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Abstract

In this thesis we show convergence for two alternating minimisation algorithms for
dictionary learning under mild conditions. To be precise we prove convergence of the
Method of Optimal Directions (MOD) and the algorithm for Online Dictionary Learning
(ODL) for data models with non-uniform distribution of the supports of sparse coeffi-
cients in combination with non-homogeneous distribution of the coefficient amplitudes.
The innovation lies in including coefficients with non-homogeneous sizes, which is a
generalization of the results in [24], in which the coefficient amplitudes are uniformly
distributed. We prove that a well-behaved initial dictionary contracts to the generating
dictionary with geometric convergence rate, if either their distance is not larger than
1/ log(K) or if it is assured that each component of the initial dictionary is associated
with exactly one element of the generating dictionary.
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1. Introduction

In the field of signal processing and machine learning, dictionary learning plays an important
role for sparse representations and analysis of data. The goal of dictionary learning is to
find a dictionary Φ = (ϕ1, . . . , ϕK) ∈ Rd×K for a number of given signals y ∈ Rd, which are
stored as columns of a matrix Y = (y1, . . . , yN ), such that

Y ≈ ΦX, with X ∈ RK×N sparse.

The coefficient matrix X = (x1, . . . , xN ) being sparse means, that most of the entries of
each xn are zero. There is a vast variety of algorithms, which are trying to solve this
problem [11, 3, 10, 27, 15, 16, 17, 29, 25] and also in a theoretical context, research is
progressively increasing [12, 30, 4, 26, 13, 6, 5, 1, 2, 31, 32, 7, 28, 20, 19]. In this thesis we
will discuss alternating optimisation algorithms, which use as common starting point the
following programme:

argminΨ,X∥Y −ΨX∥2F s. t. X ∈ S and ∥ψk∥2 = 1 for all k, (1)

where S is a set which imposes sparsity on the coefficient matrixX, for example by assuming
that every xn has at most S ≪ d coefficients unequal to zero. Alternating optimisation
algorithms derive their name from alternating between updating the coefficient matrix and
updating the dictionary. Concretely this means for a fixed dictionary Ψ the coefficient
update can be described as

X̂ = argminX ∥Y −ΨX∥2F = argminX
∑
n

∥yn −Ψxn∥22 s.t. ∥xn∥0 ≤ S, (2)

whereas for a fixed coefficient matrix X̂ the update of the dictionary underlies the following
scheme:

argminΨ ∥Y −ΨX̂∥2F =: f(Ψ) s.t. ∥ψk∥2 = 1. (3)

In this master thesis we study two alternating optimisation algorithms for dictionary learn-
ing, namely the Method of Optimal Directions (MOD), [9], and the algorithm for Online
Dictionary Learning (ODL), [17]. The former addresses the problem in (3) by neglecting
the unit norm constraint on the atoms and which has a closed form solution:

argminΨ f(Ψ) = Y X̂†.

After updating the dictionary as in (1) we enforce the unit norm constraint by scaling with
an appropriate diagonal matrix D, which then means Y X̂†D. On the other hand the ODL
algorithm approaches the problem in (3) by projected block coordinate descent. Starting
with the gradient we get

∇Ψf(Ψ) = −
∑

(yn −Ψx̂n) x̂
∗
n = −Y X̂∗ +ΨX̂X̂∗,

which leads to the following gradient step, where Λ defines a diagonal matrix with the
length of the step sizes and D as a diagonal matrix enforcing the unit norm as above:[

Ψ+
(
Y X̂∗ −ΨX̂X̂∗

)
· Λ
]
·D =

[
ΨΛ−1 − Y X̂∗ +ΨX̂X̂∗

]
· ΛD. (4)
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Choosing Λ−1 as diag(X̂X̂) results in the dictionary update scheme of ODL, [17].
Contribution: In the recent paper [24] convergence of the MOD and ODL algorithm was
derived for a signal model which includes non-uniform distribution of the supports of sparse
coefficients. The coefficient size in the signal model of [24] is independent and identically
distributed. We extend these results by including non-homogeneous distributions of the
coefficient amplitudes and obtain a generalisation of [24].

2. Notation and setting

Since this master thesis is a generalisation of [24], we follow their notation and setting.
Let A ∈ Rd×K , B ∈ RK×m and Ak as well as Ak be the k-th column and row of A
respectively. We denote by A∗ the transpose of A. We will use the following operator
norms for 1 ≤ p, q, r ≤ ∞

∥A∥p,q := max
∥x∥q=1

∥Ax∥p.

Note that ∥AB∥p,q ≤ ∥A∥q,r∥B∥r,p and ∥Ax∥q ≤ ∥A∥q,p∥x∥p. Here, we mainly use

∥A∥ := ∥A∥2,2,

for the largest absolute singular values of A. Sometimes we also employ

∥A∥2,1 = max
k∈{1,...,K}

∥Ak∥2 and ∥A∥∞,2 = max
k∈{1,...,d}

∥Ak∥2,

which denote the maximal ℓ2 norm of a column resp. row of A. Throughout this thesis we
often apply the following notation

v := min
i

|vi| and v := max
i

|vi| , (5)

where v ∈ RK . We denote by Dv = diag(v) ∈ RK×K the corresponding square diagonal
matrix and often abbreviate Dv·w := Dv · Dw for w ∈ RK . For the so called support
I ⊆ K := {1, . . . ,K} we let AI be the submatrix with columns indexed by I and AI,I

the submatrix with rows and columns indexed by I. In this context we often use the
zero-padding operator RI := (II)∗ ∈ R|I|×K , meaning

AI = AR∗
I . (6)

The zero-padding operator enables us to embed the matrix AI ∈ Rd×|I| into Rd×K via
AIRI ∈ Rd×K . We follow the convention that subscripts have higher priority than trans-
position, e.g. A∗

I = (AI)
∗. Furthermore let 1I ∈ RK be the vector with entry 1 on position

i, if i ∈ I and entry 0 otherwise. We use ⊙ to denote the Hadamard Product or pointwise
product of two matrices or vectors of the same dimension.
As already mentioned in the introduction Φ ∈ Rd×K is the generating dictionary, which we
want to recover with the dictionary learning algorithms (MOD, ODL) which have as input
the current guess Ψ ∈ Rd×K . We denote the coefficient matrix by X. For any permutation
matrix P we get

Y = ΦX ⇒ Y = (ΦP )(PX). (7)
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So we can assume that Ψ is ordered such that maxj |⟨ϕi, ψj⟩| = |⟨ϕi, ψi⟩|. In a similar way
we have a sign ambiguity, since Y = ΦX implies Y = (ΦD)(DX) for Dii = ±1. Hence wlog
we can assume that Ψ is signed, such that αi := ⟨ϕi, ψi⟩ ≥ 0 for all i ∈ [K]. We define the
ℓ2-distance between dictionary elements as

ε(Ψ,Φ) := ∥Ψ− Φ∥2,1 = max
i

∥ψi − ϕi∥2 ⇔ ε(Ψ,Φ)2 = 2− 2α, (8)

which we frequently abbreviate as ε instead of ε(Ψ,Φ). We also abbreviate Z := Ψ − Φ,
which denotes the difference matrix between the generating dictionary Φ and the current
guess Ψ. Given two vectors with positive entries β, π ∈ RK , we define the distance δ(Ψ,Φ)
between Φ and Ψ as

δ(Ψ,Φ) :=max
{
∥(Ψ− Φ)D√

π·β∥β−1/2, ∥(Ψ− Φ)D√
β∥2,1β−1/2

}
(9)

=max
{
∥ZD√

π·β∥β−1/2, ∥ZD√
β∥2,1β−1/2

}
. (10)

The concrete choice for β, π ∈ RK will be clarified in the signal model in (15), which
we discuss in the next chapter. Further, if it is clear from context we will abbreviate
δ(Ψ,Φ) as δ. Moreover we denote the maximal absolute inner product between two non-
corresponding atoms as the cross-coherence µ(Ψ,Φ) := maxi ̸=j |⟨ψi, ϕj⟩| and a scaled version

as µ√
β(Ψ,Φ) := maxi ̸=j |⟨ψi, ϕj⟩ · β1/2j | . We abbreviate µ√

β(Φ,Φ) as µ√
β(Φ).

3. Probabilistic model

In order to simulate in a realistic way, how the non-zero coefficients are chosen, we want
them to follow a non-uniform distribution, which is inspired for instance by [19]. Hence
we define our probabilistic model for the sparse supports by the following two definitions
similar to [24, Definition 1 and 2].

Definition 1 (Poisson and rejective sampling [24]) Let δk denote a sequence of K
independent Bernoulli 0 − 1 random variables with expectations 0 ≤ pk ≤ 1 such that∑K

k=1 pk = S and denote by PB the probability measure of the corresponding Poisson sam-
pling model. We say the support I follows the Poisson sampling model, if I := {k | δk = 1}
and each support I ⊆ K is chosen with probability

PB(I) =
∏
i∈I

pi
∏
j /∈I

(1− pj). (11)

We say our support I follows the rejective sampling model, if each support I ⊆ K is chosen
with probability

PS(I) := PB(I | |I| = S). (12)

If it is clear from the context, we write P(I) instead of PS(I).

As has already been pointed out in [24] the Poisson sampling has the major comfort that
the probabilities of the atoms appearing in the support are independent from each other,
but only has on average S-sparse supports. Unfortunately our requirement on the model is
that the support is exactly S-sparse. Therefore we use the second model which satisfies this
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condition and can be related to the Poisson sampling using [23], restated in Theorem 14.
This proves to be quite valuable, because we can typically reduce estimates for rejective
sampling to estimates for Poisson sampling. We continue by defining our signal model based
on rejective sampling.

Definition 2 (Signal model) Let Φ = (ϕ1, . . . , ϕK) ∈ Rd×K be the generating dictionary
with K normalized atoms ϕi ∈ Rd. Additionally we choose the support I = {i1, . . . iS} ⊆ K
according to the rejective model (12) with parameters p1, . . . , pK such that

∑K
i=1 pi = S and

0 < pk ≤ 1/6. Let the signals be modelled as

y = ΦIxI =
∑
i∈I

ϕixi, xi = ciσi, (13)

where the coefficients of the sequence c = (ci)i ∈ RK are independent, bounded random
variables ci with 0 < cmin ≤ ci ≤ cmax ≤ 1 and the sign sequence σ ∈ {−1, 1}K is a
Rademacher sequence, i.e. its entries σi are i.i.d with P(σi = ±1) = 1/2. Supports,
coefficients and signs are modeled as independent and can be written as

x = 1I ⊙ c⊙ σ. (14)

We place emphasis on the coefficient sequence c, which does not have to be i.i.d as in [24,
Definition 2] and therefore is more general. To characterise our model we define the vectors
β, π ∈ RK via

βi := E[c2i ] and πi := P(i ∈ I), (15)

and the square diagonal matrices D√
β, D√

π ∈ RK×K as

D√
β := diag((

√
βi)i) and D√

π := diag((
√
πi)i),

which we use excessively throughout this master thesis. Sometimes we also employ the
following notation for a matrix M

Ṁ :=MD√
β and M̈ := D√

βMD√
β,

in order to improve the readability of some calculations. With the help of our signal model
we can now sketch why the output dictionary of one step of both the algorithms should be
close to the generating dictionary Φ.
The update step before normalisation can be written as

MOD: Y X̂∗(X̂X̂∗)−1 = ΦXX̂∗(X̂X̂∗)−1,

ODL:
1

N

[
Y X̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗)

]
=

1

N

[
ΦXX̂∗ −ΨX̂X̂∗ +Ψdiag(X̂X̂∗)

]
,

where we use that Y = ΦX. We define two averages of random matrices as

A :=
1

N
XX̂∗ =

1

N

N∑
n=1

xnx̂
∗
n and B :=

1

N
X̂X̂∗ =

1

N

N∑
n=1

x̂nx̂
∗
n, (16)
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which lead to the following expressions of the update step

MOD: ΦAB−1,

ODL: ΦA−Ψ[B − diag(B)].

Since we know the empirical estimators A and B are approximately E[xx̂] and E[x̂x̂] resp.,
we have a closer look at these expectations. We assume that thresholding succeeds to find
the correct support, meaning Î = I. Note that by using the zero-padding operator R∗

I we
obtain

xx̂∗ = x(R∗
IΨ

†
Iy)

∗ = xx∗Φ∗(Ψ†
I)

∗RI

We assume that ΨI is well conditioned, which means that Ψ∗
IΨI ≈ I and therefore implies

that Ψ†
I ≈ Ψ∗

I . So we obtain

xx̂∗ ≈ xx∗Φ∗ΨIRI = xx∗Φ∗ΨR∗
IRI = xx∗Φ∗Ψdiag(1I).

According to our model we have x = 1I ⊙ c⊙ σ, where I, c, σ are independent, so

Ec,σ[xx
∗] = Ec[cc

∗]⊙ Eσ[σσ
∗]⊙ (1I1

∗
I) = Dβ diag(1I) = diag(1I)Dβ,

and thus

E[xx̂∗] = EI,c,σ[xx̂
∗] ≈ EI [diag(1I)DβΦ

∗Ψdiag(1I)] = (DβΦ
∗Ψ)⊙ EI [1I1

∗
I ].

The matrix EI [1I1
∗
I ] is diagonally dominant, which can be seen since

(EI [1I1
∗
I ])ij = P(i, j ∈ I) ≈ P(i ∈ I) · P(j ∈ I) ≪ P(i ∈ I) = (EI [1I1

∗
I ])ii,

meaning
E[1I1∗I ] ≈ Dπ + ππ∗ ≈ Dπ.

After analysing B in a similar manner and using that Dα = diag(Φ∗Ψ) we get

A ≈ E[xx̂∗] ≈ (DβΦ
∗Ψ)⊙Dπ = Dπ·αβ and B ≈ E[x̂x̂∗] ≈ Dπ·α2β.

Substituting this into the update steps of MOD and ODL before normalisation yields

ΦAB−1 ≈ ΦD−1
α and ΦA−Ψ[B − diag(B)] ≈ ΦDπ·α·β. (17)

This rough analysis provides insight into the MOD and ODL algorithm and suggests that
both algorithms should converge to the generating dictionary. The main job is now to
quantify the errors and show that they are small which proves our main result.
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4. Main result and proof

Our main goal is to prove the following theorem, which is a generalization of Theorem 3
in [24].

Theorem 3 We assume that the given signals conform to the signal model in Definition 2.
Additionally we define

α := min
k

|⟨ψk, ϕk⟩| = 1− ε2/2, γ :=
cmin

cmax
and ρ = 2κ2S2γ−2α−2π−3/2, (18)

where κ2 ≥ 2. Let δ∗ be the desired recovery accuracy, chosen such that for two universal
constants C, n with C ≤ 42 and n ≤ 130, δ∗ satisfies δ∗C log(nKρ/δ∗) ≤ δ. Abbreviate
ν = 1/

√
log(nKρ/δ∗) < 1 meaning δ∗ ≤ γν2/C. If the atom-wise distance ε = ε(Ψ,Φ) of

the current guess Ψ to the generating dictionary Φ satisfies

max{ν∥ΦD√
π·β∥, µ√

β(Φ)} ≤
(
1− ε2

2

)
·

γβ1/2

4C log(nKρ/δ∗)
(19)

and the current guess Ψ additionally satisfies either

max{ν∥ΨD√
π·β∥, µ√

β(Ψ), µ√
β(Ψ,Φ)} ≤

(
1− ε2

2

)
·

γβ1/2

4C log(nKρ/δ∗)
(20)

or δ(Ψ,Φ) ≤ γ

C log(nKρ/δ∗)
=: δ◦, (21)

then the updated and normalised dictionary Ψ̂, which is output by ODL or MOD, satisfies

δ(Ψ̂,Φ) ≤ 1

2
· (δ∗/2 + min{δ◦, δ(Ψ,Φ)}) =:

∆

2
, (22)

except with probability

60K exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
. (23)

Before we proceed with the proof of the theorem, we provide an explanation of what we
have achieved and compare it with [24]. In Theorem 3 we have generalised the result of
[24], since for a coefficient sequence c that is i.i.d. as in [24], we obtain the same result as
in [24]. This can be seen, since in the i.i.d. case, the diagonal matrix D√

β can be simplified
to a constant times the identity, which means that ∥AD√

β∥ = β1/2 · ∥A∥, for any matrix

A. This means that the factor β1/2 in (19) and (20) cancels out for all norms and also for
µ√

β(Ψ,Φ), µ√
β(Φ) and µ√

β(Ψ), which we illustrate in detail for µ√
β(Ψ,Φ):

µ√
β(Ψ,Φ) = max

i ̸=j
|⟨ψi, ϕj⟩ · β1/2j | = max

i ̸=j
|⟨ψi, ϕj⟩| · β1/2 ≤ αγν2β1/2/(4C).

The inequality implies µ(Ψ,Φ) ≤ αγν2/(4C), meaning the condition of [24]. In the second
regime (21) it cancels out indirectly, because of our definition of δ, which is

δ(Ψ,Φ) := max
{
∥(Ψ− Φ)D√

π·β∥β−1/2, ∥(Ψ− Φ)D√
β∥2,1β−1/2

}
.
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One important difference between this thesis and [24] is that Dβ cannot be treated as a
constant anymore. In [24] it was often used that for constant Dβ we have D±1

β MD∓1
β =M

for any square matrix, which is not true for β not being constant. So in order to deal with
that we have to revise the proof strategy in [24] and rescale our matrices A,B from (16) as
D−1√

β AD
−1√
β rather than AD−1

β and similar for B.
Proof [Proof of Theorem 3] We define

B̄ := (D√
π·β·α)

−1B (D√
π·β·α)

−1 , (24)

Ā := (D√
π·β)

−1A(D√
π·β·α)

−1, (25)

and summarize the results of Lemma 6 to 9, which hold true except with the probability
stated in (23): First by Lemma 6 and 7 we obtain

∥Ā− I∥2,2 ≤
∆

8
and ∥B̄ − I∥2,2 ≤

∆

4γ
, (26)

Second by Lemma 8 and 9 we have for all ℓ ∈ {1, · · · ,K} and Λ := max

{
γανβ1/2

4C , ∥ΨD√
π·β∥
}

that

∥ΦA (D√
β·π·α)

−1 eℓ − ϕℓβ
−1/2
ℓ ∥2 ≤

∆

8
and Λ · ∥IℓB̄eℓπ

−1/2
ℓ ∥2 ≤ β1/2 · ∆

8
. (27)

Inspired by 17 we define a scaled version of the updated dictionary Ψ̄ as Ψ̂Dπ·β·α for ODL

and as Ψ̂Dα for MOD. We prove that Ψ̄ contracts to the generating dictionary Φ and show
that this stays true even after normalising Ψ̄, which leads to contraction of Ψ̂ to Φ. To put
it more explicitly we start by proving the following bounds for sℓ either being 1 for ODL or
e∗ℓ B̄

−1eℓ for MOD:∥∥(Ψ̄− Φ)D√
π·β

∥∥ · β−1/2 ≤ ∆/4 and max
ℓ

∥(ψ̄ℓ − sℓϕℓ)β
−1/2
ℓ ∥ · β−1/2 ≤ ∆/3. (28)

ODL: Since in (17) we have seen that ΦA−ΨB +Ψdiag(B) ≈ Φ (Dπ·β·α) we define

Ψ̄ := (ΦA−ΨB +Ψdiag(B)) (Dπ·β·α)
−1 (29)

In order to use the bounds from (26) and (27) we write

(Ψ̄− Φ)D√
π·β = ΦA(D√

π·β·α)
−1 −Ψ[B − diag(B)] (D√

π·β·α)
−1 − ΦD√

π·β

= ΦD√
π·β ·
[
(D√

π·β)
−1A(D√

π·β·α)
−1 − I

]
−ΨD√

π·β·α · [(D√
π·β·α)

−1B(D√
π·β·α)

−1 − I]
+ ΨD√

π·β·α · [(D√
π·β·α)

−1 diag(B)(D√
π·β·α)

−1 − I]
= ΦD√

π·β ·
[
Ā− I

]
−ΨD√

π·β ·Dα · [B̄ − I] + ΨD√
π·β ·Dα · [diag(B̄)− I]. (30)

Before we continue with estimating the operator norm of the expression above we show that
∥ΨD√

π·β∥ ≤ 2γνβ1/2/C in both regimes. For δ > δ◦ the assumption (20) can be used, while
in the second regime, δ ≤ δ◦ = γν2/C, we rewrite the term and use assumption (19) to get

∥ΨD√
π·β∥ ≤ ∥ΦD√

π·β∥+ ∥(Ψ− Φ)D√
π·β∥ ≤ ∥ΦD√

π·β∥+ δβ1/2

≤ ∥ΦD√
π·β∥+ δ◦β

1/2

≤ αγνβ1/2/(4C) + γν2/C · β1/2 ≤ 2γνβ1/2/C.
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h Since ∥ diag(B̄)− I∥ ≤ ∥B̄− I∥ and ∥Dα∥ ≤ 1 we can use both bounds from (26) to obtain

∥(Ψ̄− Φ)D√
π·β∥ ≤ ∥ΦD√

π·β∥ · ∥Ā− I∥+ 2 · ∥ΨD√
π·β∥ · ∥Dα∥ · ∥B̄ − I∥

≤
αγνβ1/2

4C
· α∆

8
+ 2 ·

2γνβ1/2

C
· γ

−1 ·∆
4

≤ β1/2 · ∆
4
, (31)

which gets us contraction in the weighted operator norm. Next we want to show that
each atom ψ̄ℓ of the scaled updated dictionary contracts to their partner atom ϕℓ of the
generating dictionary in the weighted ℓ2-norm. Similar to before we write

(ψ̄ℓ − ϕℓ)β
1/2
ℓ = (Ψ̄− Φ)D√

βeℓ

= ΦA(D√
β·π·α)

−1eℓ − ΦD√
βeℓ −ΨD√

π·β·α[B̄ − diag(B̄)]D−1√
π eℓ

= [ΦA(D√
β·π·α)

−1eℓ − ΦD√
βeℓ] + ΨD√

π·β·α · IℓcB̄eℓπ
−1/2
ℓ , (32)

where eℓ is the standard basis vector. Hence using that ∥ΨD√
β·α∥ ≤ ∥ΨD√

β∥ and the bounds
from (26) we obtain

∥(ψ̄ℓ − ϕℓ)β
1/2
ℓ ∥

≤ ∥ΦA(D√
β·π·α)

−1eℓ − ΦD√
βeℓ∥︸ ︷︷ ︸

≤β1/2∆/8

+ ∥ΨD√
π·β·α∥ · ∥IℓcB̄eℓπ

−1/2
ℓ ∥︸ ︷︷ ︸

≤β1/2∆/8

≤ β1/2 · ∆
4
. (33)

So we proved the desired bounds in (28) for the ODL algorithm with sℓ = 1. Before we
take care of the normalisation, we want to obtain the same bounds for MOD.
MOD: We recall that the dictionary update of MOD corresponds to
ΦXX̂∗(X̂X̂∗)−1 = ΦAB−1 as long as X̂X̂∗ is invertible. This is given due to the right
inequality in (26) together with the Neumann-series, which we will verify below. Inspired
by (17) we define our scaled version of the updated dictionary as

Ψ̄ := ΦAB−1Dα

and decompose Ψ̄D√
π·β as

Ψ̂D√
π·β = ΦAB−1D√

π·β·α = ΦD√
π·β · ((D√

π·β)
−1AB−1D√

π·β·α)

= ΦD√
π·β

[
(D√

π·β)
−1A (D√

π·β·α)
−1

+ (D√
π·β)

−1A (D√
π·β·α)

−1

([
(D√

π·β·α)
−1B (D√

π·β·α)
−1
]−1

− I
)]

= ΦD√
π·β ·
(
Ā+ Ā

(
B̄−1 − I

))
. (34)

Indeed since by Lemma 7 we have ∥B̄ − I∥ ≤ γ−1 ·∆/4, the matrix B̄ can be inverted by
applying the Neumann-series B̄−1 = [I− (I− B̄)]−1 =

∑
k≥0(I− B̄)k and bounded as∥∥B̄−1

∥∥ = ∥
∑
k≥0

(I− B̄)k∥ ≤
∑
k≥0

∥I− B̄∥k ≤ 1

1− γ−1∆/4
. (35)
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Further, we get∥∥B̄−1 − I
∥∥ = ∥

∑
k≥1

(I− B̄)k∥ ≤
∑
k≥1

∥B̄ − I∥k ≤ γ−1∆

4− γ−1∆
=

∆

4γ −∆
≤ ∆

3γ
, (36)

where the last inequality follows from the fact that δ◦ = γν2/C and ν ≤ 1/3 and hence
∆ ≤ 3

2δ◦ ≤ γ. Before we estimate ∥(Ψ̄−Φ)D√
π·β∥ we also bound the scaled version Ā using

Lemma 6 or the first inequality in (26), which yields

∥Ā∥ ≤ ∥Ā− I+ I∥ ≤ ∥Ā− I∥+ ∥I∥ ≤ ∆

8
+ 1. (37)

Next we use these observations to show contraction of the scaled updated dictionary Ψ̄ to
the generating dictionary:

∥(Ψ̄− Φ)D√
π·β∥ ≤ ∥ΦD√

π·β∥ ·
(
∥Ā− I∥+ ∥Ā∥ · ∥B̄−1 − I∥

)
≤
αγνβ1/2

4C

(
∆

8
+

(
∆

8
+ 1

)
· ∆
3γ

)
≤ β1/2 · ∆

4
. (38)

This shows that under the assumptions of the theorem, the weighted operator norm of
the distance between the generating dictionary and the scaled update decreases in each
iteration. We proceed with the atomwise ℓ2-norm: We define I = eℓe

∗
ℓ + Iℓc as well as

sℓ := e∗ℓ B̄
−1eℓ and decompose ψ̄ℓ as

ψ̄ℓβ
1/2
ℓ = Ψ̄D√

βeℓ = ΦAB−1D√
π·β·αeℓπ

−1/2
ℓ = ΦA(D√

π·β·α)
−1B̄−1eℓπ

−1/2
ℓ

= ΦA(D√
β·π·α)

−1eℓ · sℓ +ΦD√
π·β · (D√

π·β)
−1A(D√

π·β·α)
−1 · IℓcB̄−1eℓπ

−1/2
ℓ , (39)

which yields

∥(ψ̄ℓ−sℓϕℓ)β
1/2
ℓ ∥

≤ |sℓ| · ∥ΦA(D√
β·π·α)

−1eℓ − ΦD√
βeℓ∥+ ∥ΦD√

π·β∥ · ∥Ā∥ · ∥IℓcB̄−1eℓπ
−1/2
ℓ ∥. (40)

In order to establish a suitable bound for the atomwise difference, we still need to bound
the first and last term on the right-hand side above. It is easy to see that |sℓ| ≤ ∥B̄−1∥.
Combining the bound for ∥B̄−1∥ from (35) and Lemma 8 we obtain

|sℓ| · ∥ΦA (D√
β·π·α)

−1 eℓ − ΦD√
βeℓ∥ ≤ (1− γ−1∆/4)−1 · β1/2 ·∆/8. (41)

For the second term we need to have a closer look at ∥IℓcB̄−1eℓπ
−1/2
ℓ ∥. Since B̄−1 =

I+ B̄−1(I− B̄) and Iℓceℓ = 0 we get

∥IℓcB̄−1eℓπ
−1/2
ℓ ∥ = ∥IℓcB̄−1(I− B̄)eℓπ

−1/2
ℓ ∥ = ∥IℓcB̄−1 (eℓe

∗
ℓ + Iℓc) (I− B̄)eℓπ

−1/2
ℓ ∥

≤ ∥IℓcB̄−1eℓπ
−1/2
ℓ ∥ · ∥I− B̄∥+ ∥B̄−1∥ · ∥IℓcB̄eℓπ

−1/2
ℓ ∥.

Restructuring this inequality and applying the bound from Lemma 7 leads to

∥IℓcB̄−1eℓπ
−1/2
ℓ ∥ ≤ ∥B̄−1∥

1− ∥I− B̄∥
· ∥IℓcB̄eℓπ

−1/2
ℓ ∥ ≤ 1

(1− γ−1∆/4)2
· ∥IℓcB̄eℓπ

−1/2
ℓ ∥. (42)
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Note that γ−1∆ ≤ γ−1 · 3
2δ◦ ≤ γ−1 · 3

2
γν2

C ≤ 1
4 which implies 1

1−γ−1∆/4
≤ 16

15 . Putting the

results of (41) and (42) together and plugging it into (40) yields

∥(ψ̄ℓ − sℓϕℓ)β
1/2
ℓ ∥ ≤ 1

1− γ−1∆/4
·
β1/2∆

8

+
1

(1− γ−1∆/4)2
·
(
∆

8
+ 1

)
·
αγνβ1/2

4C
· ∥IℓcB̄eℓπ

− 1
2

ℓ ∥︸ ︷︷ ︸
≤β1/2·∆/8 (27)

≤
[
16

15
+

162

152
· 5
4

]
·
β1/2∆

8
≤ β1/2 · ∆

3
. (43)

Note that |sℓ − 1| ≤ ∥B̄−1 − I∥ ≤ γ−1 ·∆/3 in MOD. Hence, in summary our results so far
are the following, where sℓ = 1 for the ODL algorithm and close to 1 for MOD:∥∥(Ψ̄− Φ)D√

π·β

∥∥ ≤ β1/2 ·∆/4 and max
ℓ

∥∥(ψ̄ℓ − sℓϕℓ)βℓ
∥∥ ≤ β1/2 ·∆/3.

Normalisation: In the last step of the proof, we show that normalizing the scaled versions
of the updated dictionary does not affect the convergence. We define F := diag

(∥∥ψ̄i

∥∥
2

)−1

to be the normalization matrix, such that Ψ̂ := Ψ̄F . Since ∥ϕℓ∥ = 1 and γ ≤ 1 we obtain

|∥ψ̄ℓ∥ − 1| ≤ ∥ψ̄ℓ − ϕℓ∥ ≤ ∥(ψ̄ℓ − sℓϕℓ)β
1/2
ℓ ∥ · β−1/2

ℓ + ∥(sℓ − 1)ϕℓ∥

≤ (β1/2 ·∆/3) · β−1/2
ℓ + γ−1 ·∆/3 ≤ 2/3 · γ−1∆ ≤ γ−1∆.

Therefore we get ∥F∥ ≤ (1 − γ−1∆)−1 and ∥I − F∥ ≤ γ−1∆ · (1 − γ−1∆)−1. With these
observations we can show that the updated dictionary Ψ̂ contracts towards the generat-
ing dictionary Φ in the weighted operator norm: Note that by assumption ∥ΦD√

π·β∥ ≤
γνβ1/2/(4C) ≤ γβ1/2/(12C) and 1− γ−1∆ ≥ 1− 3δ◦

2γ ≥ 1− 1
6C , which leads to

∥(Ψ̂− Φ)D√
π·β∥ ≤ ∥(Ψ̄− Φ)D√

π·β∥ · ∥F∥+ ∥ΦD√
π·β∥ · ∥(I− F )∥

≤ β1/2 · ∆
4
· 1

1− γ−1∆
+
γβ1/2

12C
· γ−1∆

1− γ−1∆
≤ β1/2 · ∆

2
. (44)

For the ℓ2-norm we use the help of Lemma B.10 from [27]. If ∥ϕℓ∥ = 1 and ∥ψℓ− sℓϕℓ∥ ≤ t,
then ψ̂ℓ = ψℓ/∥ψℓ∥ satisfies

∥ψ̂ℓ − ϕℓ∥2 ≤ 2− 2

√
1− t2

s2ℓ
≤ 2− 2

(
1−

t2/s2ℓ
2− t2/s2ℓ

)
= t2 ·

(
s2ℓ −

t2

2

)
, (45)

where the second inequality holds, if t2/s2ℓ ≤ 1. In order to apply the lemma we note that

∥ψ̄ℓ − sℓϕℓ∥ · β
1/2
ℓ = ∥(ψ̄ℓ − sℓϕℓ)β

1/2
ℓ ∥ ≤ β1/2 ·∆/3 (46)

Hence we set t := β
−1/2
ℓ β1/2∆/3 ≤ ∆/3 while |1−sℓ| ≤ ∆/3 and therefore sℓ ≥ 1−∆/3 ≥ t,

so we get

∥ψ̂ℓ − ϕℓ∥ ≤ t ·
(
s2ℓ −

t2

2

)−1/2

≤
β1/2∆

3β
1/2
ℓ

·

((
1− ∆

3

)2

− ∆2

18

)−1/2

≤
β1/2

β
1/2
ℓ

· ∆
2
. (47)
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This implies that ∥(ψ̂ℓ − ϕℓ)β
1/2
ℓ ∥ = ∥ψ̂ℓ − ϕℓ∥ · β

1/2
ℓ ≤ β1/2 ·∆/2. So we can conclude that

∥(Ψ̂− Φ)D√
π·β∥ · β−1/2 ≤ ∆

2
and ∥(Ψ̂− Φ)D√

β∥2,1 · β−1/2 ≤ ∆

2
, (48)

hence δ(Ψ̂,Φ) ≤ ∆/2, which finishes the proof of Theorem 3.

In Theorem 3 we have sufficient conditions for the initial dictionary Ψ and the generating
dictionary Φ, ensuring that one iteration of MOD and ODL algorithm in combination
with thresholding as sparse approximation algorithm decreases the distance of the initial
dictionary and the ground truth Φ. This is shown in a scaled operator norm as well as in
the ℓ2-norm. Applying Theorem 3 iteratively yields convergence of MOD and ODL up to
the desired accuracy δ∗. The proof is mainly based on the four inequalities in (26) and (27),
which we discuss in the following chapter.

5. Four bounds needed in the proof

Like in the chapter before, we closely follow the approach of [24] to prove the following
lemmas. Since for each update step of the coefficients there is a need to project them onto
specific submatrices derived from the current guess Ψ, we define the index sets FΦ,FΨ

where the random variables ΦI ,ΨI are well conditioned:

FΦ := {I : ∥Φ∗
IΦI − I∥ ≤ ϑ} and FΨ := {I : ∥Ψ∗

IΨI − I∥ ≤ ϑ}, (49)

where we set ϑ := 1/4 for the rest of the chapter. Moreover we define the index set FŻ

where the norm of the random variable ŻI = Ψ̇I − Φ̇I = (ΨI − ΦI)(D√
β)I,I is of a similar

scale to δ:
FŻ :=

{
I : ∥ŻI∥ ≤ δ ·

√
2β log(nKρ/δ∗)

}
. (50)

Imposing these conditions on the index set I together we set

G := FΦ ∩ FΨ ∩ FŻ . (51)

Next we want to define a set, where thresholding recovers the correct support in the vector
x̂. We recall that, thresholding finds the largest S entries and gathers them in the index
set Î. The optimal coefficients then are

x̂Î = Ψ†
Î
y.

We define the set which contains all index, sign and coefficient triplet, where thresholding
finds the correct support, as

H :=
{
(I, σ, c) : Î = I

}
. (52)

In the proofs of Lemmas 6 to 9 later on we will often restrict the dictionaries Ψ and Φ to
the sets above and bound the probability that thresholding fails as well as the probability
that the submatrices ΦI ,ΨI are ill-conditioned by Lemma 4.
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Lemma 4 Given the conditions stated in Theorem 3, we have

[2P (Hc) + P (Gc)] · ρ ≤ δ∗/32.

Proof For this proof we set N := Ψ∗Φ − diag (Ψ∗Φ) and recall that α = mini |⟨ψi, ϕi⟩|.
Thresholding retrieves the complete support of a signal y = ΦIxI , if

∥Ψ∗
Icy∥∞ < ∥Ψ∗

Iy∥min .

Therefore in order to find an upper bound on the probability that thresholding fails to
recover the correct support that is on P (Hc), we bound the following

Py (∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞) = Py (∥Ψ∗
IΦIxI∥min < ∥Ψ∗

IcΦIxI∥∞)

≤ Py

(
∥diag(Ψ∗

IΦI)xI∥min − ∥NI,IxI∥∞ < ∥Ψ∗
IcΦI∥∞

)
≤ Py

(
cmin ∥diag(Ψ∗

IΦI)∥min − ∥NI,IxI∥∞ < ∥Ψ∗
IcΦIxI∥∞

)
≤ Py (cmin · α < 2 ∥NIxI∥∞)

≤ Py(2 ∥NIxI∥∞ ≥ cmin · α | ∥NI∥∞,2 < η)

+ PS(∥NI∥∞,2 ≥ η). (53)

For the first term we can use Hoeffding’s inequality stated in [22, Lemma 23]. Since
sign(xk) = σk is a Rademacher sequence independent of I, this means that

Py (∥NIxI∥∞ ≥ cmin · α2/2 | ∥NI∥∞,2 < η
)
≤ 2K exp

(
− 1/4 · c2minα

2

2 · ∥NI∥2∞,2 · ∥xI∥2∞

)
. (54)

To our second term we first apply the Poissonisation trick, which can be found in [22,
Lemma 7]. If PB is the Poisson sampling model corresponding to p1, · · · , pK , we obtain

P
(
∥NI∥∞,2 ≥ η

)
≤ 2PB

(
∥NI∥∞,2 ≥ η

)
.

Applying Lemma 21 from [22], which is in itself a consequence of the Chernoff inequality,
we get

PB

(
∥NI∥∞,2 ≥ η

)
≤ K

(
e
∥ND√

p∥2∞,2

η2

) η2

µ(Ψ,Φ)2

. (55)

Next we use (1− ∥p∥∞) · pi ≤ πi, from [23] resp. the condition from Theorem 14 in the
Appendix A.3, to get pi ≤ 6

5πi < 2πi as well as

∥ND√
p∥2∞,2 ≤ 2 ∥ND√

π∥2∞,2 = 2 ∥[Ψ∗Φ− diag (Ψ∗Φ)]D√
π∥2∞,2 ≤ 2 ∥ΦD√

π·β∥2 · ∥D−1√
β ∥2.

Substituting (54) and (55) into (53) yields

Py (∥Ψ∗
Iy∥min < ∥Ψ∗

Icy∥∞) (56)

≤ 2K exp

(
− γ2

8η2
· α2

)
+ 2K

(
2e

∥ΦD√
π·β∥2∞,2 · β−1

η2

) η2

µ(Ψ,Φ)2

. (57)
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In order to determine η we recall the following abbreviations

ν =
1√

log (nKρ/δ∗)
≤ 1

3
and δ◦ =

γ

C log (nKρ/δ∗)
=
γν2

C
, (58)

where the upper bound for ν is valid for nρδ−1
∗ ≥ 130 · 2 · 42. We choose η := αγν/4 and

substitute it into our first term in (57) which becomes 2Kδ2∗/(nρK)2. For the second term
we use the condition on the generating dictionary in (19), which is ∥ΦD√

π·β∥ ≤ αγνβ1/2/(4C)

and obtain 2e∥ΦD√
π·β∥2∞,2β

−1η−2 ≤ e−2. For the exponent of the second term we separate
the cases δ > δ◦ and δ ≤ δ◦, since we use different conditions described in Theorem 3. While
in the first regime, δ > δ◦, by (20), we get that

µ(Ψ,Φ) = max
i ̸=j

|⟨ψi, ϕj⟩ · β1/2j β
−1/2
j | ≤ µ√

β(Ψ,Φ) · β−1/2 ≤ αγν2/(4C),

the second regime, δ ≤ δ◦, requires further attention:

µ(Ψ,Φ) = µ(Φ,Ψ) ≤ µ√
β(Φ,Ψ) · β−1/2 = max

i ̸=j
|⟨ϕi, ψj⟩β1/2j | · β−1/2

≤ max
i ̸=j

|⟨ϕi, ϕj⟩β1/2j | · β−1/2 +max
i ̸=j

|⟨ ψi, ψj − ϕj⟩β1/2j | · β−1/2

≤ µ√
β(Φ) · β−1/2 +max

j
∥(ψj − ϕj)β

1/2
j ∥ · β−1/2 ≤ µ√

β(Φ) · β−1/2 + δ

≤ αγν2/(4C) + δ,

where in the last inequality we used the condition on µ√
β(Φ) in (21). Since δ ≤ δ◦ ≤ 1/C

and α = 1− ε2/2 ≥ 1− δ2/2 ≥ (C − 1)/C, we get

δ ≤ αγ

αC log (nKρ/δ∗)
≤ αγ

(C − 1) log (nKρ/δ∗)
=

αγν2

(C − 1)
,

and therefore µ(Ψ,Φ) ≤ 2αγν2/(C − 1). Hence we found a lower bound for the exponent
in both regimes

η2

µ(Ψ,Φ)2
≥ α2γ2ν2(C − 1)2

16 · 4α2γ2ν4
≥ (C − 1)2

64ν2
, (59)

which yields

P (Hc) ≤ 2K

(
δ∗
nρK

)2

+ 2K

(
δ∗
nρK

)(C−1)2/32

≤ 4K

(
δ∗
nρK

)2

. (60)

In the second part of the proof we analyze the probability P(Gc) which can be bounded by
P(Fc

Ż
) + P(Fc

Φ ∪ Fc
Ψ). We begin with P(Fc

Ż
) where we employ the Poissonisation trick as

before, which yields
P(Fc

Ż
) ≤ 2PB(Fc

Ż
).

We continue by applying the matrix Chernoff inequality from 10. Therefore we note for
Z = (z1, . . . , zK), where zi ∈ Rd, that

ŻI Ż
∗
I = (ZI(Dβ)I,IZ

∗
I ) =

∑
i∈I

ziβiz
∗
i . (61)
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Recalling that δ = max
{
∥ZD√

π·β∥ · β−1/2, ∥Z∥2,1 · β−1/2
}

by Definition (10), we can esti-

mate

∥ziβiz∗i ∥ = ∥β1/2i z∗i ziβ
1/2
i ∥ = |⟨ziβ1/2i , ziβ

1/2
i ⟩| ≤ max

i
∥(ψi − ϕi)β

1/2
i ∥2 ≤ δ2β and

∥
∑
i∈I

EB[ziβiz
∗
i ]∥ = ∥EB[ZI(Dβ)I,IZ

∗
I ]∥ = ∥ZD√

βEB[R
∗
IRI ]D√

βZ
∗∥ = ∥ZDp·βZ∥.

Using the bound pi ≤ 2πi we obtain

P (∥ZI(Dβ)I,IZ
∗
I ∥ > t) ≤ 2PB (∥ZI(Dβ)I,IZ

∗
I ∥ > t)

≤ 2K

(
e ∥ZDp·βZ

∗∥
t

)t/(δ2β)

≤ 2K

(
2e ∥ZDπ·βZ

∗∥
t

)t/(δ2β)

≤ 2K

(
2e ∥ZD√

π·β∥2

t

)t/(δ2β)

≤ 2K

(
2eδ2β

t

)t/(δ2β)

. (62)

We choose t = 2δ2βmax
{
e2, log (nKρ/δ∗)

}
= 2δ2β log (nKρ/δ∗) which gives us the bound

P
(
FŻc

)
= P

(
∥ŻI∥ ≥ δ ·

√
2β log (nKρ/δ∗)

)
≤ 2K

(
δ∗
nKρ

)2

The last inequality holds if δ∗/(nKρ) ≤ 1/1619, which is always satisfied since nρδ−1
∗ ≥

130 · 2 · 42 as before. For P(Fc
Φ ∪Fc

Ψ) we can apply Theorem 12 taken from [22], and obtain

P (FΦ ∪ FΨ) ≤ 512K exp

(
−min

{
5ϑ2

24e2 ∥ΦD√
π∥2

,
ϑ

2µ(Φ)
,

5ϑ2

24e2 ∥ΨD√
π∥2

,
ϑ

2µ(Ψ)

})
.

Using the condition on the generating dictionary we obtain ∥ΦD√
π∥ ≤ ∥ΦD√

π·β∥ · ∥D−1√
β ∥ ≤

γαν/(4C) and µ(Φ) ≤ µ√
β(Φ) · β−1/2 ≤ αγν2/(4C). In the first regime, where δ > δ◦, we

can employ a similar approach as for ∥ΨD√
π∥ and µ(Ψ). In the second regime, δ ≤ δ◦ ≤

αγν2/(C − 1), we have to bound ∥ΨD√
π∥ and µ(Ψ) in a different manner

∥ΨD√
π∥ ≤ ∥ΦD√

π·β∥ · β−1/2 + ∥(Ψ− Φ)D√
π·β∥ · β−1/2

≤ ∥ΦD√
π·β∥ · β−1/2 + δ ≤ αγν ·

(
1

4C
+

ν

C − 1

)
≤ αγν/C, (63)

µ(Ψ) = max
i ̸=j

|⟨ψi, ψj⟩|

≤ max
i ̸=j

(
|⟨ϕi, ϕj⟩|β1/2j + |⟨ϕi, ψj − ϕj⟩|β1/2j + β

1/2
i |⟨ψi − ϕi, ψj⟩|

)
· β−1/2

≤ µ√
β(Φ) · β−1/2 + 2δ ≤ 9

4
· ν2/C. (64)

With these bounds and ϑ = 1/4 we obtain 2 log(nKρ/δ∗) as a lower bound for the exponent,
which results in P(Fc

Φ∪Fc
Ψ) ≤ 512K (δ∗/(nρK))2. We recall that n ≥ 130 and put all bounds

together, to obtain our desired bound

P (Hc) · 2ρ+ P (Gc) · ρ ≤ 522Kρ

(
δ∗
nρK

)2

≤ δ∗
32
.
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We note that in Lemma 4 the bound on the probability that thresholding recovers the
correct support in (57) is quite rough similar as in [24]. This can be optimized, for instance
by defining

ĉmin := min
i

ci

β
1/2
i

and ĉmax := max
i

ci

β
1/2
i

,

and therefore γ̂ := ĉmin/ĉmax. Unfortunately, we then lose the property that (β̄/β)1/2 can
be bounded by γ̂−1 on which we rely in the Lemmas 6 to 9. For Lemma 6 to Lemma 9 we
often use the following corollary from [23, 24].

Corollary 5 ([23],[24]) Denote by E the expectation according to the rejective sampling
probability with level S and by π ∈ RK the first order inclusion probabilities of level S. Let
I be a K ×K matrix with zero diagonal, W = (w1 . . . , wK) and V = (v1, . . . , vK) a pair
of d ×K matrices and G a subset of all supports of size S, meaning G ⊆ {I : |I| = S}. If
∥π∥∞ ≤ 1/3, we have

∥E[D−1√
π R

∗
III,IRID

−1√
π ]∥ ≤ 3 · ∥D√

πID√
π∥, (a)

∥E[D−1√
π R

∗
III,II ∗

I,IRID
−1√
π ]∥ ≤ 9

2
· ∥D√

πID√
π∥2 +

3

2
·max

k
∥e∗kID√

π∥2, (b)

∥E[WR∗
IRIV

∗ · 1I(ℓ)1G(I)]∥ ≤ πℓ · (∥WD√
π∥ · ∥V D√

π∥+ ∥wℓ∥ · ∥vℓ∥), (c)

as well as

∥E[D−1√
π IℓcR∗

III,II ∗
I,IRIIℓcD−1√

π · 1I(ℓ)]∥

≤ 3

2
· πℓ ·

(
3 · ∥D√

πI eℓ∥2 +max
k

I 2
kℓ +

9

2
· ∥D√

πID√
π∥2 +

3

2
·max

k
∥e∗kID√

π∥2
)
. (d)

Now we are ready to prove the first of the four inequalities used in the proof of the main
theorem.

Lemma 6 Given the conditions stated in Theorem 3, we have

P(∥(D√
π·β)

−1A(D√
π·β·α)

−1 − I∥ > ∆/8) ≤ (d+K) exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof The fundamental idea behind the proof is to rewrite (D√
π·β)

−1A(D√
π·β·α)

−1 − I as
N−1

∑
n Ŷn and apply the matrix Bernstein inequality, restated in Theorem11. Therefore

the matrices Ŷn need to be independent and ∥Ŷn∥ as well as ∥E[Ŷn]∥ must be bounded. In
order to define such Ŷn we first recall that A = N−1

∑N
n=1 xnx̂

∗
n for well behaved x̂n. By the

algorithm the norm of the estimated coefficients have to be smaller than the signals times
κ or are set to zero. Hence we define the set of all stable supports as B(v) := {I : ∥Ψ†

Iv∥ ≤
κ∥v∥} for v ∈ Rd. We denote by În the set determined by the thresholding algorithm and
define

Ŷn := (D√
π·β)

−1R∗
În
xÎny

∗
n(Ψ

†
În
)∗RÎn

(D√
π·β·α)

−1 · 1B(yn)(În)− I. (65)

The matrices Ŷn are indeed independent, since each Ŷn only depends on the signal yn.
We continue with deriving a suitable bound for ∥Ŷn∥ and ∥E[Ŷn]∥. Since in the algorithm

19



large estimated coefficients are eliminated, we can use that ∥x̂n∥ ≤ κ∥yn∥ and ∥yn∥ ≤
|In| · ∥xn∥∞ ≤ Scmax. This yields

∥Ŷn∥ ≤ κS2c2max∥D−1
β ∥∥D−1

α ∥∥D−1√
π ∥+ 1 ≤ ραπ + 1 ≤ ρ/2 =: r, (66)

where we employed from (18) that ρ = 2κ2S2γ−2α−2π−3/2 and π < 1/3. The bound on
∥E[Ŷn]∥ entails a more complex approach. First we want to replace the estimated support
În with the correct support In and define

Yn := (D√
π·β)

−1R∗
InxIny

∗
n(Ψ

†
In
)∗RIn(D√

π·β·α)
−1 · 1B(yn)(In)− diag(1In)D

−1
π (67)

Note that we have

∥Yn∥ ≤ κS2c2maxπ
−1α−1β−1 + π−1 ≤ ρ/2 = r. (68)

Recalling that H is the set, where thresholding recovers the correct support, and since
I = E[diag(1In)D−1

π ], we see that the left parts of Yn and Ŷn coincide on H and the right
part coincide in expectation. For the rest of the proof we simplify matters by omitting the
index n, since each signal shares the same distribution. We recall that G is the set, where
ΦI and ΨI are well conditioned, to get

∥E[Ŷ ]∥ ≤ ∥E[Ŷ − Y ]∥+ ∥E[Y ]∥ ≤ P(Hc) · 2r + ∥E[1Gc(I)Y ]∥+ ∥E[1G(I)Y ]∥
≤ P(Hc) · 2r + P(Gc) · r + ∥E[1G(I)Y ]∥. (69)

Using the singular value decomposition and the fact that ∥Ψ∗
IΨI − IS∥ ≤ ϑ on G we get for

I ∈ G that ∥Ψ†
Iy∥ ≤ (1 − ϑ)−1/2 · ∥y∥ ≤ κ∥y∥. This implies that G ⊆ B(y) and therefore

1B(y)1G = 1G . We recall the notation Ṁ :=MD√
β to show that

E[xIy∗] = EI,σ,c[xIxIΦ
∗
I ]

= EI [RIEσ,c[xx
∗] ·R∗

IΦ
∗
I ] = EI [(Dβ)I,IΦ

∗
I ] = EI [(D√

β)I,IΦ̇
∗
I ], . (70)

Further, we have

(Ψ†
I)

∗(D√
β)

−1
I,I = ((Ψ∗

IΨI)
−1ΨI)

∗(D√
β)

−1
I,I

= ΨI(D√
β)I,I(D√

β)
−1
I,I(Ψ

∗
IΨI)

−1(D√
β)

−1
I,I = Ψ̇I(Ψ̇

∗
IΨ̇I)

−1.

We define EG [f(I)] := EI [1G(I)f(I)] and use the calculations above to get

∥E[1G(I)Y ]∥ = ∥EI [1G(I) · Eσ,c[(D√
π·β)

−1R∗
IxIy

∗(Ψ†
I)

∗RI(D√
π·β·α)

−1 − diag(1I)D
−1
π ]∥

= ∥EG [D
−1√
π R

∗
I [Φ̇

∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1 − (Dα)I,I ]RI(D√
π·α)

−1]∥. (71)

Next we rewrite Φ̇∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1 with the help of zero diagonal matrices in order to employ
Corollary 5. We recall that Z = Ψ−Φ as well as M̈ := D√

βMD√
β and define the following

matrices which have zero diagonal

Ḧ := D√
β(I−Ψ∗Ψ)D√

β = Dβ − Ψ̇∗Ψ̇

E := diag(Z∗Ψ) = I− diag(Φ∗Ψ) = I−Dα

I := (ΨE − Z)∗Ψ = (ΦE − ZDα)
∗Ψ = (Φ−ΨDα)

∗Ψ

Ï := D√
βID√

β = (Ψ̇E − Ż)∗Ψ̇.
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Using that

IS =
(
(Dβ)I,I − (Ψ̇∗

IΨ̇I) + (Ψ̇∗
IΨ̇I)

)
(Dβ)

−1
I,I =

(
ḦI,I + Ψ̇∗

IΨ̇I

)
(Dβ)

−1
I,I , (72)

we can write

Φ̇∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1 = (Ψ̇∗
I − Ż∗

I )Ψ̇I(Ψ̇
∗
IΨ̇I)

−1 = IS − Ż∗
I Ψ̇I(Ψ̇

∗
IΨ̇I)

−1

= (Dα)I,I + EI,IΨ̇∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1 − Ż∗
I Ψ̇I(Ψ̇

∗
IΨ̇I)

−1

= (Dα)I,I + ÏI,I(Ψ̇
∗
IΨ̇I)

−1 · IS (74a)

= (Dα)I,I + ÏI,I(D
−1
β )I,I + ÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,I(D
−1
β )I,I . (74b)

Observing that for any I, we have ∥ÏI,I∥ ≤ ∥(Ψ̇E − Ż)I∥ · ∥Ψ̇I∥ ≤ β̄ · ε
√
S ·

√
S < 2S and

therefore ∥ÏI,IRI(D√
πα)

−1∥ ≤ ρ/2 = r we get that ∥E[1Gc(I)·ÏI,IRI(D√
πα)

−1]∥ ≤ P(Gc)]·r.
We substitute (74b) into (71) and use the bound established above to obtain

∥E[Ŷ ]∥ ≤ [2P(Hc) + P(Gc)] · r + ∥EG [D
−1√
π R

∗
I(ÏI,I + ÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,I)RI(D√
π·β·α)

−1]∥
≤ [2P(Hc) + P(Gc)] · r + P(Gc) · r + ∥E[D−1√

π R
∗
IÏI,IRI(D√

π·β·α)
−1]∥

+ ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRI(D√
π·β·α)

−1]∥
≤ [2P(Hc) + P(Gc)] · ρα+ ∥E[D−1√

π R
∗
IÏI,IRI(D√

π)
−1]∥ · ∥D−1

α ∥ · ∥D−1
β ∥

+ ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRI(D√
π·β)

−1]∥ · ∥D−1
α ∥ · ∥D−1√

β ∥. (75)

Now we have made all the necessary preparations to apply Corollary 5. Beginning with the
first expectation, Corollary 5(a) gets us

∥E[D−1√
π R

∗
IÏI,IRI(D√

π)
−1]∥ ≤ 3 · ∥D√

πÏD√
π∥

≤ 3 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥) · ∥ΨD√
π·β∥, (76)

where the second inequality is proven in (121) in the appendix. For the second expectation
in (75) we need the following bounds below, which are again addressed in the appendix,
that is inequalities (124) and (127), yielding

∥E[D−1√
π R

∗
IÏI,IÏ ∗

I,IRID
−1√
π ]∥

1
2 ≤ (3∥ZD√

π·β∥+ 3εβ̄1/2) · ∥ΨD√
π·β∥, (77)

∥E[(D√
π·β)

−1R∗
IḦI,IḦI,IRI(D√

π·β)
−1]∥

1
2 ≤

√
2 · ∥ΨD√

π·β∥. (78)

Using that ∥IS −Ψ∗
IΨI∥ ≤ ϑ ≤ 1/4 < 1 and the Neumann series results in

∥(Ψ̇∗
IΨ̇I)

−1∥ ≤ β−1 · ∥(Ψ∗
IΨI)

−1∥ = β−1 · ∥
∑
k≥0

(IS −Ψ∗
IΨI)

k∥

≤ β−1 ·
∑
k≥0

ϑk = β−1 · 1

1− ϑ
≤ 4

3
· β−1. (79)
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We apply Lemma 13 from the appendix to the second expectation in (75) and use the three
bounds which we have established so far to get

∥EG [D
−1√
π R

∗
IÏI,I · (Ψ̇∗

IΨ̇I)
−1 · ḦI,IRI(D√

π·β)
−1] · ∥D−1√

β ∥

≤ ∥E[D−1√
π R

∗
IÏI,IÏ ∗

I,IRID
−1√
π ∥

1
2 · 4/3 · β−3/2 · ∥E[(D√

π·β)
−1R∗

IḦI,IḦI,IRI(D√
π·β)

−1∥
1
2

≤ (3 · ∥ZD√
π·β∥+ 3 · εβ̄1/2) · ∥ΨD√

π·β∥ · 4/3 · β−3/2 ·
√
2 · ∥ΨD√

π·β∥

≤ 6 · β−3/2 · (∥ZD√
π·β∥+ εβ1/2γ−1) · ∥ΨD√

π·β∥2, (80)

where in the last inequality we used the fact that (β̄/β)1/2 ≤ cmax/cmin = γ−1. Plugging
(76) and (80) into (75) leads to

∥E[Ŷ ]∥ ≤ [P(Hc) + P(Gc)] · ρα+ 3 · α−1β−1 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥) · ∥ΨD√
π·β∥

+ 6 · α−1β−3/2 · (∥ZD√
π·β∥+ εβ1/2γ−1) · ∥ΨD√

π·β∥2 (81)

In order to apply the assumptions of Theorem 3 we consider the two cases, δ > δ◦ and δ ≤ δ◦,
separately. In the first regime (20) we have that max{∥ΦD√

π·β∥, ∥ΨD√
π·β∥} ≤ αγνβ1/2/(4C),

and hence ∥ZD√
π·β∥ ≤ αγνβ1/2/(2C). Furthermore we use that ε ≤

√
2 and ν ≤ 1/3. Using

these conditions and the probability bound from Lemma 4 leads to

∥E[Ŷ ]∥ ≤ αδ∗/32 + α−1β−1 · 9 ·

(
αγνβ1/2

4C

)2

+ 6 · α−1β−3/2 ·

(
β1/2

2C
+
√
2γ−1β1/2

)
·

(
αγνβ1/2

4C

)2

≤ αδ∗/32 + 18/(16C) · α · γν2/C ≤ α ·∆/16. (82)

Before we bound ∥E[Ŷ ]∥ in the second regime (21), we note that for all i ∈ [K] we get

∥ψi − ϕi∥ ≤ ∥ψi − ϕi∥ · β1/2i /β1/2 = ∥(ψi − ϕi)β
1/2
i ∥ · β−1/2, (83)

and hence ε ≤ δ. For the second regime where δ ≤ δ◦, we have as above ε ≤
√
2 and

ν ≤ 1/3. We further use the assumption ∥ΦD√
π·β∥ ≤ αγνβ1/2/(4C), while due to (63) and

(10) we have ∥ΨD√
π·β∥ ≤ αγνβ1/2/C and ∥ZD√

π·β∥ ≤ δβ1/2. So we get

∥E[Ŷ ]∥ ≤ [P(Hc) + P(Gc)] · ρα+ α−1β−1 · 3(∥ΦD√
π·β∥ε2/2 + ∥ZD√

π·β∥) · ∥ΨD√
π·β∥

+ α−1 · 6β−3/2 · (∥ZD√
π·β∥+ εβ1/2γ−1) · ∥ΨD√

π·β∥2

≤ αδ∗/32 + α−1β−1 · 3(αγνβ1/2/(4C) · δ/
√
2 + δβ1/2) · αγνβ1/2/C

+ 6α−1β−3/2 · (δβ1/2 + δβ1/2γ−1) ·
(
αγνβ1/2/C

)2
≤ αδ∗/32 + 32/(16C) · δ ≤ ∆/16. (84)

Finally, we completed all necessary steps, in order to apply Bernstein’s inequality 11. By
choosing t = m = ∆/16 and r = ρ/2 and performing a few simplifications we get the de-
sired bound.
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In Lemma 6 we obtained a better bound in comparison to its counterpart in [24]. In order
to see this, we assume that the coefficient sequence c is i.i.d. We will denote the distance
between the dictionary elements in [24] as

δ̂(Ψ,Φ) := max {∥(Ψ− Φ)D√
π∥ , ∥Ψ− Φ∥2,1} .

Since the coefficient sequence c is i.i.d we obtain β1/2 = ∥D√
β∥ and thus δ = δ̂. Hence we

can compare Lemma 6 with [24]. The lemma in [24] yields

∥ΦA(D√
π·β·α)

−1 − ΦD√
π∥ ≤ α∆

8
.

If we want to bound the same via (19) and Lemma 6 we get

∥ΦA(D√
π·β·α)

−1 − ΦD√
π∥ ≤ ∥ΦD√

π·β∥ · ∥(D√
π·β)

−1A(D√
π·β·α)

−1 − I∥ · ∥D−1√
β ∥

≤
αγνβ1/2

4C
· ∆
8
· β−1/2 =

αγν

4C
· ∆
8
.

We continue with the proof of the second inequality in 26.

Lemma 7 Given the conditions stated in Theorem 3, we have

P
(
∥(D√

π·β·α)
−1B(D√

π·β·α)
−1 − I∥ > ∆

4γ

)
≤ 2K exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof We closely adhere to the method used in the previous proof by rewriting the matrix
(D√

π·β·α)
−1B(D√

π·β·α)
−1 − I to N−1

∑
n Ŷn, where the matrices Ŷn are independent and

∥Ŷn∥ as well as ∥E[Ŷn]∥ are bounded. Then we can apply the matrix Bernstein inequality
and finish the proof. Again we take În to be the set determined by the thresholding and
B(v) := {I : ∥Ψ†

Iv∥ ≤ κ∥v∥} to be the set of stable supports of v. We define

Ŷn := (D√
π·β·α)

−1R∗
În
Ψ†

În
yny

∗
n(Ψ

†
În
)∗RÎn

(D√
π·β·α)

−1
1B(yn)(În)− I

and Yn := (D√
π·β·α)

−1R∗
InΨ

†
In
yny

∗
n(Ψ

†
In
)∗RIn(D√

π·β·α)
−1
1B(yn)(In)− diag(1In)D

−1
π , (85)

which coincide on H in expectation, since In ∈ H and E[diag(1In)D−1
π ] = I. We can find

an upper limit chosen as

max{∥Ŷn∥, ∥Yn∥} ≤ κ2S2c2max∥D−1
β ∥∥D−2

α ∥∥D−1
π ∥+ ∥D−1

π ∥ ≤ 3ρ/4 ≤ 3γ−1ρ/4 =: r, (86)

where we used that ρ = 2κ2S2γ−2α−2π−3/2. So following the same approach as in (69) and
omitting the index n leads to

∥E[Ŷ ]∥ ≤ 2ρ · P(Hc) + ρ · P(Gc) + ∥E[1G(I)Y ]∥. (87)

For the upcoming steps we want to recall the notation Ṁ := MD√
β as well as M̈ :=

D√
βMD√

β. With the same argument as in (70), where we used that G ⊆ B(y), we take the
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expectation over (σ, c) and get

∥E[1G(I)Y ]∥

= ∥EI [1G(I) · Eσ,c[(D√
π·β·α)

−1R∗
IΨ

†
IΦIxIx

∗
IΦ

∗
I(Ψ

†
I)

∗RI(D√
π·β·α)

−1 − diag(1I)D
−1
π ]∥

= ∥EG [(D√
π·β·α)

−1R∗
I(Ψ

†
IΦ̇IΦ̇

∗
I(Ψ

†
I)

∗ − (D√
β·α)

2
I,I)RI(D√

π·β·α)
−1]∥

≤ ∥EG [(D√
π·α)

−1R∗
I((D

−1√
β )I,IΨ

†
IΦ̇IΦ̇

∗
I(Ψ

†
I)

∗(D−1√
β )I,I − (Dα)

2
I,I)RI(D√

π·α)
−1]∥. (88)

With the help of (74a) we get the following identity

(D−1√
β )I,IΨ

†
IΦ̇IΦ̇

∗
I(Ψ

†
I)

∗(D−1√
β )I,I − (Dα)

2
I,I = (Ψ̇∗

IΨ̇I)
−1Ψ̇∗Φ̇IΦ̇

∗
IΨ̇(Ψ̇∗

IΨ̇I)
−1 − (Dα)

2
I,I

= (Dα)I,IÏI,I(Ψ̇
∗
IΨ̇I)

−1 + (Ψ̇∗
IΨ̇I)

−1Ï ∗
I,I(Dα)I,I

+ (Ψ̇∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1. (89)

We plug this into (88) and note that the first term is the transpose of the second term,
which gets us

∥E[1G(I)Y ]∥ ≤ 2 · ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥ · ∥D−1

α ∥
+ ∥D−1

α ∥2 · ∥EG [D
−1√
π R

∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥. (90)

We begin by estimating the first term. For any I we have
∥D−1√

π R
∗
IÏI,IRID

−1√
π ∥ ≤ ρα2/2. With the same procedure as in (75) and by using the identity

IS =
(
Ψ̇∗

IΨ̇I + ḦI,I

)
(Dβ)

−1
I,I as in (72), we obtain

∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

≤ ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1(Ψ̇∗
IΨ̇I + ḦI,I)RI(D√

π·β)
−1]∥ · ∥D−1√

β ∥
≤ P(Gc) · ρα2/2 + ∥E[D−1√

π R
∗
IÏI,IRID

−1√
π ]∥ · ∥D−1

β ∥

+ ∥EG [D
−1√
π R

∗
IÏI,I · (Ψ̇∗

IΨ̇I)
−1 · ḦI,IRI(D√

π·β)
−1]∥ · ∥D−1√

β ∥. (91)

Since we bounded the same expectations in (76) and (80), we get

∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

≤ P(Gc) · ρα2/2 + 3 · β−1 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥) · ∥ΨD√
π·β∥

+ 6 · β−3/2 · (∥ZD√
π·β∥+ εβ1/2γ−1) · ∥ΨD√

π·β∥2.

Similar to Lemma 6 we distinguish between the cases δ > δ◦ and δ ≤ δ◦. In the first regime
we use that max{∥ΨD√

π·β∥, ∥ΦD√
π·β∥} ≤ αγνβ1/2/(4C) and thus ∥ZD√

π·β∥ ≤ αγνβ1/2/(2C).

In the second regime, where δ ≤ δ◦, we can use ∥ΦD√
π·β∥ ≤ αγνβ1/2/(4C), while due to

(63) and (10) we have ∥ΨD√
π·β∥ ≤ αγνβ1/2/C and ∥ZD√

π·β∥ ≤ δβ1/2. Using that ν ≤ 1/3
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from (58) yields

δ > δ◦ : ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

≤ P(Gc) · ρα2/2 + β−1 · 9 ·
(
αγνβ1/2/(4C)

)2
+ 6 · β−3/2 · (β1/2/(2C) +

√
2γ−1β1/2) ·

(
αγνβ1/2/(4C)

)2
≤ P(Gc) · ρα2/2 + 18/(16C) · α2 · γν2/C
≤ P(Gc) · ρα2/2 + 9/(8C) · α2 · δ◦,

δ ≤ δ◦ : ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

≤ P(Gc) · ρα2/2 + β−1 · 3 · (αγνβ1/2/(4C) · δ/
√
2 + δβ1/2) · αγνβ1/2/C

+ 6 · β−3/2 · (δβ1/2 + δβ1/2γ−1) ·
(
αγνβ1/2/C

)2
≤ P(Gc) · ρα2/2 + 7/(4C) · α · δ,

which we can summarise as

∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥ ≤ P(Gc) · ρα

2

2
+

7α

4C
·min{δ◦, δ}. (92)

For the second term in (90) we need to bound ∥ÏI,I(Ψ̇
∗
IΨ̇I)

−1∥ in two different ways. Since
I ∈ G and I := (ΨE − Z)∗Ψ = (ΦE − ZDα)

∗Ψ = (Φ−ΨDα)
∗Ψ we obtain either

∥ÏI,I(Ψ̇
∗
IΨ̇I)

−1∥ = ∥(D√
β)I,I(Φ−ΨDα)

∗
IΨI(Ψ

∗
IΨI)

−1(D√
β)

−1
I,I∥

= ∥(D√
β)I,IΦ

∗
I(Ψ

†
I)

∗(D√
β)

−1
I,I − (Dα)I,I∥

≤ β̄1/2 ·
√

1 + ϑ

1− ϑ
· β−1/2 + ᾱ ≤ γ−1

√
5/3 + 1 ≤ γ−1 · 7/3, (93)

or since we have ∥ZID√
β∥2 = ∥ZIDβZ

∗
I ∥ ≤ 2 · δ2β log(nKρ/δ∗) = 2 · δ2β/ν2 on G, we get

∥ÏI,I(Ψ̇
∗
IΨ̇I)

−1∥ = ∥(D√
β)I,I(ΨE − Z)∗IΨI(Ψ

∗
IΨI)

−1(D√
β)

−1
I,I∥

≤ ∥(D√
β)I,IEI,I(D√

β)
−1
I,I∥+ ∥(D√

β)I,IZ
∗
I ∥ · ∥Ψ

†
I∥ · ∥(D√

β)
−1
I,I∥

≤ δ/
√
2 + δβ1/2/ν ·

√
2 · 4/

√
3 · β−1/2

≤ 2 · δ/ν. (94)
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We define Γ := min{γ−1 · 7/3, 2 · δ/ν} and use the identity (72) as above for the second
term of (90), which enables us to apply Lemma 13 and Corollary 5(b):

∥EG [D
−1√
π R

∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

= ∥EG [(D√
π·β)

−1R∗
I(ḦI,I + Ψ̇∗

IΨ̇I) · (Ψ̇∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1 · (Ḧ∗
I,I + Ψ̇∗

IΨ̇I)RID
−1
√
π·β]∥

≤ ∥E[(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,IRI(D√

π·β)
−1]∥ · ∥D−1

β ∥

+ 2∥EG [(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,I(Ψ̇

∗
IΨ̇I) · ḦI,IRI(D√

π·β)
−1]∥ · ∥D−1

β ∥

+ ∥EG [(D√
π·β)

−1R∗
IḦI,I · (Ψ̇∗

IΨ̇I)
−1Ï ∗

I,IÏI,I(Ψ̇
∗
IΨ̇I)

−1 · ḦI,IRI(D√
π·β)

−1]∥ · ∥D−1
β ∥

=
(
∥E[(D√

π·β)
−1R∗

IÏ
∗
I,IÏI,IRI(D√

π·β)
−1]∥1/2

+Γ∥E[(D√
π·β)

−1R∗
IḦI,IḦI,IRI(D√

π·β)
−1]∥1/2

)2
· ∥D−1

β ∥. (95)

Looking at the first term of (95), we use a similar strategy as in (77) or rather in (121) and
(123) by applying Corollary 5(b) and obtain

∥E[(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,IRI(D√

π·β)
−1]∥

≤ 9/2 · ∥D−1√
β ∥2 · ∥D√

πÏ ∗D√
π∥2 + 3/2 ·max

k
∥e∗kD−1√

β Ï
∗D√

π·β∥2

≤ 9/2 · β−1 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)2 · ∥ΨD√
π∥2

+ 3/2 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)2

≤ (9/2 · β−1 · ∥Ψ√
π·β∥2 + 3/2) · (∥ΦD√

π·β∥ · ε2/2 + ∥ZD√
π·β∥)2. (96)

Similar to above we observe the two cases δ > δ◦ and δ ≤ δ◦ separately. Note that α ≥
1− δ2◦/2 ≥ 1− 1/(2C2) ≥ 17/18 and that δ◦ ≤ 1/C. This yields

δ > δ◦ : ∥E[(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,IRI(D√

π·β)
−1]∥

≤ 2 ·
(
αγνβ1/2/(4C) + 2 · αγνβ1/2/(4C)

)2
≤ 18 ·

(
αγνβ1/2/(4C)

)2
,

δ ≤ δ◦ : ∥E[(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,IRI(D√

π·β)
−1]∥

≤ 2 · 182/172 · α2 ·
(
αγνβ1/2/(4C) · γν2/(2C) · δ + δβ1/2

)2
≤ 3 · α2βδ2 ≤ 3/C · α2βδ.

which concludes to

∥E[(D√
π·β)

−1R∗
IÏ

∗
I,IÏI,IRI(D√

π·β)
−1]∥ ≤ 3/C · α2β ·min{δ◦, δ}. (97)

With the bound we established on (78), we get(
∥E[(D√

π·β)
−1R∗

IÏ
∗
I,IÏI,IRI(D√

π·β)
−1]∥1/2

+Γ∥E[(D√
π·β)

−1R∗
IḦI,IḦI,IRI(D√

π·β)
−1]∥1/2

)2
· ∥D−1

β ∥

≤
(√

3/C · α ·min{δ◦, δ}1/2 +
√
2Γβ−1/2 · ∥ΨD√

π·β∥
)2
. (98)
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We use the inequality above, (92) and the probability bound from Lemma 4 to bound

∥E[Ŷ ]∥ ≤ δ∗/16 + 2α−1 · ∥EG [D
−1√
π R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]

+ α−2∥EG [D
−1√
π R

∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RID
−1√
π ]∥

≤ δ∗/16 + 7/(4C) ·min{δ◦, δ}

+ α−2 ·
(√

3/C · αmin{δ◦, δ}1/2 +
√
2Γβ−1/2 · ∥ΨD√

π·β∥
)2
.

Again we distinguish between the cases cases δ > δ◦ and δ ≤ δ◦, and note as before that
ν ≤ 1/3, which leads to

δ > δ◦ : ∥E[Ŷ ]∥ ≤ δ∗/16 + 7/(4C) · δ◦ + (
√
3/C +

√
2/C · 7/36)2 · γ−1δ◦ ≤ γ−1∆/6,

δ ≤ δ◦ : ∥E[Ŷ ]∥ ≤ δ∗/16 + 7/(4C) · δ + (
√

3/C + 4/C)2 · δ ≤ ∆/6. (99)

Now we fulfilled all preliminaries for Bernstein’s inequality 11. By choosing t = m =
γ−1∆/16 and r = γ−1ρ/2 and performing a few simplifications we get the desired bound.

If we compare the result of the Lemma 7 and its counterpart in [24] we notice that the
obtained bound is slightly greater by the scale of γ−1. The reason for this is that we needed
to bound

∥D√
β∥ · ∥D−1√

β ∥ ≤ (β̄/β)1/2 ≤ cmax/cmin = γ−1.

If necessary Lemma 7 can also be bounded by (β̄/β)1/2 ·∆/8.

Lemma 8 Given the conditions stated in Theorem 3, we have

P
(
∥ΦA(D√

β·π·α)
−1eℓ − ΦD√

βeℓ∥ > β1/2 ·∆/8
)
≤ 28 exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof Similar to the proofs of Lemma 6 and 7 we use Bernstein’s inequality again, although
this time we define Ŷn and Yn not as matrices, but as independent random vectors with
fixed index ℓ, yielding

Ŷn :=
[
yny

∗
n(Ψ

†
În
)∗RÎn

(D√
β·π·α)

−1 · 1B(yn)(În)−D√
β

]
eℓ,

Yn :=
[
yny

∗
n(Ψ

†
In
)∗RIn(D√

β·π·α)
−1 · 1B(yn)(In)− diag(1In)D

−1
π D√

β

]
eℓ. (100)

We can bound the ℓ2-norm of Ŷn and Yn by

max
{
∥Ŷn∥, ∥Yn∥

}
≤ κS2c2max∥D−1

π ∥∥D−1√
β ∥∥D−1

α ∥+ S∥D−1
π ∥

≤ 3/4 · β1/2ρ =: r.

We follow the steps in (69) of Lemma 6 and obtain

∥E[Ŷ ]∥ ≤ [2P(Hc) + P(Gc)] · ρ+ ∥E [1G(I)Y ] ∥ ≤ δ∗/32 + ∥E [1G(I)Y ] ∥. (101)
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We continue with recalling the expression from (74b)

Φ̇∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1 = (Dα)I,I + ÏI,I(D
−1
β )I,I + ÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,I(D
−1
β )I,I .

Following the steps of (71) and substitute the expression above yields

∥E [1G(I)Y ] ∥ = ∥EG [Φ̇R
∗
I(Φ̇

∗
IΨ

†∗
I − (Dα)I,I)RIeℓ]∥/(αℓπℓ)

≤ ∥EG [Φ̇R
∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ]∥/(απℓ)

≤
(
∥EG [Φ̇R

∗
IÏI,IRIeℓ]∥+ ∥EG [Φ̇R

∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRIeℓ]∥
)
/(αβℓπℓ).

(102)

For the following step we want to use I = Iℓc + eℓe
∗
ℓ . Since Ï = D√

β(ΦE −ZDα)
∗ΨD√

β has
zero diagonal and for any matrixMℓℓ = eℓMeℓ, we get that eℓR

∗
IÏI,IRIeℓ = 0 . So applying

Corollary 5(c) to the first term results in

∥EG [Φ̇R
∗
IÏI,IRIeℓ]∥ = ∥EG [ΦIℓcD√

βR
∗
IRID√

β(ΦE − ZDα)
∗
1I(ℓ)] · ψℓβ

1/2
ℓ ∥

≤ πℓ · ∥ΦIℓcD√
π·β∥ · ∥(ΦE − ZDα)D√

π·β∥ · ∥ψℓ∥ · β
1/2
ℓ

≤ πℓ · ∥ΦD√
π·β∥ · (∥ΦD√

π·β∥ · ε2/2 + ∥ZD√
π·β∥) · β1/2ℓ . (103)

Recall that HI,ℓ = RIHeℓ and Iℓ,I = e∗ℓIR∗
I . For the second term in (102) we use the

following bounds, which are addressed in Appendix A.2:

∥E[Ïℓ,IÏ ∗
ℓ,I1I(ℓ)]∥1/2 ≤ (βℓπℓ)

1/2 · ε · ∥ΨD√
π·β∥,

∥E[(D√
π·β)

−1IℓcÏI,IÏ ∗
I,IIℓc(D√

π·β)
−1
1I(ℓ)]∥1/2 ≤ 3 ·min{1, δ} · (πℓβℓ)1/2,

∥E[Ḧ∗
I,ℓḦI,ℓ1I(ℓ)]∥1/2 ≤ (βℓπℓ)

1/2 · ∥ΨD√
π·β∥.

We take the decomposition I = Iℓc + eℓe
∗
ℓ again and employ Lemma 13 on both terms to

obtain

∥EG [Φ̇R
∗
IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRIeℓ]∥

≤ ∥ϕℓβ
1/2
ℓ ∥ · ∥EG [Ïℓ,I · (Ψ̇∗

IΨ̇I)
−1 · ḦI,ℓ1I(ℓ)]∥

+ ∥ΦD√
π·β∥ · ∥D√

β∥ · ∥EG [(D√
π·β)

−1IℓcR∗
IÏI,I · (Ψ̇∗

IΨ̇I)
−1 · ḦI,ℓ1I(ℓ)]∥

≤ β
1/2
ℓ · ∥E[Ïℓ,IÏ ∗

ℓ,I1I(ℓ)]∥1/2 · ∥(Ψ̇∗
IΨ̇I)

−1∥ · ∥E[Ḧ∗
I,ℓḦI,ℓ1I(ℓ)]∥1/2 + ∥ΦD√

π·β∥ · β̄1/2×

× ∥E[(D√
π·β)

−1IℓcR∗
IÏI,IÏ ∗

I,IIℓc(D√
π·β)

−1
1I(ℓ)]∥1/2 · ∥(Ψ̇∗

IΨ̇I)
−1∥ · ∥E[Ḧ∗

I,ℓḦI,ℓ1I(ℓ)]∥1/2

≤
(
∥E[Ïℓ,IÏ ∗

ℓ,I1I(ℓ)]∥1/2 + ∥ΦD√
π·β∥ · ∥E[(D√

π·β)
−1IℓcR∗

IÏI,IÏ ∗
I,IIℓc(D√

π·β)
−1
1I(ℓ)]∥1/2

)
×

× 4/3 · β̄1/2β−1 · ∥E[Ḧ∗
I,ℓḦI,ℓ1I(ℓ)]∥1/2

≤ βℓπℓ ·min{
√
2, δ} · 4/3 · β−1/2γ−1 · ∥ΨD√

π·β∥ · (∥ΨD√
π·β∥+ 3 · ∥ΦD√

π·β∥), (104)

where in the last inequality we used that (β̄/β)1/2 ≤ cmax/cmin = γ−1 and that ε ≤
min{

√
2, δ}. If we substitute these bounds into (102) and (101) we get

∥E[Ŷ ]∥ ≤ β1/2 · δ∗/32 + α−1β
−1/2
ℓ · ∥ΦD√

π·β∥ · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)

+ 4/3 · α−1 ·min{
√
2, δ} · β−1/2γ−1 · ∥ΨD√

π·β∥ · (∥ΨD√
π·β∥+ 3 · ∥ΦD√

π·β∥).
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Similar to Lemma 6 and 7 we distinguish between the cases δ > δ◦ and δ ≤ δ◦. In the
first regime we use that max{∥ΨD√

π·β∥, ∥ΦD√
π·β∥} ≤ αγνβ1/2/(4C) and thus ∥ZD√

π·β∥ ≤
αγνβ1/2/(2C), which yields

∥E[Ŷ ]∥ ≤ β1/2 · δ∗
32

+ β1/2 · γν
2

C
· α

16C
· (γ + 2γ + 4/3 ·

√
2 · (1 + 3))

≤ β1/2 · δ∗
32

+ β1/2 · δ◦ ·
11α

16C
≤ β1/2 · ∆

16
. (105)

In the second regime, where δ ≤ δ◦, we can use ∥ΦD√
π·β∥ ≤ αγνβ1/2/(4C), while due to

(63) and (10) we have ∥ΨD√
π·β∥ ≤ αγνβ1/2/C and ∥ZD√

π·β∥ ≤ δβ1/2 resp., which results in

∥E[Ŷ ]∥ ≤ β1/2 · δ∗
32

+ β1/2 · δ · γν
C

·
(
αγν

16C
· 1/

√
2 + 1 + 4/3 ·

(
αν

C
+

3αν

4C

))
≤ β1/2 · δ∗

32
+ β1/2 · δ · 18γν

16C
≤ β1/2 · ∆

16
. (106)

Now we fulfilled all preliminaries for Bernstein’s inequality 11. By choosing t = m =
β1/2 · ∆/16 and r = 3/4 · β1/2 · ρ and performing a few simplifications we get the desired
bound.

Lemma 9 Given the conditions stated in Theorem 3 for Λ := max

{
αγνβ1/2

4C , ∥ΨD√
π·β∥
}
,

we get

P(Λ · ∥Iℓc(D√
π·β·α)

−1B(D√
β·π·α)

−1eℓ∥ > β1/2 · 3∆
16

) ≤ 28 exp

(
− N(∆/16)2

2ρ2 + ρ∆/16

)
.

Proof As in Lemma 8 we use the vector Bernstein inequality and express
(D√

π·β·α)
−1B(D√

β·π·α)
−1eℓ as a sum of independent random vectors Ŷn. Concretely we set

Ŷn := Λ · Iℓc(D√
π·β·α)

−1R∗
În
Ψ†

În
yny

∗
nΨ

†∗
În
RÎn

(D√
β·π·α)

−1IB(yn)(În)eℓ. (107)

Analogously we define Yn , but using the correct support In instead of În. We can bound
the ℓ2-norm of these vectors by

max
{
∥Ŷn∥, ∥Yn∥

}
≤ Λκ2S2c2max∥D−2

α ∥∥D−1
β ∥∥D−3/2

π ∥ ≤ 3/4 · β1/2ρ =: r. (108)

Apart from a few slight modifications we structure the proof as in Lemma 7. Similar to
(88) we obtain

Λ−1 · ∥E[Ŷ ]∥ ≤ δ∗
32

+ ∥EG [(D
−1√
π·α)IℓcR∗

I(D
−1√
β )I,IΨ

†
IΦ̇IΦ̇

∗
I(Ψ

†
I)

∗(D−1√
β )I,IRIeℓ]∥/(πℓαℓ). (109)

Note that IℓcDeℓ = 0 for every diagonal matrix D, so we can rewrite the expression above
as in (89) and get

(D−1√
π·α)Iℓc(D−1√

β )I,IΨ
†
IΦ̇IΦ̇

∗
I(Ψ

†
I)

∗(D−1√
β )I,IRIeℓ

= (D−1√
π·α)IℓcR∗

I(Ψ̇
∗
IΨ̇I)

−1Ψ̇∗
IΦ̇IΦ̇

∗
IΨ̇I(Ψ̇

∗
IΨ̇I)

−1RIeℓ

= (D−1√
π·α)IℓcR∗

I(Dα)I,IÏI,I(Ψ̇
∗
IΨ̇I)

−1RIeℓ + (D−1√
π·α)IℓcR∗

I(Ψ̇
∗
IΨ̇I)

−1Ï ∗
I,I(Dα)I,IRIeℓ

+ IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ. (110)
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We estimate the expectation of these three terms separately, beginning with the first one.

We use the decomposition of the identity IS =
(
ḦI,I + Ψ̇∗

IΨ̇I

)
(Dβ)

−1
I,I as in (72). By

replacing Φ̇ with (D√
π·β)

−1Iℓc we can take the bounds we obtained in (103) and (104),
and get

EG [D
−1√
π IℓcR∗

IÏI,I(Ψ̇
∗
IΨ̇I)

−1RIeℓ]∥

≤
(
∥EG [D

−1√
π IℓcR∗

IÏI,IRIeℓ]∥+ ∥D√
β∥ · ∥EG [(D√

π·β)
−1IℓcÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,ℓ1I(ℓ)]∥
)
· β−1

ℓ

≤ πℓβ
−1/2
ℓ ·

(
∥ΦD√

π·β∥ · ε2/2 + ∥ZD√
π·β∥+ 4 ·min{1, δ} · β1/2ℓ β−1/2γ−1 · ∥Ψ√

π·β∥
)
, (111)

We continue by distinguishing between the both regimes δ > δ◦ and δ ≤ δ◦. In the
first regime we use that max{∥ΨD√

π·β∥, ∥ΦD√
π·β∥} ≤ αγνβ1/2/(4C) and thus ∥ZD√

π·β∥ ≤
αγνβ1/2/(2C), while in the second regime, where δ ≤ δ◦, we can use ∥ΦD√

π·β∥ ≤ αγνβ1/2/(4C),

while due to (63) and (10) we have ∥ΨD√
π·β∥ ≤ αγνβ1/2/C and ∥ZD√

π·β∥ ≤ δβ1/2. This
yields

δ > δ◦ : ∥EG [D
−1√
π IℓcR∗

IÏI,I(Ψ̇
∗
IΨ̇I)

−1RIeℓ]∥

≤ πℓβ
−1/2
ℓ ·

(
3 · αγνβ1/2/(4C) + 4 · β1/2ℓ · αν/(4C)

)
≤ 1/20 · πℓαγ−1ν−1 · δ◦, (112)

δ ≤ δ◦ : EG [D
−1√
π IℓcR∗

IÏI,I(Ψ̇
∗
IΨ̇I)

−1RIeℓ]∥

≤ πℓβ
−1/2
ℓ ·

(
αγνβ1/2/(4C) · δδ◦/2 + δβ1/2 + 4 · δβ1/2ℓ · αν/C

)
≤ 11/10 · πℓ · δ. (113)

For the second term we employ that Ï ∗
I,IRIeℓ = RIIℓcÏ ∗eℓ1I(ℓ), which holds true since Ï

has zero diagonal. Similar to above we use IS = (Dβ)
−1
I,I

(
ḦI,I + Ψ̇∗

IΨ̇I

)
in order to apply

Corollary 5(c) to the first term and Lemma 13 to the second one:

∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,I(Dα)I,IRIeℓ]∥

≤ ∥EG [(D√
π·α)

−1]IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1RIIℓcD−1√
π 1I(ℓ)]∥ · ∥D√

πÏ ∗eℓ∥ · αℓ

≤ α−1 · ∥zℓβ
1/2
ℓ ∥ · ∥ΨD√

π·β∥ ·
(
β−1 · ∥EG

[
D−1√

π IℓcR∗
IRIIℓcD−1√

π 1I(ℓ)
]
∥

+β−1/2 · ∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I · (Ψ̇∗

IΨ̇I)
−1 · IℓcRID

−1√
π 1I(ℓ)]∥

)
≤ α−1β−1 · ∥zℓβ

1/2
ℓ ∥ · ∥ΨD√

π·β∥×

× (πℓ + 4/3 · β−1/2π
1/2
ℓ · ∥E[(D√

π·β)
−1IℓcR∗

IḦI,IḦ
∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥1/2). (114)

As above we discuss the two cases δ > δ◦ and δ ≤ δ◦ separately. In the appendix in (137)
and (138) we show that

δ > δ◦ : ∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥ ≤ 9 · πℓ · (αγνβ

1/2
ℓ /C)2,

δ ≤ δ◦ : ∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥ ≤ 9 · πℓ · (2γνβ̄1/2/C)2.
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With the bound above and the fact that (β̄/β)1/2 ≤ γ−1, we get

δ > δ◦ : ∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,I(Dα)I,IRIeℓ]∥

≤ ε · ν/(4C) · (πℓ + 4 · β−1/2πℓ · αγνβ
1/2
ℓ /C) ≤ 1/20 · πℓγ−1ν−1 · δ◦, (115)

δ ≤ δ◦ : ∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,I(Dα)I,IRIeℓ]∥

≤ δ · γν/C · (πℓ + 6 · β−1/2πℓ · γνβ̄1/2/C) ≤ 2/C · πℓ · δ. (116)

To the third term of (110) we apply the identity IS =
(
ḦI,I + Ψ̇∗

IΨ̇I

)
(Dβ)

−1
I,I on the left-

hand and on the right-hand side following the same procedure as in (95), which leads to

∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ1I(ℓ)]∥

≤ α−1β−1/2 · ∥EG [(D√
π·β·α)

−1IℓcR∗
I(ḦI,I + Ψ̇∗

IΨ̇I) · (Ψ̇∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1×
× (Ḧ∗

I,I + Ψ̇∗
IΨ̇I)RIeℓ1I(ℓ)∥ · β−1

ℓ

≤ α−1β−1/2β−1
ℓ ·

(
∥EG [(D√

π·β)
−1IℓcR∗

IÏ
∗
I,IÏI,IRIeℓ]∥

+ ∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRIeℓ]∥
+ ∥EG [(D√

π·β)
−1IℓcR∗

IḦI,I(Ψ̇
∗
IΨ̇I)

−1Ï ∗
I,IÏI,IRIeℓ]∥

+ ∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1ḦI,IRIeℓ]∥
)
.

(117)

Now we have made all the necessary preparations to bound ∥E[Ŷ ]∥, since

∥E[Ŷ ]∥ ≤ Λ · δ∗/32 + Λ · π−1
ℓ · α−1×

×
(
∥EG [D

−1√
π IℓcR∗

IÏI,I(Ψ̇
∗
IΨ̇I)

−1RIeℓ]∥+ ∥EG [D
−1√
π IℓcR∗

I(Ψ̇
∗
IΨ̇I)

−1Ï ∗
I,IRIeℓ]∥

+ ∥EG [D
−1√
π IℓcR∗

I(Ψ̇
∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ1I(ℓ)]∥
)
. (118)

Again we distinguish between the two cases δ > δ◦ and δ ≤ δ◦. In the appendix we have
further bounded (117), which we plug with the bounds of (112), (113), (115) and (116) into
(118), yielding

δ > δ◦ : ∥E[Ŷ ]∥ ≤ β1/2 · δ∗/32 + αγνβ1/2/C · α−1 ·
(
1/20 · γ−1ν−1 · δ◦

+1/20 · γ−1ν−1 · δ◦ + 5/2 · γ−1ν−1 · δ◦
)

≤ β1/2 · δ∗/32 + 26/(10C) · β1/2 · δ◦, (119)

δ ≤ δ◦ : ∥E[Ŷ ]∥ ≤ β1/2 · δ∗/32 + αγνβ1/2/C · α−1 · (11/10 · δ + 2/C · δ + 11/10 · δ)

≤ β1/2 · δ∗/32 + 23/(10C) · β1/2 · δ ≤ β1/2 ·∆/16. (120)

Now we fulfilled all preliminaries for Bernstein’s inequality 11. By choosing t = m =
β1/2 · ∆/16 and r = 3/4 · β1/2 · ρ and performing a few simplifications we get the desired
bound.

With this we have proved the four inequalities which are needed for the main theorem. In
the following chapter we summarize our results of this thesis and provide an outlook for
further related research work.
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6. Discussion

In this thesis we showed convergence of the MOD and ODL algorithm for data models
with non-uniform distribution of the supports of sparse coefficients in combination with
non-homogeneous distribution of the coefficient amplitudes. As part of our future work
we want to consider thresholding in a similar manner as in [19] to improve the bound on
the probability that thresholding recovers the correct support. We also want to generalise
the convergence result of the ITKrM algorithm in [21] to the signal model in Definition 2.
There it should not even be necessary to change the conditions of [21]. Since Dβ does not
get trapped between two non-diagonal matrices and therefore can still be canceled out by
scaling with D−1

β .
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Appendix A. Appendix

In this section we detail some calculations used in the proofs of Lemma 6 to 9 and restate
some theorems and lemmas which are essential for the thesis.

A.1 Auxiliary calculations for Lemma 6 and Lemma 7

We start by elaborating on two inequalities which help to bound ∥EG [D
−1√
π R

∗
IÏI,IÏ ∗

I,IRID
−1√
π ]∥

1
2

in (77). We recall that I = (ΦE − ZDα)
∗Ψ = (ΨE − Z)∗Ψ with Ekk = ⟨ψk, zk⟩ and

Ï = D√
βID√

β. Then, since I− ψ∗
kψk is an orthogonal projection, we obtain

∥D√
πÏD√

π∥ = ∥D√
πÏ ∗D√

π∥
≤ ∥(ΦE − ZDα)D√

π·β∥ · ∥ΨD√
π·β∥ = (∥ΦD√

π·βE − ZD√
π·βDα∥) · ∥ΨD√

π·β∥
≤ (∥ΦD√

π·β∥ · ε2/2 + ∥ZD√
π·β∥) · ∥ΨD√

π·β∥, (121)

∥e∗kÏD√
π∥ ≤ ∥(ψk⟨ψk, zk⟩ − zk)β

1/2
k ∥ · ∥ΨD√

π·β∥

= ∥(ψkψ
∗
k − I)zkβ

1/2
k ∥ · ∥ΨD√

π·β∥ ≤ ∥zkβ
1/2
k ∥ · ∥ΨD√

π·β∥
≤ min{εβ̄1/2, δβ1/2} · ∥ΨD√

π·β∥, (122)

∥e∗kD−1√
β Ï

∗D√
π∥ ≤ ∥ψ∥ · ∥(ΦE − ZDα)D√

π·β∥ ≤ ∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥. (123)

We continue by using the fact that ∥ΦD√
π·β∥ ≤ αγν2β1/2/(4C) ≤ β1/2 ≤ β̄1/2 and ε ≤

min{
√
2, δ}, which we showed in (83), to obtain a bound for (77) by using Corollary 5,

meaning

2 · ∥E[D−1√
π R

∗
IÏI,IÏ ∗

I,IRID
−1√
π ]∥

≤ 9 · ∥D√
πÏD√

π∥2 + 3 ·max
k

∥e∗kÏD√
π∥2

≤
(
9 · ∥ΦD√

π·β∥2 · ε4/4 + 9 · ∥ΦD√
π·β∥ · ε2 · ∥ZD√

π·β∥+ 9 · ∥ZD√
π·β∥2

+ 3 ·min{εβ̄1/2, δβ1/2}2
)
· ∥ΨD√

π·β∥2

≤
(
9/2 ·min{εβ̄1/2, δβ1/2}2 + 18 · β1/2ε · ∥ZD√

π·β∥+ 9 · ∥ZD√
π·β∥2

+ 3 ·min{εβ̄1/2, δβ1/2}2
)
· ∥ΨD√

π·β∥2

≤ (3 · ∥ZD√
π·β∥+ 3 ·min{εβ̄1/2, δβ1/2})2 · ∥ΨD√

π·β∥2

≤ (3 · ∥ZD√
π·β∥+ 3 · εβ̄1/2)2 · ∥ΨD√

π·β∥2. (124)

Next we want to establish a bound for ∥E[(D√
π·β)

−1R∗
IḦI,IḦI,IRI(D√

π·β)
−1]∥

1
2 in (78). We

recall that Ḧ = D√
βΨ

∗ΨD√
β − Dβ and note that D√

βΨ
∗ΨD√

β is a positive semidefinite
matrix which yields

∥D√
πD

−1√
β ḦD√

π∥ = ∥D−1√
β ∥ · ∥D√

π·βΨ
∗ΨD√

π·β − diag(D√
π·βΨ

∗ΨD√
π·β)∥

≤ β−1/2 · ∥D√
π·βΨ

∗ΨD√
π·β∥ = β−1/2 · ∥ΨD√

π·β∥2, (125)

∥e∗kD−1√
β ḦD√

π∥ = ∥(e∗k − ψ∗
kΨ)D√

π·β∥ ≤ ∥ψ∗
kΨD√

π·β∥ ≤ ∥ΨD√
π·β∥. (126)
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We apply Corollary 5(b) to (78) and use that ∥ΨD√
π·β∥ ≤ αγν2β1/2/C ≤ β1/2/3 holds true

in both regimes, which results in

∥E[(D√
π·β)

−1R∗
IḦI,IḦI,IRI(D√

π·β)
−1]∥

= ∥E[D−1√
π R

∗
I(D

−1√
β Ḧ)I,I(ḦD√

β)
−1
I,IRID

−1√
π ]∥

≤ 9

2
· ∥D√

πD
−1√
β ḦD√

π∥2 +
3

2
·max

k
∥e∗kD−1√

β ḦD√
π∥2

≤ 9

2
· β−1 · ∥ΨD√

π·β∥4 +
3

2
· ∥ΨD√

π·β∥2

≤ 1

2
· ∥ΨD√

π·β∥2 +
3

2
· ∥ΨD√

π·β∥2 = 2∥ΨD√
π·β∥2. (127)

A.2 Auxiliary calculations for Lemma 8 and Lemma 9

We begin with some fundamental bounds, which are used in both Lemmas. Therefore
we note that, Ïℓ,I = e∗ℓÏR∗

I and ḦI,ℓ = RIḦeℓ, and apply Corollary 5(c) by setting
W = V = e∗ℓÏ for the first inequality and W = V = Ḧeℓ for the second one

∥E[Ïℓ,IÏ ∗
ℓ,I1I(ℓ)]∥ ≤ πℓ · (∥e∗ℓÏD√

π∥2 + ∥Ïℓℓ∥2)
= πℓβℓ · ∥e∗ℓ (ΨE − Z)∗ΨD√

π·β∥2

≤ πℓβℓ · ∥zℓ∥2 · ∥ΨD√
π·β∥2 ≤ πℓβℓε

2 · ∥ΨD√
π·β∥2, (128)

∥E[Ï ∗
I,ℓ,ÏI,ℓ1I(ℓ)]∥ ≤ πℓ · (∥e∗ℓÏ ∗D√

π∥2 + ∥Ï ∗
ℓℓ∥2)

= πℓβℓ · ∥e∗ℓΨ∗(ΦE − ZDα)D√
π·β∥2

≤ πℓβℓ · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)2, (129)

∥E[Ḧ∗
I,ℓḦI,ℓ1I(ℓ)]∥ ≤ πℓ · (∥e∗ℓḦD√

π∥2 + ∥Ḧℓℓ∥2)

≤ πℓ · ∥β
1/2
ℓ ψℓ∥2 · ∥ΨD√

π·β∥2 ≤ πℓβℓ · ∥ΨD√
π·β∥2. (130)

Next we want to bound ∥E[(D√
π·β)

−1IℓcR∗
IÏ

∗
I,IÏI,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥. Hence we need the

following calculations. We recall that İ = ID√
β and obtain

max
k

(D−1√
β Ï

∗
kℓ)

2 = max
k

(e∗kΨ
∗(ΨE − Z)D√

βeℓ)
2 ≤ max

k
(∥ψk∥ · ∥ψℓ⟨ψℓ, zℓ⟩ − zℓ∥ · β

1/2
ℓ )2

≤ ∥(ψℓψ
∗
ℓ − I)zℓ∥2 · βℓ ≤ ∥zℓ∥2 · βℓ ≤ ε2βℓ ≤ min{2, δ2} · βℓ. (131)
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Following a similar approach as in (121) and (122) we get

3 · ∥D−1√
β D√

πÏ ∗eℓ∥2 ≤ 3 · ∥(D√
π·β)

−1∥2 · ∥ΨD√
β∥2 · ∥ψℓ⟨ψℓ, zℓ⟩ − zℓ∥2 · βℓ

≤ 3 · β−1 · ∥ΨD√
π·β∥2 · ∥(ψℓψ

∗
ℓ − I)zℓ∥2 · βℓ

≤ 3 · β−1 · ∥ΨD√
π·β∥2 · ∥zℓ∥2 · βℓ

≤ 1/C ·min{1, δ2} · βℓ, (132)

9/2 · ∥D−1√
β D√

πÏ ∗D√
π∥2 ≤ 9/2 · ∥D−1√

β ∥2 · ∥D√
πÏD√

π∥2

≤ 9/2 · β−1 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)2 · ∥ΨD√
π·β∥2

≤ 1/C ·min{1, δ2} · βℓ, (133)

3/2 ·max
k

∥e∗kD−1√
β Ï

∗D√
π∥2 ≤ 3/2 · ∥ψk∥2 · ∥(ΦE − ZDα)D√

π·β∥2

≤ 3/2 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥)2

≤ min{1/C, 2 · δ2} · βℓ. (134)

By using Corollary 5(d) we get

∥E[(D√
π·β)

−1IℓcR∗
IÏ

∗
I,IÏI,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

≤ 3/2 · πℓ ·
(
3 · ∥D−1√

β D√
πÏ ∗eℓ∥2 +max

k
(D−1√

β Ï
∗
kℓ)

2

+ 9/2 · ∥D−1√
β D√

πÏ ∗D√
π∥2 + 3/2 ·max

k
∥e∗kD−1√

β Ï
∗D√

π∥2
)

≤ 9 ·min{4/11, δ2} · πℓβℓ. (135)

We take a similar approach for ∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥. We distin-

guish between the two cases δ > δ◦ and δ ≤ δ◦. While in the first regime we simply get
that

max
k

(D−1√
β Ḧ)2kℓ ≤ max

i ̸=j
|⟨ψi, ψj⟩β1/2j |2 ≤ µ√

β(Ψ)2 ≤ (αγν2β1/2/C)2,

the second regime takes further attention. Following a similar approach as in (64) leads to

max
k

(D−1√
β Ḧ)2kℓ ≤ β−1 ·max

i ̸=j
|β1/2i ⟨ψi, ψj⟩β1/2j |2

= β−1 ·max
i ̸=j

(
|β1/2i ⟨ϕi, ϕj⟩β1/2j |+ |β1/2i ⟨ϕi, ψj − ϕj⟩β1/2j |

+|β1/2i ⟨ψi − ϕi, ψj⟩β1/2j |
)2

≤ β−1 · (β̄1/2µ√
β(Φ) + 2β̄1/2max

k
∥(ψk − ϕk)β

1/2
k ∥)2

≤ β−1 · (β̄1/2µ√
β(Φ) + 2β̄1/2β1/2 · δ)2

≤ β−1 · (β̄1/2αγν2β1/2/C + β̄1/2β1/2γν2/C)2 ≤ (2β̄1/2γν2/C)2.

Recalling that in both regimes ∥ΨD√
β∥ ≤ αγνβ1/2/C we bound the following

∥D√
πḢeℓ∥2 = ∥D−1√

β D√
πḦeℓ∥2 ≤ ∥D√

β∥2 · ∥D√
βΨ

∗ΨD√
βeℓ∥2

≤ β−1 · ∥ΨD√
β∥2 · ∥ψ∥2 · βℓ ≤ (αγν/C)2 · βℓ. (136)
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Using ∥D√
πḢD√

π∥ ≤ β−1/2 · ∥ΨD√
π·β∥2 and ∥e∗kḢD√

π∥ ≤ ∥ΨD√
π·β∥ from (125) and (126)

resp. and Corollary 5(d), we obtain for the first regime that

∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

≤ 3/2 · πℓ ·
(
3 · ∥D√

πḢeℓ∥2 +max
k

(D−1√
β Ḧ)2kℓ

+9/2 · ∥D√
πḢD√

π∥2 + 3/2 ·max
k

∥e∗kḢD√
π∥2
)

≤ 3

2
· πℓ ·

3 ·
(αγν
C

)2
· βℓ +

(
αγν2β1/2

C

)2

+
9

2
· β ·

(αγν
4C

)4
+

3

2
·

(
αγνβ1/2

4C

)2


≤ 9 · πℓ · (αγνβ
1/2
ℓ /C)2, (137)

and for the second regime that

∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥ ≤ 9 · πℓ · (2γνβ̄1/2/C)2. (138)

Next we establish a bound for (117). Therefore we mainly use the calculations from (129)-
(138) and Lemma 13. Recall that ∥ÏI,I(Ψ̇

∗
IΨ̇I)

−1∥ ≤ min{γ−1 · 7/3, 2δ/ν} = Γ.
For the first term in (117) we use the inequalities of (129) and (135) after applying Lemma
13, yielding

∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,IRIeℓ]∥

≤ ∥E[(D√
π·β)

−1IℓcR∗
IÏ

∗
I,IÏI,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

1
2 · ∥E[Ï ∗

I,ℓÏI,ℓ1I(ℓ)]∥
1
2

≤ 3 · πℓβℓ ·min{2/
√
11, δ} · (∥ΦD√

π·β∥ · ε2/2 + ∥ZD√
π·β∥).

Continuing in both regimes separately and using that α ≥ 1− δ2◦/2 ≥ 1− 1/(2C2) ≥ 17/18
results in

δ > δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,IRIeℓ]∥

≤ 6/
√
11 · πℓβℓ ·

3 · αγνβ1/2

4C
≤ 14/10 · πℓβℓ · αβ1/2ν−1 · δ◦, (139)

δ ≤ δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,IRIeℓ]∥

≤ 3 · α · 18/17 · πℓβℓ ·
γν2

C
· δβ1/2 · (1/C + 1)

≤ 4/C · πℓβℓ · αβ1/2 · δ. (140)

For the second term we use the inequalities of (130) and (135) to obtain

∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,I(Ψ̇

∗
IΨ̇I)

−1 · ḦI,IRIeℓ]∥

≤ ∥E[(D√
π·β)

−1IℓcR∗
IÏ

∗
I,IÏI,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

1
2 · Γ · ∥E[Ḧ∗

I,ℓḦI,ℓ1I(ℓ)]∥
1
2

≤ 3 ·min{1, δ} · (πℓβℓ)1/2 · Γ · (πℓβℓ)1/2 · ∥ΨD√
π·β∥

≤ 3 ·min{1, δ} · πℓβℓ · Γ · ∥ΨD√
π·β∥.
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Continuing in both regimes separately leads to

δ > δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,I(Ψ̇

∗
IΨ̇I)

−1 · ḦI,IRIeℓ]∥

≤ 3 · πℓβℓ · γ−1 · 7/3 · αγνβ1/2/(4C)

≤ 7/8 · πℓαβ1/2βℓ · γ−1ν−1 · γν2/C ≤ 7/8 · πℓαβ1/2βℓγ−1ν−1 · δ◦, (141)

δ ≤ δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IÏ

∗
I,I · ÏI,I(Ψ̇

∗
IΨ̇I)

−1 · ḦI,IRIeℓ]∥

≤ 3 · πℓβℓδ · 2δν−1 · αγνβ1/2/C

≤ 3/C · πℓ · γν2/C · 2δ · βℓ · αγβ1/2 ≤ 3/C2 · πℓαβ1/2βℓγ · δ. (142)

For the next term we need the inequalities of (129), (137) and (138), yielding

∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I · (Ψ̇∗

IΨ̇I)
−1Ï ∗

I,I · ÏI,IRIeℓ]∥

≤ ∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

1
2 · Γ · ∥E[Ï ∗

I,ℓÏI,ℓ1I(ℓ)]∥
1
2

≤ ∥E[(D√
π·β)

−1IℓcR∗
IḦI,IḦ

∗
I,IRIIℓc(D√

π·β)
−1
1I(ℓ)]∥

1
2×

× Γ · (βℓπℓ)1/2 · (∥ΦD√
π·β∥ · ε2/2 + ∥ZD√

π·β∥).

Continuing in both regimes separately results in

δ > δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I · (Ψ̇∗

IΨ̇I)
−1Ï ∗

I,I · ÏI,IRIeℓ]∥

≤ 3 · π1/2ℓ · αγνβ1/2ℓ /C · γ−1 · 7/3 · (βℓπℓ)1/2 · 3 · αγνβ1/2/(4C)

≤ 11/(2C2) · πℓαβ1/2βℓ · δ◦, (143)

δ ≤ δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I · (Ψ̇∗

IΨ̇I)
−1Ï ∗

I,I · ÏI,IRIeℓ]∥

≤ 6 · π1/2ℓ · γνβ̄1/2/C · 2δν−1 · (βℓπℓ)1/2 · γν2/C · β1/2 · (1/C + 1)

≤ 13/C2 · πℓαβ1/2βℓγ2ν3 · δ ≤ 13/C2 · πℓαβ1/2βℓ · δ. (144)

For the last term we employ the inequalities of (130), (137) and (138) after applying Lemma
13, yielding

∥EG [D
−1√
π IℓcR∗

IḦI,I · (Ψ∗
IΨI)

−1Ï ∗
I,IÏI,I(Ψ

∗
IΨI)

−1 · ḦI,IRIeℓ]∥

≤ ∥E[D−1√
π IℓcR∗

IḦI,IḦ
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥
1
2 · Γ2 · ∥E[Ḧ∗

I,ℓḦI,ℓ1I(ℓ)]∥
1
2

≤ ∥E[D−1√
π IℓcR∗

IḦI,IḦ
∗
I,IRIIℓcD−1√

π 1I(ℓ)]∥
1
2 · Γ2 · (βℓπℓ)1/2 · ∥ΨD√

π·β∥.

Continuing in both regimes separately leads to

δ > δ◦ : ∥EG [D
−1√
π IℓcR∗

IḦI,I · (Ψ∗
IΨI)

−1Ï ∗
I,IÏI,I(Ψ

∗
IΨI)

−1 · ḦI,IRIeℓ]∥

≤ 3 · π1/2ℓ · αγνβ1/2ℓ /C · γ−2 · 49/9 · (βℓπℓ)1/2 · αγνβ1/2/(4C)

≤ 8/C · πℓαβ1/2βℓγ−1 · γν2/C ≤ 8/C · πℓαβ1/2βℓγ−1 · δ◦, (145)

δ ≤ δ◦ : ∥EG [(D√
π·β)

−1IℓcR∗
IḦI,I · (Ψ∗

IΨI)
−1Ï ∗

I,IÏI,I(Ψ
∗
IΨI)

−1 · ḦI,IRIeℓ]∥

≤ 6 · π1/2ℓ · γνβ̄1/2/C · 4δ2ν−1 · αβ1/2β1/2ℓ γν/C

≤ 24/C2πℓαβ
1/2νβℓ · γν2/C · δ ≤ 12/C3 · πℓαβ1/2βℓ · δ. (146)
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Substituting the bounds(139)-(146) into (117) yields

δ > δ◦ : ∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ1I(ℓ)]∥
≤ πℓ ·

(
14/10 · γ−1ν−1 · δ◦ + 7/8 · γ−1ν−1 · δ◦

+11/(2C2) · δ◦ + 8/C · γ−1 · δ◦
)

≤ 5/2 · πℓγ−1ν−1 · δ◦, (147)

δ ≤ δ◦ : ∥EG [(D√
π·α)

−1IℓcR∗
I(Ψ̇

∗
IΨ̇I)

−1Ï ∗
I,IÏI,I(Ψ̇

∗
IΨ̇I)

−1RIeℓ1I(ℓ)]∥
≤ πℓ ·

(
4/C · δ + 3/C2 · δ + 13/C2 · δ + 12/C3 · δ

)
≤ 11/10 · πℓ · δ. (148)

Next we want to restate several well-known lemmas and theorems, which we use throughout
this thesis.

A.3 Matrix bounds

In this chapter we state useful matrix bounds on which we heavily rely in this thesis.

Theorem 10 (Matrix Chernoff inequality [33]) Let X1, . . . , XN be independent ran-
dom positive semi-definite matrices taking values in Rd×d. Assume that for all n ∈ {1, . . . , N},
∥Xn∥ ≤ η a.s. and

∥∥∥∑N
n=1 E [Xn]

∥∥∥ ≤ µmax. Then, for all t ≥ eµmax,

P

(
∥

N∑
n=1

Xn∥ ≥ t

)
≤ K

(eµmax

t

) t
η
.

Theorem 11 (Matrix resp. vector Bernstein inequality [33], [18]) Consider a se-
quence Y1, . . . , YN of independent, random matrices (resp. vectors) with dimension d ×K
(resp. d ). Assume that each random matrix (resp. vector) satisfies

∥Yn∥ ≤ r a.s. and ∥E [Yn]∥ ≤ m.

Then, for all t > 0,

P

(
∥ 1

N

N∑
n=1

Yn∥ ≥ m+ t

)
≤ κ exp

(
−Nt2

2r2 + (r +m)t

)
,

where κ = d +K for the matrix Bernstein inequality and κ = 28 for the vector Bernstein
inequality.

Theorem 12 (Operator norm of a random submatrix [22]) Let Ψ be a dictionary
and assume I ⊆ K is chosen according to the rejective sampling model with probabilities
p1, . . . , pK such that

∑K
i=1 pi = S. Further, let Dp denote the diagonal matrix with the

vector p on its diagonal. Then

P (∥Ψ∗
IΨI − I∥ > ϑ) ≤ 216K exp

(
−min

{
ϑ2

4e2 ∥ΨDpΨ∗∥
,

ϑ

2µ(Ψ)

})
.
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Lemma 13 (Sums of products of matrices [8], [14] ) Let An ∈ Rd1×d2 , Bn ∈ Rd2×d3,
Cn ∈ Rd3×d4. Then∥∥∥∥∥

N∑
n=1

AnBnCn

∥∥∥∥∥ ≤

∥∥∥∥∥
N∑

n=1

AnA
∗
n

∥∥∥∥∥
1
2

max
n

∥Bn∥

∥∥∥∥∥
N∑

n=1

C∗
nCn

∥∥∥∥∥
1
2

.

Theorem 14 ([22], [24]) Let PB be the probability measure corresponding to the Poisson
sampling model with weights pi < 1 and PS be the probability measure corresponding to
the associated rejective sampling model with parameter S, PS(I) = PB(I | |I| = S), as in
Definition 1. Further, denote by ES the expectation with respect to PS and by πS the vector
of first order inclusion probabilities of level S, meaning πS(i) = PS(i ∈ I) or equivalently
πS = ES (1I). We have

(1− ∥p∥∞) · pi ≤ πS(i) ≤ 2 · pi, if
∑
k

pk = S,

πS−1(i) ≤ πS(i),

PS({i, j} ⊆ I) ≤ πS(i) · πS(j), if i ̸= j.

Further, defining for L ⊆ [K] with |L| < S the set L = {I ⊆ [K] : L ⊆ I}, we have

ES

[
1I\L1

∗
I\L · 1L(I)

]
·
∏
ℓ∈L

[1− πS(ℓ)] ⪯ ES−|L| [1I1
∗
I ] ·
∏
ℓ∈L

πS(ℓ).

Finally, if π := πS satisfies ∥π∥∞ < 1, then for any K ×K matrix A we have

∥A⊙ E [1I1
∗
I ]∥ ≤ 1 + ∥π∥∞

(1− ∥π∥∞)2
· ∥Dπ[A− diag(A)]Dπ∥+ ∥diag(A)Dπ∥ .
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