots,\xi_k] := \frac{f[\xi_{j+1},\ldots,\xi_k] - f[\xi_j,\ldots,\xi_{k-1}]}{\xi_k - \xi_i}, \quad f[\xi_i] = f(\xi_i).$$

- easy to implement with low storage demands
- vulnerable to round-off errors
- stable computation via matrix function

Stable dd via matrix function [M. Caliari 2007]

Matrix computation

Leja points

Divided differences $\{d_i\}$ of $f(h(c + \gamma \xi_i))$ at $\xi_i \in [-2, 2]$ are the first column of the matrix function $f(H_m)$ for

$$H_m = h(cI_{m+1} + \gamma T_m), \quad T_m = \begin{bmatrix} \xi_0 \\ 1 & \xi_2 \\ & 1 & \ddots \\ & & \ddots & \ddots \\ & & & 1 & \xi_m \end{bmatrix}$$

Stable dd via matrix function [M. Caliari 2007]

Computation of $\varphi(H_m)$

- scale H_m by $\tau = 1/L$ s.t. $\max_i |\tau x_i| < 1.59$ for $x_i = h(c + \gamma \xi_i)$,
- compute $\varphi(\tau H_m)$ by Taylor expansion,
- recover, in L steps, $\varphi(H_m)e_1$ via recurrence relation.

Newton

Stable dd via matrix function [M. Caliari 2007]

Computation of $\varphi(H_m)$

- scale H_m by $\tau = 1/L$ s.t. $\max_i |\tau x_i| < 1.59$ for $x_i = h(c + \gamma \xi_i)$,
- compute $\varphi(\tau H_m)$ by Taylor expansion,
- recover, in L steps, $\varphi(H_m)e_1$ via recurrence relation.

Newton

Stable dd via matrix function [M. Caliari 2007]

Computation of $\varphi(H_m)$

- scale H_m by $\tau = 1/L$ s.t. $\max_i |\tau x_i| < 1.59$ for $x_i = h(c + \gamma \xi_i)$,
- compute $\varphi(\tau H_m)$ by Taylor expansion,
- recover, in L steps, $\varphi(H_m)e_1$ via recurrence relation.

Thank you for your attention. Enjoy the wine!

L. Reichel, Newton interpolation at Leja points, *BIT. Numerical Mathematics*, 1990

M. Caliari, M. Vianello, L. Bergamaschi, Interpolating discrete advection-diffusion propagators at Leja sequences, *J. Comput. Appl. Math.*, 2004

M. Caliari, Accurate evaluation of divided differences for polynomial interpolation of exponential propagators, *Computing*, 2007