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Abstract

In this thesis we show convergence for two alternating minimisation algorithms for
dictionary learning under mild conditions. To be precise we prove convergence of the
Method of Optimal Directions (MOD) and the algorithm for Online Dictionary Learning
(ODL) for data models with non-uniform distribution of the supports of sparse coeffi-
cients in combination with non-homogeneous distribution of the coefficient amplitudes.
The innovation lies in including coeflicients with non-homogeneous sizes, which is a
generalization of the results in [24], in which the coefficient amplitudes are uniformly
distributed. We prove that a well-behaved initial dictionary contracts to the generating
dictionary with geometric convergence rate, if either their distance is not larger than
1/log(K) or if it is assured that each component of the initial dictionary is associated
with exactly one element of the generating dictionary.
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1. Introduction

In the field of signal processing and machine learning, dictionary learning plays an important
role for sparse representations and analysis of data. The goal of dictionary learning is to
find a dictionary ® = (¢1,...,¢x) € R*E for a number of given signals y € R?, which are
stored as columns of a matrix Y = (y1,...,yn), such that

Y ~®X, with X e Rf*Ngparse.

The coefficient matrix X = (z1,...,zy) being sparse means, that most of the entries of
each x, are zero. There is a vast variety of algorithms, which are trying to solve this
problem [T} B, 10, 27, 15, 16], 17, 29, 25] and also in a theoretical context, research is
progressively increasing [12], B0, [4, 26, [13], 6, 5] 1, 21, BT 2] [7, 28], 20} 19]. In this thesis we
will discuss alternating optimisation algorithms, which use as common starting point the
following programme:

argming y||Y — UX[% s.t. Xe8S and |pla=1 for all k, (1)

where S is a set which imposes sparsity on the coefficient matrix X, for example by assuming
that every z, has at most S <« d coefficients unequal to zero. Alternating optimisation
algorithms derive their name from alternating between updating the coefficient matrix and
updating the dictionary. Concretely this means for a fixed dictionary ¥ the coefficient
update can be described as

X = argminy ||Y — UX||% = argminy Z lyn — Tzpl3 st ol < S, (2)

n

whereas for a fixed coefficient matrix X the update of the dictionary underlies the following
scheme:
argming [V — WX |3 = f(¥)  st. Junly = 1. 3)

In this master thesis we study two alternating optimisation algorithms for dictionary learn-
ing, namely the Method of Optimal Directions (MOD), [9], and the algorithm for Online
Dictionary Learning (ODL), [I7]. The former addresses the problem in by neglecting
the unit norm constraint on the atoms and which has a closed form solution:

argming f(¥) = Y XT.

After updating the dictionary as in we enforce the unit norm constraint by scaling with
an appropriate diagonal matrix D, which then means Y XTD. On the other hand the ODL
algorithm approaches the problem in by projected block coordinate descent. Starting
with the gradient we get

Vo f(®) ==Y (yn — Vip) i}, = Y X" + UXX",

which leads to the following gradient step, where A defines a diagonal matrix with the
length of the step sizes and D as a diagonal matrix enforcing the unit norm as above:

[qf + (YX* - prX) -A] D= [\IlA‘l ~VX* 4 UXX*| - AD. (4)

5



Choosing A~! as diag(X X) results in the dictionary update scheme of ODL, [17].
Contribution: In the recent paper [24] convergence of the MOD and ODL algorithm was
derived for a signal model which includes non-uniform distribution of the supports of sparse
coefficients. The coefficient size in the signal model of [24] is independent and identically
distributed. We extend these results by including non-homogeneous distributions of the
coefficient amplitudes and obtain a generalisation of [24].

2. Notation and setting

Since this master thesis is a generalisation of [24], we follow their notation and setting.
Let A € R*K B ¢ REX™ and Aj, as well as A* be the k-th column and row of A
respectively. We denote by A* the transpose of A. We will use the following operator
norms for 1 < p,q,r <

[Allp.q := max [|Azl|p.

ll=llq=1

Note that [|AB]pq < [[Allgr|B

lr.p and [|Az|lq < ||Allgpllx|p- Here, we mainly use
[A] = [|All2.2,
for the largest absolute singular values of A. Sometimes we also employ

Allg1 = A d ||A = Ak
| All2,1 keg{}?fK}\l Kl and  [[Allc2 kel{]qf}?id}ll 2,

which denote the maximal ¢ norm of a column resp. row of A. Throughout this thesis we
often apply the following notation

v:=min|v;] and 7:=max|v, (5)
7 7

where v € RX. We denote by D, = diag(v) € RE*X the corresponding square diagonal
matrix and often abbreviate D,., := D, - Dy, for w € R¥. For the so called support
I C K:={l,...,K} we let Ar be the submatrix with columns indexed by I and Aj
the submatrix with rows and columns indexed by I. In this context we often use the
zero-padding operator Ry := (I;)* € RII*K meaning

Ar = AR (6)

The zero-padding operator enables us to embed the matrix A; € R¥™HI into R¥*K via
ARy € R>*K We follow the convention that subscripts have higher priority than trans-
position, e.g. A3 = (A;)*. Furthermore let 1; € R¥ be the vector with entry 1 on position
i, if ¢ € I and entry 0 otherwise. We use ® to denote the Hadamard Product or pointwise
product of two matrices or vectors of the same dimension.

As already mentioned in the introduction ® € R4*X is the generating dictionary, which we
want to recover with the dictionary learning algorithms (MOD, ODL) which have as input
the current guess ¥ € R¥*K_ We denote the coefficient matrix by X. For any permutation

matrix P we get
Y=0X=Y = (PP)(PX). (7)



So we can assume that ¥ is ordered such that max; |[(¢s, ;)| = [(¢:, )| In a similar way
we have a sign ambiguity, since Y = ®X implies Y = (®D)(DX) for D;; = £1. Hence wlog
we can assume that ¥ is signed, such that a; := (¢;,1;) > 0 for all i € [K]. We define the
fo-distance between dictionary elements as

(¥, @)= [|¥ — @21 = max ¢ — dill, = (¥, ®)? =2 - 20, (8)

which we frequently abbreviate as ¢ instead of (¥, ®). We also abbreviate Z := ¥ — ®,
which denotes the difference matrix between the generating dictionary ® and the current
guess W. Given two vectors with positive entries 3,7 € R¥, we define the distance 6(¥, ®)
between ® and U as

6, ®) i=max { | (¥ — @) Dyesl| 72, (¥ — @)D 2187/2 (9)
—max { | ZD )| 8721 ZD 121 872} (10)

The concrete choice for §,m € RX will be clarified in the signal model in , which
we discuss in the next chapter. Further, if it is clear from context we will abbreviate
d(¥,®) as 0. Moreover we denote the maximal absolute inner product between two non-
corresponding atoms as the cross-coherence (¥, ®) := max;-; [(1;, ¢;)| and a scaled version

as 1,5(T, ) := maxz; |6, 65) - 7% . We abbreviate f15(®, ®) as j1,4(®).

3. Probabilistic model

In order to simulate in a realistic way, how the non-zero coefficients are chosen, we want
them to follow a non-uniform distribution, which is inspired for instance by [19]. Hence
we define our probabilistic model for the sparse supports by the following two definitions
similar to [24] Definition 1 and 2].

Definition 1 (Poisson and rejective sampling [24]) Let 6, denote a sequence of K
independent Bernoulli 0 — 1 random wartables with expectations 0 < pr < 1 such that
Zszl pr = S and denote by Pp the probability measure of the corresponding Poisson sam-
pling model. We say the support I follows the Poisson sampling model, if I :== {k | 0 =1}
and each support I C K is chosen with probability

Pu(I) =[] p: [ - p))- (11)

il j¢l

We say our support I follows the rejective sampling model, if each support I C K is chosen
with probability
Ps(I) :=Pp(I | [I| = S). (12)

If it is clear from the context, we write P(I) instead of Ps(I).

As has already been pointed out in [24] the Poisson sampling has the major comfort that
the probabilities of the atoms appearing in the support are independent from each other,
but only has on average S-sparse supports. Unfortunately our requirement on the model is
that the support is exactly S-sparse. Therefore we use the second model which satisfies this



condition and can be related to the Poisson sampling using [23], restated in Theorem
This proves to be quite valuable, because we can typically reduce estimates for rejective
sampling to estimates for Poisson sampling. We continue by defining our signal model based
on rejective sampling.

Definition 2 (Signal model) Let ® = (¢1,...,¢x) € R>*E be the generating dictionary
with K normalized atoms ¢; € R, Additionally we choose the support I = {i1,...ig} CK
according to the rejective model with parameters p1,...,px such that Zfil pi =S and
0 < pr <1/6. Let the signals be modelled as

y=®Qrzr= Z@;xi, T = 05, (13)
el

where the coefficients of the sequence ¢ = (¢;); € RX are independent, bounded random
vartables ¢; with 0 < cmin < ¢ < cmax < 1 and the sign sequence o € {—1,1}K s a
Rademacher sequence, i.e. its entries o; are i.i.d with P(o; = +1) = 1/2. Supports,
coefficients and signs are modeled as independent and can be written as

r=11OcOo. (14)

We place emphasis on the coefficient sequence ¢, which does not have to be i.i.d as in [24],
Definition 2] and therefore is more general. To characterise our model we define the vectors
B,m € RE via

Bi :=E[?] and m:=P(i€I), (15)

and the square diagonal matrices D 5, D - € REXK ag

D= diag((v/£;)i) and D, = diag((v/m)s),

which we use excessively throughout this master thesis. Sometimes we also employ the
following notation for a matrix M

M:=MD, and M :=D_;MD,,

in order to improve the readability of some calculations. With the help of our signal model
we can now sketch why the output dictionary of one step of both the algorithms should be
close to the generating dictionary .

The update step before normalisation can be written as

MOD: YX*(XX*) ! =dXX*(XX*)!
1o e e 1 ) - e
ODL: — [YX* - wXX"+ \I/diag(XX*)} =< [@XX* —UXX* + Udiag(XX")],

where we use that Y = ®X. We define two averages of random matrices as

A= —XX*— Zl‘n and B := —XX*— Zmn (16)



which lead to the following expressions of the update step

MOD: ®AB™!,
ODL: ®A — ¥[B — diag(B)].

Since we know the empirical estimators A and B are approximately E[zz] and E[2Z] resp.,
we have a closer look at these expectations. We assume that thresholding succeeds to find
the correct support, meaning I = I. Note that by using the zero-padding operator R} we
obtain

xi* = :B(R?\Iﬂy)* = xw*@*(ﬁ/})*RI

We assume that ¥ is well conditioned, which means that W3W; ~ I and therefore implies
that \Il; ~ U7}. So we obtain

xi* ~ xx* @V Ry = xa* VR R; = xx*®* U diag(1;).
According to our model we have x = 17 ® ¢ ® g, where I, ¢, o are independent, so
Beolr2”] = Bofoc’] © Bylo0™] @ (1/1}) = Dy diag(1y) = diag(1,) D,
and thus
Elzz*] = Efcq[z2"] = Er[diag(17)Ds®* ¥ diag(1y)] = (DgdP* V) © Ef[1,17].
The matrix E;[1717] is diagonally dominant, which can be seen since
(Ef[1/17))ij =P(i,j e ) =P el) -P(jel) <Piel)= (Er1r17])u,

meaning
E[1;17] = Dy + n7* = D;.

After analysing B in a similar manner and using that D, = diag(®*¥) we get
AxE[ri*] =~ (Dg®*V) © Dy = Dr.qp and B = E[22*] = D, ,2p.
Substituting this into the update steps of MOD and ODL before normalisation yields
PAB '~ ®D;! and ®A - VU[B - diag(B)]~ ®Dy.a.s. (17)

This rough analysis provides insight into the MOD and ODL algorithm and suggests that
both algorithms should converge to the generating dictionary. The main job is now to
quantify the errors and show that they are small which proves our main result.



4. Main result and proof

Our main goal is to prove the following theorem, which is a generalization of Theorem 3
in [24].

Theorem 3 We assume that the given signals conform to the signal model in Definition[3
Additionally we define

ai=min|(,é)| =1-2%/2, yi= " and  p=2e2§%%an Y (18)

Cmax

where k2 > 2. Let §, be the desired recovery accuracy, chosen such that for two universal
constants C,yn with C < 42 and n < 130, 0, satisfies 6,Clog(nKp/d,) < 0. Abbreviate

v =1/y/log(nKp/d,) < 1 meaning 6, < yv?/C. If the atom-wise distance ¢ = (¥, ®) of
the current guess ¥ to the generating dictionary ® satisfies

€2 vB'/?
{80l s (@) < (15 ) o (19)
and the current guess ¥ additionally satisfies either
g2 ’Yﬂlm
w00l a0 s ) < (15 ) ol
or  §(U,d) < m = 6, (21)

then the updated and normalised dictionary U, which is output by ODL or MOD, satisfies

508, @) < 3 - (3./2 + min{s,, 50, @) = 5. (22
except with probability
N(A/16)?

Before we proceed with the proof of the theorem, we provide an explanation of what we
have achieved and compare it with [24]. In Theorem 3] we have generalised the result of
[24], since for a coefficient sequence ¢ that is i.i.d. as in [24], we obtain the same result as
in [24]. This can be seen, since in the i.i.d. case, the diagonal matrix D ; can be simplified
to a constant times the identity, which means that ||AD ;| = §1/2 - ||A]|, for any matrix
A. This means that the factor /2 in and cancels out for all norms and also for
15 (U, @), p5(®) and ju5(¥), which we illustrate in detail for p z(U, ®):

pos(W, ®) = (i, 65) - 6] = max | (i, 65)] - 62 < a2/ (4C).

The inequality implies p(¥, ®) < ayv?/(4C), meaning the condition of [24]. In the second
regime it cancels out indirectly, because of our definition of §, which is

6(, @) = max { (¥ = ®)D sl 8772, |(¥ = 9)D 121877}
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One important difference between this thesis and [24] is that Dg cannot be treated as a
constant anymore. In [24] it was often used that for constant Dz we have DglM Dgl =M
for any square matrix, which is not true for § not being constant. So in order to deal with
that we have to revise the proof strategy in [24] and rescale our matrices A, B from as
D;;AD;; rather than AD1 and similar for B.

Proof [Proof of Theorem We define

Bi= (Dyra) " B(Dyra) (24)
A= (D) " AD r) 7, (25)

and summarize the results of Lemma [6] to [0} which hold true except with the probability
stated in : First by Lemma |§| and |7| we obtain

_ A _ A
lA=T2z < and [[B -T2z < 1 (26)

v 1/2
Second by Lemmaandee have forall £ € {1,--- , K} and A := max {7 4 ||\IIDF||}
that

_ _ A _ A
|94 (Dsma) e —de8; Pl < T and A [LeBegm; <72 (2D)

Inspired by . we define a scaled version of the updated dictionary ¥ as UD,. 8.o for ODL
and as WD, for MOD. We prove that ¥ contracts to the generating dlc‘monary ® and show
that this stays true even after normalising ¥, which leads to contraction of ¥ to ®. To put

it more explicitly we start by proving the following bounds for sy either being 1 for ODL or
eZB_leg for MOD:

(= @)Dyl - 57 < A/4 and  max |(de = sepr)B; |- 572 < A/30(28)

ODL: Since in we have seen that ®A — WB + Vdiag(B) ~ ® (Dxr.g.) We define
U = (PA — UB + Udiag(B)) (Dr.ga)” (29)
In order to use the bounds from and we write
(U — ®)D s = DA(D yrs.0) "' — U[B — diag(B)] (Dyrs.a) ' — D
=Dy [(Dyes) ' A(Dyrza) ™ =11
—¥Dyipa- [(Dﬂu)_lB(Dmu)_l -1
+UD 0 - [(Dyrra) ' diag(B)(Dyma) ' =1
=®D— [A=1| = VD 5 Do [B—1+ VD - D, - [diag(B) — 1. (30)

Before we continue with estimating the operator norm of the expression above we show that
|¥D | < 2fyy§1/2/0 in both regimes. For § > d, the assumption (20]) can be used, while
in the second regime, § < §, = yv2/C, we rewrite the term and use assumption (19)) to get

|UD sl| < [|8D s || + [|(¥ — @)D yes|| < [|®D s || + 55/
< @D rs| + 608/
< aywf?/(4C) + 2O - B2 < 2qvBY2/C.
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h Since || diag(B) —1I|| < ||B—1|| and || D,]|| < 1 we can use both bounds from to obtain

(¥ = @)Dzl < (12D sl - A =T + 2 [UD sl - | Dall - |B — 1|
< *Lwém oA +2- 29v3!/? A
- 40 8 C 4
which gets us contraction in the weighted operator norm. Next we want to show that

each atom 1), of the scaled updated dictionary contracts to their partner atom ¢, of the
generating dictionary in the weighted ¢3-norm. Similar to before we write

(e — 00)B,"* = (¥ — ®)D ey
= PA(D sra) 'er — D ey — VD 0 [B — diag(B)|D ey
= [®A(Dysra) ter — ®Dyseq] + VD s o - Ipe Beg, 2, (32)

A
S ﬁ1/2 : Z? (31)

where ey is the standard basis vector. Hence using that ||UD .| < [[¥D ;|| and the bounds
from we obtain

(e — ¢0)B2%)|
A
<[ RA(D sma) " et — @D el + WD sl - |[Tee Begm, V2| < 52

e

§ﬁ1/2A/8 SQI/QA/8

So we proved the desired bounds in for the ODL algorithm with s, = 1. Before we
take care of the normalisation, we want to obtain the same bounds for MOD.

MOD: We recall that the dictionary update of MOD corresponds to

@XX*(XX*) = ®AB! as long as X X* is invertible. This is given due to the right
inequality in (26]) together with the Neumann-series, which we will verify below. Inspired
by we deﬁne our scaled version of the updated dictionary as

¥ :=®AB™'D,
and decompose WD 5 as

UD = ®AB'D 54 = ®D — - (D) '*AB™'D /—=.4)

= @D s | (Dyrs) ' A(Dyrpa) ™

F(Dyer)  AD ) ([(Dmrl B(Dma)'] - H)]

=®D,- (A+A(B'-1)). (34)
Indeed since by Lemma [7] I we have |B — I|| < 7 - A/4, the matlzix B can be inverted by
applying the Neumann-series B~! = [T — (I — )] = Ek>0(]l — B)* and bounded as
1B == B < - Bl < =gy (35)
k>0 k>0

12



Further, we get

n—1 _ o k A
B -1 =@ B < S IB -1 < Sy = g <

k>1 k>1

Sl

(36)

where the last inequality follows from the fact that do = yw?/C and v < 1/3 and hence
A < 35, < 7. Before we estimate [[(¥ — ®)D || we also bound the scaled version A using
Lemma |§| or the first inequality in , which yields

- - - A
A < lA-T+I < AT+ [l < & + L. (37)

Next we use these observations to show contraction of the scaled updated dictionary ¥ to
the generating dictionary:

(8 — @)Dl < 8Dl - (14— 1) + 4] - | B ~ 1)
awp? (A (A A e A
< —= - — 1 R < /2'7.
< (F+(Fn)2) =t ®

This shows that under the assumptions of the theorem, the weighted operator norm of
the distance between the generating dictionary and the scaled update decreases in each
iteration. We proceed with the atomwise fo-norm: We define I = egej + Ipe as well as
Sp = egB e, and decompose 1, as

wéﬁlﬂ =UD e = PAB™'D . a€(Ty V2 = ‘I)A(D\/Wﬂ)_lg_leﬂrf_lﬂ
= DA(Dyra) v 50+ @Dy - (D) ' A(Dysza) - Tee B egm, 2, (39)

which yields

- 1/2
| (Be—sed0) By
_ T = —1/2
< I8¢l - |[PA(D sra)"tee — DD seq]| + |PD sl - [|A]l - |[Tee B eemy, 2. (40)

In order to establish a suitable bound for the atomwise difference, we still need to b_ound
the first and last term on the right-hand side above. It is easy to see that |sg| < 1B~
Combining the bound for ||B~!| from and Lemma |8 we obtain

5| - [|PA (D sma) Fer — ®D eyl < (11— 1A/4)7! -gl/Q -A/8. (41)

For the second term we need to have a closer look at H]Ichflemg_lﬂﬂ. Since B~ =
I+ B~Y(I - B) and Ijce; = 0 we get
_ _1/2 _ 2
e B egm; /2| = |1 B 1(]1—3)6,5@ V2 = e B (egef + Ige) (1 — B)egm, /2|
~1/2 - 5 —1/2
< e B eemy 2| = Bl + B - lLes Beemy .
Restructuring this inequality and applying the bound from Lemma [7] leads to

1B~

1[I B

1 = 12
L= B ter, NIeeBegmy VP € ey - e Begm, V| (42)

(T—~TA/1p

13



-1 -1.3 -1, 3y? 1 BT . 1 16 .
Note that v~ A <~ 560 < giE < g which implies T==TATT < 1z- Putting the

results of and together and i)hfgging it into yields
(e — sepe) By < 1— vilA/ZL ' ﬁfA
e (541) 2 e
<p'/>a/8 (7

Note that |sp — 1| < |B~! —1T|| < 47!+ A/3 in MOD. Hence, in summary our results so far
are the following, where s, = 1 for the ODL algorithm and close to 1 for MOD:

|(¥ — @)D || < 82 - A/4  and m?xu(@—sm)ﬁguggl/Q.A/a

Normalisation: In the last step of the proof, we show that normalizing the scaled versions
of the updated dictionary does not affect the convergence. We define F' := diag (H@/}Z‘H2)71

to be the normalization matrix, such that W := WF. Since ||¢¢|| = 1 and v < 1 we obtain

el =10 < 5 = el < e = 6008 - 6% + (e = Dl
< (B2 A/3) 54yt A3 <230 IA <y TIA,

Therefore we get ||F|| < (1 —y1A)™! and ||[I - F|| < fy;lA (1 —~y7tA)~L. With these
observations we can show that the updated dictionary ¥ contracts towards the generat-

ing dictionary ® in the weighted operator norm: Note that by assumption ||®D | <

WwBY?J(4C) <482 /(12C) and 1 —yTA > 1 — 325; > 1— &, which leads to

1(¥ = @)Dzl < (¥ — @)Dl - |F || + |2 D s - (T~ F)

A 1 VB2 AIA A
< pl/2. = = < pl/2. = A4
SO oAt e 1o A ST (44)

For the fo-norm we use the help of Lemma B.10 from [27]. If ||¢¢|| = 1 and ||vp — sede|| < t,
then vy = 1y /||¢|| satisfies

-2 <2—2/1- 5 <a_2(1 £/5; 2 (st (45)
— — _— — — _— = . Sy — — y

e o = sz~ 2—2/s? D)

where the second inequality holds, if 2/ s% < 1. In order to apply the lemma we note that

b — el - BE'> = (e — sege) By < B2 - A3 (46)

Hence we set ¢ := 621/2@1/2A/3 < A/3 while |1—s/| < A/3 and therefore sy > 1—-A/3 > ¢,
S0 we get

_ —1/2
; 2\ _ g A2 A? 8% A
o< (4-5) <22 ((1-5) %) <SR W
3ﬁg Bé

14




This implies that || (Y, — qﬁg)ﬂzlmH = ||Pbe — o] -ﬂ;/z < él/z -A/2. So we can conclude that

. A < A
(& = @)Dyesl| - 572 < and [[(F = @)Dyslon - 52 < T, (48)
hence §(¥, ®) < A/2, which finishes the proof of Theorem [ |

In Theorem [3| we have sufficient conditions for the initial dictionary ¥ and the generating
dictionary ®, ensuring that one iteration of MOD and ODL algorithm in combination
with thresholding as sparse approximation algorithm decreases the distance of the initial
dictionary and the ground truth ®. This is shown in a scaled operator norm as well as in
the fo-norm. Applying Theorem [3] iteratively yields convergence of MOD and ODL up to
the desired accuracy d,. The proof is mainly based on the four inequalities in and ,
which we discuss in the following chapter.

5. Four bounds needed in the proof

Like in the chapter before, we closely follow the approach of [24] to prove the following
lemmas. Since for each update step of the coefficients there is a need to project them onto
specific submatrices derived from the current guess ¥, we define the index sets Fg, Fy
where the random variables ®;, U; are well conditioned:

Fo={I : |®30;— 1| <9} and Fy:={I : |U;0; —I| < v}, (49)

where we set ¥ := 1/4 for the rest of the chapter. Moreover we define the index set F
where the norm of the random variable Z; = ¥ — &; = (W7 —@7)(Ds)1,1 is of a similar
scale to d:

Fy = {I c 1Z1l §5-\/2§10g(nKp/5*)}. (50)
Imposing these conditions on the index set I together we set
g:=Fsp ﬁf\pﬂfz'. (51)

Next we want to define a set, where thresholding recovers the correct support in the vector
Z. We recall that, thresholding finds the largest S entries and gathers them in the index
set I. The optimal coefficients then are

iy =wly.

We define the set which contains all index, sign and coefficient triplet, where thresholding
finds the correct support, as

M= {(I,a,c) : f:I}. (52)
In the proofs of Lemmas [f] to [9] later on we will often restrict the dictionaries ¥ and @ to

the sets above and bound the probability that thresholding fails as well as the probability
that the submatrices ®;, ¥ are ill-conditioned by Lemma
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Lemma 4 Given the conditions stated in Theorem [3, we have
[2P (M) + P (G°)] - p < 6./32.

Proof For this proof we set N := ¥*® — diag (U*®) and recall that o = min; |(¢;, ¢;)|-
Thresholding retrieves the complete support of a signal y = &z, if

107yl < [Tyl

min °

Therefore in order to find an upper bound on the probability that thresholding fails to
recover the correct support that is on P (H¢), we bound the following

Py (179l min < 1¥7e¥lloe) = By (VT P11 || i < 197 P11l o0)
<Py (|| diag(P7®1)21 |l — 1Nz 121l o < 2721 l0)
< P (len Hdlag \II (pI)Hmln - HNIJ'Z.IHOO < H\Il?‘(I)I‘TI”oo)
< Py (tmin - @ < 2||Nrz1l o)
<Py (2| Nr1l o = emin - @ | [[N1lloo 2 < 1)

+Ps(|[Nrllco,2 > 1) (53)

For the first term we can use Hoeffding’s inequality stated in [22] Lemma 23]. Since
sign(xp) = o is a Rademacher sequence independent of I, this means that

1/4-c2. o
Py (IN11lloo = emin - 0%/2 | [ N1z < 1) < 2K exp [ - L . (54)
’ > = fmin 00,2 2- [N - 1%

To our second term we first apply the Poissonisation trick, which can be found in [22]
Lemma 7]. If Pp is the Poisson sampling model corresponding to pi,--- ,px, we obtain

P(INilloe2 > 1) < 2P (I N1lloc2 > ).

Applying Lemma 21 from [22], which is in itself a consequence of the Chernoff inequality,

we get
772
IND gl |
Py (V102 = 1) < K (eﬁ“’” - (55)

Next we use (1 —Iplloo) - pz < m;, from [23] resp. the condition from Theorem |14]in the
Appendix to get p; < 57rZ < 2m; as well as

2 * . * 2
IND pl2n < 2IND I, = 2 [0°® — ding (0 ®)] D%, , < 2| @D,sll - [ D22
Substituting and into (b3) yields

Py (1079l i < %7y lloc) (56)

2

n
2 OD g2y - BT HE 2
<oKexp (- -a? ) +2K g 2Pl - B . (57)
8n? n?
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In order to determine n we recall the following abbreviations

1 1 2
< - and & = 7 =1 (58)

~ g (nkpjs,) 3 = Clog(nkpjd,)  C

where the upper bound for v is valid for npd_! > 130 -2 -42. We choose 7 := ayv/4 and
substitute it into our first term in which becomes 2K62/(npK)?. For the second term
we use the condition on the generating dictionary in (L9)), which is [|®D || < gyyél/Q/(élC)
and obtain 26H<I>Dﬂ||go725_ln_2 < e72. For the exponent of the second term we separate
the cases § > 0, and § < 4., since we use different conditions described in Theorem [3] While
in the first regime, § > o, by , we get that

p(W, @) = max (i, 65) - 66,7 < jun(W, @) - 5712 < e/ (40),
the second regime, 6 < d,, requires further attention:
p(T, @) = (@, 9) < jugs(®,0) - B2 = max (i, 08,7 - 5712
< (6, 03) B - 7Y% x| (i — 6565 572
< (@) 57 mac (= 67)8; - 572 < puo(®) - 57 45
< ay?/(4C) + 4,

where in the last inequality we used the condition on p 3(®) in (21)). Since § < 6, < 1/C
and a=1-¢2/2>1-6%/2>(C—1)/C, we get

_ oy - ay _ayp?
~ aClog (nKp/s.) — (C —1)log (nKp/d.)  (C—1)

and therefore u(¥,®) < 2ayv2/(C — 1). Hence we found a lower bound for the exponent
in both regimes

> e > ot 2
which yields
5 2 5. (C—-1)2/32 5 2
P(HS) < 2K <np*K> + 2K <npK> < 4K <np*K> : (60)

In the second part of the proof we analyze the probability P(G¢) which can be bounded by
P(F5) + P(Fg U F). We begin with P(F7) where we employ the Poissonisation trick as
before, which yields

P(F) < 2B5(F5).

We continue by applying the matrix Chernoff inequality from Therefore we note for
Z = (z1,...,2K), where z; € R%, that

712 = (Z1(Dp)11Z7) = Y _ ziBiz. (61)
el
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Recalling that 6 = max {HZDWH -é_l/Q, | Z]|2,1 ~é_1/2} by Definition (10}, we can esti-
mate

izt |l = 18122821 = 1020877, 238;%)| < max | (s — ¢0)8;*||” < 68 and
IS Eslzibizf]ll = IEB[Z1(Dg)1,125]| = |1 2D sE&[R; RID s Z*|| = | ZDysZ))-
=y

Using the bound p; < 27; we obtain

P(Z1(Dp)r.rZr | > 1) < 2P (1Z21(Dp) 1121 || > 1)

x|\ t/(8%8) x|\ t/(9%8)
o (VDY e (212Dea
t/(5%B) 2 /(8%B)
2¢ | ZD 5 - 2ed
< 2K (W) §2K< et ﬁ) ) (62)

We choose ¢ = 26?3 max {e?,log (nKp/d,)} = 26*Blog (nK p/d,) which gives us the bound

P(Fpe) =P (1Z1]l 2 6\ /28108 (nKp/s.)) < 2K< Kp>

The last inequality holds if 6,/(nKp) < 1/1619, which is always satisfied since npd,* >
130-2-42 as before. For P(Fg U Fy§) we can apply Theorem [12ftaken from [22], and obtain

592 9 59? v
P(Fp U Fy) < 512K exp | —min ) g ’ '
(FoUFw) < p( {2462 |@D - ||?" 2u(®)" 24¢2 | WD | 2%‘(‘1“)})

Using the condition on the generating dictionary we obtain |®D || < ||®D | - |DZ']| <
yaw/(4C) and p(®) < ps(®) - 72 < ayp?/(4C). In the first regime, where § > &,, we
can employ a similar approach as for |[UD || and p(®). In the second regime, § < d, <
ay?/(C — 1), we have to bound ||UD ;|| and u(¥) in a different manner

[UD || < @D ezl - 5712 + (¥ — @)D || - 72

1
<[eDml 5 s o (1t gy ) Sew/C ()

#() = max (s, )]
< max ([{0, 65018} + (01 05 = 63)18;" + 87w = 65.0)1) - 87/
< prys(®) - B2 420 < % 2C. (64)
With these bounds and ¥ = 1/4 we obtain 2 log(nKp/d.) as a lower bound for the exponent,

which results in P(FgUF]) < 512K (6./(npK))?. We recall that n > 130 and put all bounds
together, to obtain our desired bound

IN

5\ _ 0
]P’(HC)-Qp—l—IP’(gC)-p§522Kp<npK> I
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We note that in Lemma [4] the bound on the probability that thresholding recovers the
correct support in is quite rough similar as in [24]. This can be optimized, for instance
by defining

R (&7 ~ (&7
Crmin = rnln s and  Cmax = mzax 2
[ )
and therefore 4 := émin/émax. Unfortunately, we then lose the property that (3/ B)l/ 2 can
be bounded by 4! on which we rely in the Lemmas[6|to[9} For Lemma[6] to Lemma [9] we

often use the following corollary from [23], 24].

Corollary 5 ([23],[24]) Denote by E the expectation according to the rejective sampling
probability with level S and by ™ € RX the first order inclusion probabilities of level S. Let
T be a K x K matriz with zero diagonal, W = (w; ..., wg) and V = (vi,...,vk) a pair
of d x K matrices and G a subset of all supports of size S, meaning G C {I : |I| = S}. If
I7llco < 1/3, we have

|E[D_ Ri M 1R D] ]H<3 D=UD |, (a)

3
|E[D 1R1H11H11R1D ]H< HDIHDIH +* maXH%HDf” (b)
|EWRIR V™ - 11()1g(D]|| < 7+ (WD - HVDﬁH + [Jwell - [Jvell) (c)

as well as
IE[D e R} My 1 M} 1Rl D - 11 (0)]||

3 3
<3 (3 WD 4wt § DD AP 4§ mx HDAI) . (@

Now we are ready to prove the first of the four inequalities used in the proof of the main
theorem.

Lemma 6 Given the conditions stated in Theorem [3, we have

BI(D.er) AD )™ — 1> A8) < (04 K exp (— 5l ).
" 2p% + pA/16

Proof The fundamental idea behind the proof is to rewrite (D ) tA(Dz5.qa)" ' — 1 as

N1 >on Y,, and apply the matrix Bernstein inequality, restated in Theore Therefore
the matrices ¥, need to be independent and [|Y;|| as well as |[E[Y;]| must be bounded In
order to define such Y;, we first recall that A = N~ 227:1 xn @y for well behaved Z,,. By the
algorithm the norm of the estimated coefficients have to be smaller than the signals times
k or are set to zero. Hence we define the set of all stable supports as B(v) := {I : H\I’}UH <
k|[v]|} for v € RY. We denote by I,, the set determined by the thresholding algorithm and
define

Yo = (D) "B 27 3 (W )" Ry (Dyena)™ - Ly () — L (65)

The matrices Y, are indeed independent, since each Y, only depends on the signal yp.
We continue with deriving a suitable bound for ||Y;|| and ||E[Y;]||. Since in the algorithm
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large estimated coefficients are eliminated, we can use that ||Z,| < &|y.|| and |y.| <
I In| - |znlloc < Scmax. This yields

1Yol < w5%Gha D5 IIDS INIDZH + 1 < pam +1 < p/2 =27, (66)

where we employed from . ) that p = 2k25%27y 2027 3/2 and 7 < 1/3. The bound on
||IE[ ]| entails a more complex approach. First we want to replace the estimated support
I,, with the correct support I, and define

Yo = (Dyes) 'R} 21,45 (U} ) R, (Dyssa) ™" - Lp(y,) (In) — diag(17,)D; ' (67)
Note that we have
1Vl < £S2 x84+ 1 < pj2 =1 (68)

Recalling that H is the set, where thresholding recovers the correct support, and since

— E[diag(1y,)D; ], we see that the left parts of ¥;, and Y;, coincide on H and the right
part coincide in expectation. For the rest of the proof we simplify matters by omitting the
index n, since each signal shares the same distribution. We recall that G is the set, where
®; and V¥ are well conditioned, to get

IE]| < IEY — Y]l + [EY]]| < P(HS) - 2r + [E[Lge(D)Y]] + |E[Lg(D)Y]]
< P(H) - 2r + P(G°) - r + [E[Ig(D)Y]]. (69)

Using the singular value decomposition and the fact that |07V —Ig|| < ¥ on G we get for
I € G that H\IJ yll < @ —=9)"2 |yl < £llyll. This implies that G C B(y) and therefore

1py)lg = 1g. We recall the notation M := M D ; to show that
Elzry*] = Erg.clzrer®y]
= Ei[REq [va"] - Rj®}] = Ef[(Dg)1,12]] = Erl(Dys) r.1 7], (70)

Further, we have

(W) (Do)t = (U720 (Do)
= U (D) rr(Dya) (Vi) " (Dys) = W (W)~
We define Eg[f(I)] := Ef[1g(I)f(I)] and use the calculations above to get
IE[16(DY]|| = [Er[L(I) - Evc[(Dyem) " Rizry" (¥])*Ri(Dyesa) " — diag(1r) Dy ]|
= |Eg[D Rj[®7W(¥]¥1) " — (Do) 1,1 Ri(Dyra) "Il (71)
Next we rewrite @*\I/ 1(\11 W;7)~! with the help of zero diagonal matrices in order to employ

Corollary |5 I We recall that Z = W — ® as well as M := D ;M D ;; and define the following
matrices which have zero diagonal

H:=Dy(1—V*¥)D,; = Dg — ¥

€ :=diag(Z*¥) =1 — diag(®*V) =1— D,

H := (VE — Z)*V = (BE — ZDy)" U = (& — WD, )" ¥
U :=DUD, = (VE - 2)*T
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Using that
Is = ((D,B)I,I — (T70)) + (‘H‘h)) (Dp)71 = (HI,I + ‘117‘1/1) (D)1 (72)

we can write

QP (o)t = (U — Z)) U (79 ,) " =19 — 270 (I7d,)
= (Da)r,p + Er ¥y (bpb) ™t = 27 (W)~
= (Do)r + Ur j(U539) 7 - Ig (74a)
= (Da)r.s + A11(Dg ) rp + Hr (W79 1)~ Hy /(D5 )1 (74b)

Observing that for any I, we have | Hrf|| < (W€ — 2)1] - H\IJIH < B-evVS-V/S <28 and
therefore || My (R (D z0) || < p/2 = r we get that |E[Lge(1)- Uy 1Rr(D 7)1 < P(GY)]-r
We substitute (74b]) into and use the bound established above to obtain
IE[YT < [2P(HS) + B(G°)] - + [[Eg[D ! Ry (Mr,p + Hpr(Wi¥r) " Hr ) Rr(Dzp.0) ]|
< [2P(H°) +P(G°)] - +P(G) - v + |E[D RiH1 1 R1(D s 5a) |
+ [|Bg[D ! Ry My 1 (W50 1) " Hr 1 Ri(D s pa) |
< [2P(H®) + P(G°)] - pa + |[E[D RiHr, 1 Ri (D) I - 1D - D5
+ |Eg[D ! Ritr 1 (V7 ) Hr rR1(Dyes) I - 11D - 1D - (75)
Now we have made all the necessary preparations to apply Corollary 5] Beginning with the
first expectation, Corollary @ gets us
IEIDZ R} i1, Ri(D.2) ]| < 3+ 1D+ D.s|
<3-(|2Dyssll - €/2+ 1 ZDys)) - [ ¥Dysll,  (76)

where the second inequality is proven in (121)) in the appendix. For the second expectation
in we need the following bounds below, which are again addressed in the appendix,

that is inequalities (124]) and (127)), yielding

1

IE[D R} #1117 jRIDM||Z < (B ZD e + 38'/%) - WD s (77)
|E{(Dye) RiHp rHy y Ry (Do) )17 < V2 [ WD . (78)

M

Using that [|[Ig — U;¥/|| <9 <1/4 <1 and the Neumann series results in

107 E )~ < 871 I(wTe) = 870 1) (Is — W)

k>0
) 1 4
g =Ty <58 ()
k>0
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We apply Lemma |13|from the appendix to the second expectation in and use the three
bounds which we have established so far to get

|Eg[D Ry Hy g - (Wi¥,)~" - Hy tRi(Dyes) '] - 1D
. . 1 . . 1
< |EB[D R}y (71} ;R D2 - 4/3 - B3 |E[(Dyes) ' RyH 1 Hp, i Ri(Dyes) ™| 2
< (3 1ZDyesl| +3 €52 - [ WD cl| - 4/3 572 V3 [WD, |
<6872 (|1 ZD sl + eB247Y) WD o2, (80)
where in the last inequality we used the fact that (53/ @1/ 2 < cmax/Cmin = 7~ Plugging
and into leads to
[EY]I| < [P(H) +P(G)] - pa+3-a ' B (|®D sl - €% /2 + | ZD s ]) - | ¥ D s |
+6-a ' B2 (| ZD sl + 282y ) WDl (81)

In order to apply the assumptions of Theorem [3|we consider the two cases, § > d, and ¢ < d,
separately. In the first regime we have that max{||®D |, ||V D =} < gfyl/ﬁl/Q/(éLC),

and hence || ZD /5| < Q’YVQI/Z/(zc). Furthermore we use that ¢ < /2 and v < 1/3. Using
these conditions and the probability bound from Lemma [ leads to

) 1/2\ 2
IEY]| < ad/32+a™ 15719 ((Wﬁ;)
2
f B2 ayvB?
o —1p-3/2 [ £ —1p1/2 ) . [t
+6-a7p <20 VB ic
< ad,/32+18/(16C) - a - y*/C < a - A/16. (82)

Before we bound [|[E[Y]| in the second regime (2I)), we note that for all i € [K] we get

s — all < llbs — ill - BL/2/8Y% = [[(ws — 60)BY%| - B2, (83)

and hence ¢ < §. For the second regime where § < J,, we have as above ¢ < V2 and
v < 1/3. We further use the assumption ||®D ;| < gw/ﬁlm/(élC), while due to and

we have ||UD | < g’yuﬁlm/C and || ZD =l < (5@1/2. So we get
IE[Y]| < [P(HS) +P(G)] - pa+a ' 87 - 3(|®Dym5le%/2 + |ZDm5)) - |9 Dyms|
+a 68782 (| ZD sl + e8Py - WD e
<ab./32+a”'p7" - 3(awp!?/(4C) - 6/V2 + 657 - aqp'?/C
2
n 6g_1§_3/2 ) (5§1/2 i 5§1/2’Y_1) ) (g’yl/ﬁl/z/0>
< ad,/32 +32/(16C) - § < A/16. (84)

Finally, we completed all necessary steps, in order to apply Bernstein’s inequality [T1} By
choosing t = m = A/16 and r = p/2 and performing a few simplifications we get the de-
sired bound. |
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In Lemma |§| we obtained a better bound in comparison to its counterpart in [24]. In order
to see this, we assume that the coeflicient sequence c is i.i.d. We will denote the distance
between the dictionary elements in [24] as

8(\1]7 CI)) = max{H(\Il - CI))D\/TTH )

Since the coefficient sequence c is i.i.d we obtain él/Q = |Dys|| and thus § = §. Hence we
can compare Lemma [6] with [24]. The lemma in [24] yields

QA
[@A(De0)™! — @D < %5

If we want to bound the same via and Lemma |§| we get

|PAD jrp.a) ' = @D || < 1®D sl - (D) T A(Dyrma) ™ = 1| - [| D]

LB A e A
- 4C 8§ = 40 8

We continue with the proof of the second inequality in [26]

Lemma 7 Given the conditions stated in Theorem@ we have

B B A N(A/16)
1 1

_ 2 )< -
P (H(D\/r.a) B(D zpa) — 11> 4,y> < 2K exp < 20% 1+ pA/16

Proof We closely adhere to the method used in the previous proof by rewriting the matrix
(D /z5.4) ' B(D VB W)t =Tto N~'Y Y, where the matrices Y;, are independent and

|V,|| as well as ||E[Y]|| are bounded. Then we can apply the matrix Bernstein inequality
and finish the proof. Again we take I, to be the set determined by the thresholding and
B(v) :=={I: H\Il}qu < k[jv]|} to be the set of stable supports of v. We define

Yo = (Dﬂu)_lR}n\I’}nl/ny;(\Pj )" R‘ (Dysa)” 1ILB( )(f )—1
and Yy == (D rsa) 'R, O 4nyi (0] ) Ry, (D yrsa) ™ Ly, (In) — diag(1,) DY, (85)

which coincide on H in expectation, since I,, € H and E[diag(1;,)D;'] = I. We can find
an upper limit chosen as

max{|[ Y, [Yall} < #25% |5 I D2HIDZ I + 1D I < 3p/4 < 3y p/d =1, (86)

where we used that p = 2k25%y 2027 73/2. So following the same approach as in and
omitting the index n leads to

IE[Y]]| < 20-P(H) + p- P(G°) + |IE[Lg(DY]]. (87)

For the upcoming steps we want to recall the notation M =M D 5 as well as M =
D ;MD ;. With the same argument as in , where we used that G C B(y), we take the
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expectation over (o, c¢) and get

IE[1g(D)Y]]|
= [Es[1g(I) - Egc[(D )~ RiW}rar2i®5 (W)  Ri(D )~ — diag(11) Dy ]|
= |IEg[(Dera) " R (U] 2197 (¥])" ~ (Dyna)i, ) R1(Dysna) |
< Eg[(Dyra) RI(D ) 1,10 @105 (W) (D11 — (Do) ) Ri(Dysa) Il (88)
With the help of (74al) we get the following identity
(D)1 W@ ®3 (W) (D) rr — (Da)iy = (¥787) 7107 @ 870 (979,) ! — (Da)i
= (Da)r,r Mr, (V70 r) " + (W79 7) " 47 [ (Da)r1
+ (W) iy (B )T (89)
We plug this into and note that the first term is the transpose of the second term,
which gets us
IE[1g(DY]|| < 2 |[Eg[D Rip r(¥7¥ 1)~ RrD | - | D]
+ (1D H1? - 1B (D Ry (W)~ My My (W78 ) " RD | (90)
We begin by estimating the first term. For any I we have
||D\7;1R§H1’IR1D\7E1 | < pa?/2. With the same procedure as in and by using the identity
Ig = (\Il}\lil + ﬁ[,]) (DB);} as in , we obtain

1B (D! Ry ;1,1 (¥791) " RD |
< |Eg[Dy Ry Uy, (V7)™ (W3¥7 + Hr, 1) Ri(Dys) ]Il - |1 DZ
<P(G°) - pa®/2 + |E[D} R Hr i RiD | - |1 D5
+||Eg[Dy Ry dr,r - (9791) ™" - HrrRr(Dyes) 1 - 1D . (91)
Since we bounded the same expectations in and , we get
IEg[D, R} Hy,r(¥7¥ 1)~ R D ||
<P(G°) - pa?/2+3- 7 (@D sl - €2/2 + | ZD s ) - 1D sl
+6- 872 (| ZD sl + 28>y 7") - ¥ D s >

Similar to Lemma [6] we distinguish between the cases § > &, and § < d. In the first regime
we use that max{|[ WD |, [®D =]} < aywp?/(4C) and thus || ZD, || < ayvp/?/(2C).
In the second regime, where § < d,, we can use | PD | < gyuél/Z/(4C), while due to
and we have ||UD | < g’yvﬁl/Q/C and || ZD =l < (5@1/2. Using that v < 1/3
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from yields
§>0,: |Eg[D 1R1MH(\I/ U;)"'R;D el

<B(G)-po?/2+ 579+ (ap?/(aC))
(8

£6- 877 (8Y2/(20) + Iy B - (B /(4C))
<P(G°) - pa?/2 +18/(16C) - o* - y*/C
< P(G) - pa’/2 +9/(8C) - a* - 5o,
§<bo: |[Eg[D,} Ry (W70 )~ RD |
<P(GY) - pa®/2+ 7 -3 (aywp'/?/(4C) - 6/V/2 + 681/%) - aqp'?/C
+6 '§—3/2 ) (5§1/2 _1_5&1/27—1) ] (QW/E/Q/C)Q
<P(G%) - pa®/2+7/(4C) - a4,

which we can summarise as

o
|Eg[D AR} 111 1(¥59,) " Ry D | < P(GE) - %+£ min{d,, 8} (92)

For the second term in we need to bound || 47 ;(¥5W ;)1 in two different ways. Since
IeGand U := (VE - 2)*V = (PE — ZD,)*V = (@ — UD,)*¥ we obtain either

17,1 (W59 7) 7 = (D) 1,0(® — U D) 79 r(W79) (D) 1l
= (D)1, Iq’?(‘I’T)*(DH?} — (Da)r1ll

< B2, é 1/2+a<,y*1\/7+1 <~ 1.7/3, (93)

1 —
or since we have ||Z;D;||* = | Z/DpZf| < 2-6*Blog(nKp/é,) =2-628/v? on G, we get
12,1 (V79 1) 7 = [(Dys) 1.1 (YE = Z)7r(¥701) ™ (Dys)7 4l
< (D) 1,1€r,1(Ps) 1 + 1D i Z7 |- 13 - 1Dy 7 1

<5IN2+ 682 v V2 4)V3 - g2
<2-6/v. (04)
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We define T' := min{y~!-7/3,2-§/v} and use the identity as above for the second
term of , which enables us to apply Lemma (13| and Corollary (@:

IEg (D, Ry (W)~ 117  Hp (V¥ )~ Ry D ||
= |Eg[(Dyrp) " Ry(Hyp +Wi¥y) - (W)~ ) My (079 ) ™" - (Hf p + W38 RiD |
< E[(Dyss) " R7U} M1 1R1(D ) 1 - 1 D5
+ 2(|Eg[(Dyms) ' Ry Mp 1(W791) - Hp 1 R1(Dyes) | - | D5 |
+ |Bg[(Dyea) ' RjHpp - (W7 p) A7 My (07 00) ™ - HypRi(Dyss) 7' - 1D
= (NEL(D o) R 817 1 1 Ry (D )12
—1 7 7 “11/2) 2 -1
ATIE(D z5) " RiHr rHr 1R (Dyzs) | > D5l (95)
Looking at the first term of , we use a similar strategy as in or rather in (121)) and
(123) by applying Corollary and obtain

”E[(Dm)71R7ﬁ1*,1HI,IRI(Dm)71]H
<9/2- D |DyH*Dy||* +3/2 - max lex D Dy |

<9/2- 871 (18Dl - €2/2 + | ZD e ))? - [ 0D s
+3/2- (12Dysll - €2/2 + | ZD s )?
<(9/2- 7 W ssll® +3/2) - (19D sl - €%/2 + | ZD w5l)?. - (96)

Similar to above we observe the two cases § > J, and § < §, separately. Note that o >
1-62/2>1-1/(2C%) > 17/18 and that d, < 1/C. This yields

0> 36 |E(Dyms) " RIH (A1, 1 R1(Dyss) |
<2. (g’wﬁ”z/(w) +2 -MV§1/2/(4C)>2 <18- (@7V§1/2/(4C)>2,
0 <0 |[E[(Dyes) 'R} (M1 1RI(Dys) |
<2-182/17% . - (g'yyél/Q/(élC) 2 /(20) -5 + 5@1/2)2
<3- g2§52 <3/C- QQQ&
which concludes to
IE[(Des) ™' RIH[  Hr 1 R1(D ) || < 3/C - o - min{ds, 6} (97)
With the bound we established on , we get
(NEL(D o)™ Ry 1,1 Ry (D) )12
FTELD )~ Ry 1y 1R (D) [2) - D51

< <\/3/C-g-min{5o,5}1/2 +V2rg2. ||\wm||)

2
. (98)
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We use the inequality above, and the probability bound from Lemma [4|to bound
IE[Y]] < 6./16 + 20" - [|Eg[D ! R My, (W79 1)~ Ry D]
+ o ?|[Eg[D} Ry (W)~ iy p iy (W50 )~ Ry D |
< 6,/16 4+ 7/(4C) - min{d,, 0}
2
+a 2. (\/3/0 camin{d,, 6}1/2 + v2rg1/2. ||\I/Dm||> .

Again we distinguish between the cases cases § > d, and § < §,, and note as before that
v < 1/3, which leads to

§>0,: |E[Y]] <8./16+7/(4C) -6 + (/3/C ++/2/C -7/36)% -y~ 15, <+ LA/6,
§<d: |E[Y]|| <0.:/16+7/(4C) -5+ (v/3/C +4/C)*-6 < AJ6. (99)

Now we fulfilled all preliminaries for Bernstein’s inequality [II} By choosing t = m =
7 1A/16 and r = v 1p/2 and performing a few simplifications we get the desired bound.
|

If we compare the result of the Lemma [7| and its counterpart in [24] we notice that the
obtained bound is slightly greater by the scale of y~!'. The reason for this is that we needed
to bound

1Dl 1D < (B/8)M? < cmax/min =77
If necessary Lemma @ can also be bounded by (3/8)1/2- A/8.

Lemma 8 Given the conditions stated in Them‘em@ we have

- N(A/16)?
P (IPAD sre) e = 8D e > 572 5/8) < 28exp (- 2SO ).

Proof Similar to the proofs of Lemmal6and [7] we use Bernstein’s inequality again, although
this time we define Y, and Y,, not as matrices, but as independent random vectors with
fixed index ¢, yielding

v, = [yny;(\y}n)*an(DﬁM)fl Ay () Df] es,
Vo o= [nis (0], )" Ray(Dosna) ™ T (In) — ding(11,)D7 ' Dos] er. (100)
We can bound the fo-norm of Y, and Y, by
max { | Vall, IVl } < £S5 DZIIDZ IS + SI D7
<3/4- ﬁl/zp =7
We follow the steps in of Lemma |§| and obtain

IE[Y][| < [2P(H®) +P(G°)] - p + |[E[1g(D)Y] || < 6:/32 + |[E[1g(1)Y] - (101)
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We continue with recalling the expression from
O3, (U5,) ! = (Do) + hI,I(Dgl)I,I + ﬁ],[(‘if?‘i’l)_lﬁl,l(Digl)l,l-
Following the steps of and substitute the expression above yields
IE[16(I)Y] || = [Eg[®R} (79} — (Da)r,r) Rred|l/ (aeme)
< |[Bg[®R} My, 1 (W79 1)~ Rreg||/ (ame)
< (HEQ[@RFIZI,IRM]H + HEQ[(i)R?ﬁI,I(\i]?\ill)ilﬁl,IRledH) /(aBme).
(102)

For the following step we want to use I = Iy + egej. Since = D (€ — ZD4o)* VD, ;5 has
zero diagonal and for any matrix My, = e)Mey, we get that e,R7 U tRrep = 0 . So applying
Corollary to the first term results in

|Eg[®R; Ur 1 Rref)|| = |Eg [®lye D s R} RrD ys(®E — ZDy)* 11 (4)] - Wﬁg}m\l
< 70 ||®Le D s | - [(DE — ZDo) Dms|| - |[l| - B
1/2
<70 |®D s - (|@Dyssl| - £2/2 + | ZD ) - B2 (103)

Recall that Hy, = RyHey and Uy; = e; M R}. For the second term in (102)) we use the
following bounds, which are addressed in Appendix

B[y, 147 111 (0)][|M? < (Beme)/? - € - | WD s
IE((Dyzs) " "ge My 1 1} [Lge (D) " 17 (0)])|% < 3 min{1, 8} - (meBe)'/?,
E[H; (Hr 11OV < (Beme) - |1 D s .

We take the decomposition I = Ilse + e4e; again and employ Lemma [13| on both terms to
obtain

IEg[® R} Hy,1 (V74 )" Hy rRred|
< llosy || - 1Bg [ He.r - (¥ir) ™ - Hp (D)
12D sl - (1D ysll - I BG (D) e RE A p - (W59 7) ™" - Hp L1 (0)] |
< 8, B[ g L (O)[2  |[(Fp) 7Y - B 1 (D)2 + (| 9Dl - 372
X ||B[(Dyss) ™ Lee R Ay 1 fLoe (D) " (O - 10879 0) ") - | E[H] o Hr e Lr(0)]||'?
< (I e 787 11 (ONM2 4+ 19D s | - 1EID )~ Lee Ry i i lee (D) " 1102
x 4/3- B2 [EIH H L (1))
< Beme - min{v/2,6} - 4/3- 5712971 WD g | - (WD sl + 3 |€D o5 ), (104)
where in the last inequality we used that (3/ ﬁ)l/ 2 < Cmax/Cmin = 7! and that ¢ <
min{v/2,6}. If we substitute these bounds into and we get
[EI9]) < 82 6./32 4+ a7 8,2 @D || - (19D, - 2/2 + | 2D )
+4/3-a7" - min{v2,6} - 737 [ WD || - (19D s + 3 - @D s)-
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Similar to Lemma [6] and [7] we distinguish between the cases § > d, and § < .. In the
first regime we use that max{||VD |, [|2D |} < QVVQI/Q/(ZLC) and thus [|ZD =l <

gfyl/@l/Z/(QC’), which yields

2
B < 872 2+ Y7 10 &2y 4 4/3- V2 (149))
32 - C 16C
1) 11l A
< pl/2 . 2x 2. s e < 1
_é 32+§ IGC_E 16 (05)

In the second regime, where § < J,, we can use |[|PD | < g’yu@l/Q/(ZlC), while due to
and we have ||[UD | < gyuﬁlﬂ/c and [|ZD =] < 5§1/2 resp., which results in

R < 52 5 00 T (fog e (T )

32 = C 16C 4C

) 18 v A
< 1/2. * 1/2. Y 1/2 106
SET T e =BT (106)

Now we fulfilled all preliminaries for Bernstein’s inequality [[1} By choosing ¢ = =
ﬁl/ 2.A/16 and r = 3/4 - ﬁl/ 2. p and performing a few simplifications we get the desured
bound. |

Lemma 9 Given the conditions stated in Theorem H for A = max{aﬁyyﬁ " ||\IIDF||}
we get

N(A/16)? )
202 + pAJ16 )
Proof As in Lemma [§] we use the vector Bernstein inequality and express
(Dyrpa) 1B (Dw .ma) teg as a sum of independent random vectors Y;,. Concretely we set

Yo i= A Tpe(Dya) 'R W ynyn‘lfT*an(Dﬁ-w-a)_ L5y, (In)ee. (107)

_ 3A
PO [ (Do) BD ) er] > 2 52) < 25xp (-

Analogously we define Y,, , but using the correct support I, instead of I,. We can bound
the fo-norm of these vectors by

max { | Vall, Vol } < Ar282 | DZ2NIDG D52 < 3/4- 52 = (108)
Apart from a few slight modifications we structure the proof as in Lemma [7] Similar to
we obtain

AT E) <i + [Bg (Do )ee RF (D) W 93U (D ) 1 rRied] |/ (mecvs). (109)
Note that ]Icheg = 0 for every diagonal matrix D, so we can rewrite the expression above
as in . and get
(DA )Le(DZH 1 ¥ 8% (D) (D7) 11 Ries

= (D2 ) Le R} (U0 ) 1 W5, 050, (T58,)  Ryey
= (D2 ) e R{ (Do) 1, M1, (959 1) " Ryeg + (D2 e Ry (W70 )~ I} (Do) 1,1 Rree
+ L R} (U0 ) 1 (U78) " Ryey. (110)
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We estimate the expectation of these three terms separately, beginning with the first one.
We use the decomposition of the identity Ig = (ﬁL[ + \I/?\Iﬁ) (DB)I_} as in . By

replacing ® with (D-;) "I we can take the bounds we obtained in (T03) and (104),
and get

Eg [D;;]MR?IZ[,[(\iﬁ\if[)*lR]eg] ||
= (HEQ[DJ;IHECRWILIRM]H + |Dysll - HIEg[(Dm)*111@ﬁu(\ilixiq)*lﬁm]l[(ﬁ)]H) Bt

—1/2 . 1/2 H— —
< w2 (|@D sl - €2/2 + |1 ZD s | + 4 min{1,6} - 8287271 W ]l (110)

We continue by distinguishing between the both regimes § > 6, and § < §,. In the
first regime we use that max{||VD |, [|PD |} < gfyyél/z/(élC) and thus [|ZD | <

g’yuélﬂ/@C), while in the second regime, where § < d,, we can use ||®D | < g’yu@l/Q/(ZlC),
while due to and we have |UD | < g’yyﬁlﬂ/C and ||ZD | < 5@1/2. This
yields

§>00: |Eg[D Ry Uy (¥5%,)  Rre|
< w2 (3 awB?/(4C) +4- 8% - avj(aC) )
<1/20 - mpay vt 5o, (112)
§ <ot Eg[D LeRjH ((¥7%7) 'Rre||
< iy (aywBY2/(4C) 6602 + 6612 + 458}/ - aw/C)
<11/10 -7 - 6. (113)
For the second term we employ that PII*JRIeg = Rylpc M*ey 17(¢), which holds true since u

has zero diagonal. Similar to above we use Ig = (Dﬁ);} (H[J + \IJ?III) in order to apply
Corollary to the first term and Lemma (13| to the second one:

IBg[(Dyra) e Ry (W59 ) " H} (Do) 1,1 Rref]|
< |[Eg[(Dyra) ™ Mee RE (U790 1) ™ Rele D11 (O] | - | Dye i *e| - v
<a ' 28,2 - 19Dyl - (B |Bg [DMe Ry Rille D 14(0)] |
+B72  BG (D) e Ry - (9791) 7" T Ry D11 (0)]])
<a B 2By WD s X

X (m¢ +4/3- 5712w | E(D )" Lee Ry Hy g Hi y Rillee (D)~ 11 (O]/?). (114)

As above we discuss the two cases d > d, and § < §, separately. In the appendix in ((137])

and ([138) we show that

6> 05 HE[(DW)il]IgcR?HL[H;JR]H@(Dm)fl]l](g)]H <9-mp- (g’yuﬂt}/z/C)2,
0 <0 : HE[(DW)ilﬂgcR?H}JH?JR[H@C(Dm)fl]l[(g)]H <9-mp- (QVVBUQ/C)Q.
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With the bound above and the fact that (5/@1/2 <~ ! we get
§>060: |Eg[(Dyra) TRy (U5U;) ' U} (Do) 1.1 Rred|
<e-v/(AC) - (mp+4- By awBy?)C) < 1/20 -y vt 6,, (115)
§< b0t |[Egl(Dyma) ' Tee Ry (VT¥ )"} (Da)1, Reed |
<0-y/C-(m+6- ﬁfl/Zm B2 )C) < 2/C -7y - 6. (116)

To the third term of we apply the identity Ig = <H171 + \P?@%Dﬂ)ﬁ on the left-
hand and on the right-hand side following the same procedure as in (95]), which leads to
IEGI(Dyra) ™ Nee R (WU 1)~ 7y 1 (W70 7) " Rreg 1 (£)]]
<a BV Eg(Dyrpa) e Rf(Hyp + VW) - (U590 ) ™ 17 7 (0 7) 7" %
x (Hi g+ iU Rrer(0)] - 8
<a '8 (IBG[(D )~ e R A7 1 M1 Ried]|
+ |Eg[(Dyrs) ™ Lee RFHf 1 My (W81) " Hy  Rrey] |
+ [EG{(Dyms) e RpHy (W 1)~ Hf 1 Rref]|
+ [EG{(Dyms) e Ry Hy (W)~ 7y 1 (W50 71) ™ Hy r Rref]])).
(117)

—~~

Now we have made all the necessary preparations to bound [|[E[Y]||, since
IBV]) < A-6./32+ A m; o tx
X (llEg[DJ%HZCR?EI,I(‘i’?‘i’l)flRleé]|| +|[Eg[D e R (W70 )~ HF  Rye]|
+ ||Eg[DJ;IHECR?(‘i’?‘i’l)_lﬁf*,zﬁl,f(‘i’?‘i’l)_lRlee]ll(f)]H) : (118)

Again we distinguish between the two cases § > d, and § < d,. In the appendix we have
further bounded (117)), which we plug with the bounds of (112)), (113)), (115) and (116) into
([TS), yielding

§>0: |E[Y]| <BY?6,/32 4+ aywp?/C a7t (1/20- 47t 5
+1/20 -y vt S+ 5/2- 0 5)

< BY2.6,/32426/(10C) - B2 - 4., (119)
§<d: |E[Y]| <BY? 6,/32+aywp?/C a7t (11/10-6 +2/C -5 4+11/10 - §)
< pY2%.5,/32 4+ 23/(100) - B4/ - 5 < 12 . A/16. (120)

Now we fulfilled all preliminaries for Bernstein’s inequality By choosing t = m =
élﬂ -A/16 and r = 3/4 - élm - p and performing a few simplifications we get the desired
bound.

|

With this we have proved the four inequalities which are needed for the main theorem. In
the following chapter we summarize our results of this thesis and provide an outlook for
further related research work.

31



6. Discussion

In this thesis we showed convergence of the MOD and ODL algorithm for data models
with non-uniform distribution of the supports of sparse coefficients in combination with
non-homogeneous distribution of the coefficient amplitudes. As part of our future work
we want to consider thresholding in a similar manner as in [I9] to improve the bound on
the probability that thresholding recovers the correct support. We also want to generalise
the convergence result of the ITKrM algorithm in [2I] to the signal model in Definition
There it should not even be necessary to change the conditions of [21]. Since Dg does not
get trapped between two non-diagonal matrices and therefore can still be canceled out by
scaling with DEI.
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Appendix A. Appendix

In this section we detail some calculations used in the proofs of Lemma [6] to [9] and restate
some theorems and lemmas which are essential for the thesis.

A.1 Auxiliary calculations for Lemma [6] and Lemma

We start by elaborating on two inequalities which help to bound ||Eg [D;%Rjﬁ[ 11 V24 I* Rr D\}l] I 3
in . We recall that 1 = (€ — ZD,)*V = (V€ — Z)*V with & = (WYg, zk) and
U =D zUD ;. Then, since I — 1,9 is an orthogonal projection, we obtain

||DﬁHDﬁH = ||DﬁH*Dﬁ||
< (®E = ZDa)D s - WD 5| = ([|®D € — ZD s Dall) - [[¥D sl

< (12D yssll - €2/2 + 1 ZDysll) - 1€ D s (121)

e D || < [|(br (e, 21) — 21) B2 - 1Dy

* 1/2 1/2
= [ty — DziB 2N - 19D ysl < MlzwBe || - 119Dyl
< min{e3"/2,68Y%} - WD, (122)
;D Dz < ([0 - [(DE — ZDa)Dyssl| < [®Dyss| - €2/2 + | ZD s | (123)

We continue by using the fact that | ®D | < g’yuzﬁl/Q/MC’) < §1/2 < BY2 and € <
min{v/2, 6}, which we showed in , to obtain a bound for by using Corollary

meaning
2-|[E[D . Ry iy 1 17 Ry D ]|
<9 | DD s|* + 3 max |l D s
< (9 @D el® - €4+ 9 - |®D s - €2 - | ZD s | + 9 1 2D g
+ 3 min{=B!/%,08/212) - [ WD
< (9/2 - min{eBY2, 68'2)2 +18 - 8% - | ZD,ms| +9 | 7D o]
+ 3 min{=B!%,08/212) - [ 0D o
< (8- 1 ZD,msl| + 3 - mindeBY2, 68Y/2})% - WD s |
< B 11ZDysll +3-€8"2) - WD s . (124)

Next we want to establish a bound for ||IE[(DW)_1Rfﬁ1’1H1,1R1(Dm)_1]||% in (78). We
recall that H = D z;V*VD 5 — Dg and note that D ;¥*UD ; is a positive semidefinite
matrix which yields

1D =D HD s || = | D || - | Dyes¥* U D o5 — diag(Dyss T WD )|

< BV Dy UUD | = B2 0D |, (125)
|i DA HD o] = (e~ Ui 0) Do) < WU D e < [ €D (126)
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We apply Corollary @ to and use that | VD | < gyu2§1/2/0 < ﬁ1/2/3 holds true
in both regimes, which results in
IE[(Dyss) ™ RiHr 1 Hy 1 Rr(D ) |
= |[E[D7 R}(D7 H)1,1(HD )7 (RID |

9 . 3 e
<5 DD HD |* + 5 " max lex D HD  ||*
9 3
< 5 B L. ||‘I/Dm||4+ 5 H‘I’DWHQ
1 3
< 3 WD % + 5 WD s |* = 2[ WD |- (127)

A.2 Auxiliary calculations for Lemma [8] and Lemma [9]

We begin with some fundamental bounds, which are used in both Lemmas. Therefore
we note that, My; = e; MR} and Hyy = RyHey, and apply Corollary by setting
W =V = e; U for the first inequality and W =V = He, for the second one
(20,1 22 11 ()| < e - (leg Dz |1 + || Heel|)
=B || ep(VE — Z)" VD s
2 2 2 2
< meBe- zell” - [NV Dymsl|” < meBee” - | WD yas |7, (128)
IEL} o A Lr(O)] < e - (leg 7D sll” + 1| 7551%)
=By + | ef O (P — ZDa) D s |*

< 7B (|®D s - €2/2 + |ZD 1), (129)
ELH} (Hp 011 ()] < e - (e HD s || + || Heel?)
1/2
< 70 118,20l - |9 D s l|? < ey - WD 5 2. (130)

Next we want to bound HIE[(DW)_l]IgcR?PIf’IPIL]RI]Igc (Dy=5)"117(£)]||. Hence we need the
following calculations. We recall that 1 = M D s and obtain

max(D ! )" = max(ef 0" (VE — Z)D ser)* < max((ell - |abe(wbe, z0) — =]l - 5,

< [|(et; —Dzell” - Be < [lzel|” - Be < €%Be < min{2,6%} - By (131)
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Following a similar approach as in and we get
3-ID Dzl er|* < 3+ (Do) M I* - 0D 5l| - [l (e, 2e) — 2| - Be
<3871 WD sl? - 1(weny — Dzell® - Be
<3871 WD - [l - Be
<1/C -min{1, 8%} - By, (132)
9/2-|ID Dz l* D s|* < 9/2- | D - | Dzl D s ?
<9/2- 871 - (9Dl - /2 + | ZD ) - 9D oI
< 1/C -min{1, 8%} - By, (133)
3/2 - max lex D D | < 3/2 - [[¢]) - (PE = Z Do) Dyrs®
<3/2-(|®D sl - /2 + | ZD 1)
< min{1/C,2- 6%} - By (134)
By using Corollary we get
(D) e RYHF 1 H1 1 Rilge (D) " 11 ()]
<3/2-m- (3| DDyl eq||* + m]?x(D;;H,;W
+9/2||DD D || +3/2 - max lex DD %)
< 9-min{4/11, 6} - mBy. (135)

We take a similar approach for HE[(DW)_1]Igchﬁ1Jﬁ}k7[R1]Igc(Dﬂ)_l111(5)]||. We distin-
guish between the two cases § > d, and 6 < J,. While in the first regime we simply get
that

max(D R, < max| (Wi, 05)8; < ns(0)* < (an?BY/2/C)2,
the second regime takes further attention. Following a similar approach as in leads to
max(D AR, < 570 max |5 (. 05) 8%
= 57 mac (1817261 67) 8% 18 00,085 — ;)8
+8 (i — o, %W;/z\)z
B (B us(®) + 25" max|| (i — 1) 8%

(B uys(@) + 2822 - 5)?
. (51/2g,ﬂ/2§1/2/0+Bl/2§1/27y2/0)2 < (281/2’)/V2/C)2.

IN

IN

IN

B—l
51
Recalling that in both regimes ||¥D ;|| < g’yyﬁl/ 2/C we bound the following

|D s HeqlP = 1D D s HeglP < 1D sl - | D2 0D ey
< B WD IR B < (@w/C) B (136)
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Using [D-HD || < 872 |[6D s |[* and [le;HD sl < €D | from (I25) and (I26)
resp. and Corollary @, we obtain for the first regime that

IB[(Dyss) Tee R Hy 1 Hf [ RiTge (D )~ 11 (0)]

<3/2-m- <3 ||DzHeg|* + ml?x(D;;ﬁ)i@

£0/2- 1D HD AP+ 3/2- max |G D e

2 2
3 ayv\ 2 Q’YV251/2 9 ayv\4d 3 Q’Yl/ﬁl/z
< —. . . p—— . - = — . e _— -
<g e |3 (55) 5”( C t58 (56) +3 iC

§9-7rg-(g'yl/ﬁl}/2/C)2, (137)
and for the second regime that
IE{(Dm5) e RfHy 1 H pRillpe (D)~ (O] < 970 - (29082 /C)?. (138)

Next we establish a bound for (117). Therefore we mainly use the calculations from (129)-
(1138) and Lemma Recall that || 47 (5% ;)~ | < min{y~'-7/3,26/v} =T.
For the first term in ((117]) we use the inequalities of (129)) and (135 after applying Lemma
yielding
o P
IEg[(Dyms)” Lee RT U 1 - Up 1 Rred]]|
_ * .. % .. _ l . % .. l

< |[EUD o) e REH] (Hr, 1 Rillee (D es) L1 ()12 - [1E[H7 M1, 11(0)]]|2

< 3-mfe - min{2/V11,6} - (|9D sl - €2/2 + | ZD rs).
Continuing in both regimes separately and using that o > 1 —§2/2 > 1 —1/(2C?) > 17/18
results in

6> 00 BGl(Dym) e R} 1 - My Ry

3. 1/2
< G/m'ﬂzﬁrazgﬁ

§ <80 |[Eg[(Dyms) e RTHF ;- Uy 1Rref]|

< 14/10 - mBy - a7t - 6,,  (139)

<3-a-18/17 - mf, - 701/2 SOV (1/C +1)
<4/C - mfy-apl? . (140)
For the second term we use the inequalities of and to obtain
IEg[(Dys) MLee R} - My (959,) " - Hy rRyef]|
< E{(D o) oo R} 1 g Ryl (D) A (O)]|2 - T+ |BLH (Hr 1102

< 3-min{1,6} - (meB) /2 - T - (meBe)/? - WD s
<3-min{l,0} - mBe-T - ||¥D 5.
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Continuing in both regimes separately leads to
§> 00 |[Eg[(Dyss) e RYHF - Uy /(W70 1) ™" - Hy rRref]|
<3-mBy-y - 7/3 - awpl?/(40)
<7/8- mgglmﬁg ATl e <78 wggﬁlﬂﬁm_lu_l 0o, (141)
§ < 0o: |Eg[(Dyss) e RE U - Mr (W70 1)~ - HyRyef]|
< 3-mBed - 20071 -g’yuﬁl/z/C
<3/C-mp-w?/C 25 B - ayB? < 3/C% - w2 By - 6. (142)
For the next term we need the inequalities of , and , yielding
IEG((Dyss) 'l RiHy,r - (W791) " Hf g - HprRred)|
1D )~ Lee Ry Hyr By Rilee(D.ye) ' Li(O)]||2 - T - [T 11 (0)] 2
< E{(D o) Lee Ry Hy 1 Hj p Rille (D)~ 11 (0)]2 %
x T - (Beme)"/? - (1@ D sl - €2/2 + | ZD sl
Continuing in both regimes separately results in
8> 0o |Eg[(Dym) e R7Hp - (W7 )~ Hf - Uy rRref]||
<372 By )C Tt T3 (Bt 3 aywB2/(40)
<11/(2C%) - ma BBy - b, (143)
0 <00 |Bg[(Dyms) g RiHy 1 - (W7 1) " My p - UrrRred||
<612 wB2)C 2007 (Bem) 2 C - Y (1/C +1)
<13/C? - maf'?Byr® - 5 < 13/C7 - ma 8?8, - 6. (144)
For the last term we employ the inequalities of , and after applying Lemma
yielding
|EBg[D e RjHy - (V39 ) A My (W50 ) ™ - HypRred|
< LD ge Ry Hy p H7 pRyllee DM (0] - T2 - B oH i 1,(0)]12
< B T Ry Hy i Riles DA (D)) -T2 (Beme) /2 - [ €D s
Continuing in both regimes separately leads to
§>00: |Eg[D  peRjHy - (W)~} My (W59 ,) " Hy rRref|
<3-m/" awBy?/C 577 49)9 - (Bem)'/? - ayp?/(4C)
<8/C - map'?By - /C <8/C map 2B b, (145)
0 <60 |Eg[(Dyes) 'LeeRjHy,p - (W70 ) ™ I} Ay (W39r) ™" - HrpRred])|
<6- 71'[}/2 cAvBY2 )0 48271 'gﬁlﬂﬂ;m’yy/C
< 24/C27ngé1/2yﬁg OS5 <12/C3 - ngél/Qﬂg - 0. (146)
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Substituting the bounds({139)-(146) into (117)) yields

§> 00 |[Eg[(Dysa) e Ry (W70 ) ™l  H (W70 7) ™ Rregl(0)]]
<m- (14/10 -yt 6o +7/8 4T 6
+11/(2C?) - 65 +8/C -y - 5,)
<5/2-my vt 6, (147)
§ <00 |Bgl(Dysa) e Ry (W70 )~ i 17 1 (W70 1) ™" Ryeg T (0)]]
<m-(4/C-5+3/C* 5+ 13/C?% -5+ 12/C*- )
<11/10 -7 - 6. (148)

Next we want to restate several well-known lemmas and theorems, which we use throughout
this thesis.

A.3 Matrix bounds

In this chapter we state useful matrix bounds on which we heavily rely in this thesis.

Theorem 10 (Matrix Chernoff inequality [33]) Let X1,..., Xy be independent ran-
dom positive semi-definite matrices taking values in R¥¢. Assume that for alln € {1,...,N},

| Xnll <n a.s. and HZQLI E [X,]|| < prmax- Then, for all t > epimax,

N t
P@}:&HZQSK(WTﬂW

n=1

Theorem 11 (Matrix resp. vector Bernstein inequality [33], [18]) Consider a se-
quence Y1, ..., YN of independent, random matrices (resp. vectors) with dimension d x K
(resp. d ). Assume that each random matrix (resp. vector) satisfies

Yol <r  as. and ||E[Y.]| < m.

Then, for allt >0,

1 & — N2
P — Y. || > t] < _—
<‘NZ nll 2 m+ ) _KeXp<2r2+(r+m)t)’

n=1

where k = d + K for the matrix Bernstein inequality and v = 28 for the vector Bernstein
inequality.

Theorem 12 (Operator norm of a random submatrix [22]) Let U be a dictionary
and assume I C K is chosen according to the rejective sampling model with probabilities
Pi,...,PK Such that Zfil p; = S. Further, let D, denote the diagonal matriz with the
vector p on its diagonal. Then

¥? v
P(|¥50; — 1| > 9) < 216K — mi '
(1591 11> 9) < 20168 exp (~min { g5 5 )
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Lemma 13 (Sums of products of matrices [8], [14] ) Let A, € R"*% B, ¢ Rd2xds
C,, € Ri%da  Thep

1 1
2 2

N
n=1

N
> A4
n=1

N
pIyeMen
n=1

max || B, ||
n

Theorem 14 ([22], [24]) Let Pp be the probability measure corresponding to the Poisson
sampling model with weights p; < 1 and Pg be the probability measure corresponding to
the associated rejective sampling model with parameter S, Pg(I) = Pg(I | |[I| = 5), as in
Definition [l Further, denote by Eg the expectation with respect to Pg and by wg the vector
of first order inclusion probabilities of level S, meaning wg(i) = Pg(i € I) or equivalently
ms =Eg (17). We have

(L —llplloe) " pi < 7s(i) <2-pis  if > pe=S5,
k

ms—1(i) < ms(i),
Ps({i,j} CI) <ms(i) - ms(j), ifi#J.

Further, defining for L C [K| with |L| < S the set L ={I C [K]: L C I}, we have

Es |1nz1p g 15(1)} JT 1= 7s(0) 2 Esoyy [1027] - [ 7s(0).
el el

Finally, if m := mg satisfies ||7]|oo < 1, then for any K x K matriz A we have

N 1+ |7 . .
l4oE L) < — Tl b 14— diag(4)1D, )| + diag(4) Dyl
(1= l7llso)
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