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Abstract. Fritz et al. recently developed a novel approach to probability
theory using category theory, see e.g. [4, 7, 5, 8, 6]. In particular, they de-
veloped three axioms as a categorical fundament to probability theory based
on Markov categories. Fritz and Rischel [8] gave a proof that the Kleisli
category of the Vietoris monad ful�ls one of these axioms - the existence of
in�nite products. In this thesis, we will discuss their approach to categorical
probability and �nally prove that a category similar to the one investigated
by Fritz and Rischel must violate one of the other two axioms.
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1 Introduction

Category theory is a branch of mathematics that investigates mathematical structures
and their relations in a general manner. Its basic concepts go back to Eilenberg and
MacLane [16] who applied this structural approach to mathematics to obtain a link
between algebra and topology, i.e. to improve and extend algebraic topology. Supposedly,
one of their main goals was to introduce functors and natural transformations to describe,
for example, homology and cohomology. To do so, they needed to introduce the concept
of a category.
Nevertheless, algebraic topology is by far not the only mathematical, or even scienti�c

branch in which category theory is applied. Nowadays, category theory is an indispens-
able part of, for instance, physics, logics, computer science and much more. The concept
of a monad has become important in functional programming, the same way category
theory became fundamental to type theory. To name a few examples of applications of
category theory, category theory is used in quantum information and especially monoidal
categories turned out to be particularly useful in information �ow.
In the 1980s there were �rst attempts to place probability theory onto a categorical

foundation. First, Lawvere utilised Kleisli categories to describe random processes in
a category theoretical setting in [13]. Later, Giry [9] described the category Mea of
measurable spaces and measurable maps, and equipped it with a monad now known as
the Giry monad. This monad sends these to probability measures in order to describe
random processes. Both concepts will be discussed in later sections.
Undeniably, probability theory can be described well in categorical language, as - in

a very broad sense - random process can be understood as information �ow. Therefore,
Golubtsov [10] introduced a concept similar to what is now known as Markov categories
which were later further developed by Fritz et al. [4, 7, 5, 8, 6]. Notably, Markov
categories provide us with the possibility to copy and discard "information", useful when
handling information and hence random processes.
Nevertheless, the aforementioned approaches to probability theory are not meant to

replace the classic measure theoretic background of probability theory. The analytic part
still is essential when demanding to actually calculate probabilities. However, abstract
probability theory yields more general or new theorems as Fritz et al. demonstrate in
e.g. [5, 8, 6].
To improve their approach and hence better describe probability theory in a categorical

language, Fritz et al. [8, 6, 4] developed three axioms, united in [5] in order to formulate
and prove an abstraction of de Finetti's theorem, individually used in [6] and [8] to
prove theorems within statistics as well as zero-one laws, on which this paper focusses.
Apparently, BorelStoch is the only non-trivial category yet known to ful�l all three of the
axioms. In order to expand their approach, it would be useful to �nd more interesting
categories, for instance of topological or measurable spaces, on the one hand to use their
yet developed theory even further, and, on the other hand, to be able to improve their
approach. Speci�cally, a category of topological or measurable spaces satisfying their
axioms might give an insight on how to adapt their approach in order to encapsulate the
yet well evolved measure-theoretic fundament of probability theory even better.
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The primary purpose of this thesis was to �nd such a category. Unfortunately, this
attempt was not successful. Nevertheless, we will give an example of a category that was
determined to be a good candidate - the category arising from the Vietoris monad as its
Kleisli category - and prove that it cannot satisfy both of two certain axioms at once.
Therefore, in order to provide a self contained discussion of this topic, section 2 recalls

a selection of basic category theoretic de�nitions. Section 3 provides an introduction to
categorical probability and introduces the three axioms developed by Fritz et al. Section
4 discusses de Finetti's theorem in its synthetic form. Finally, section 5 discusses the
Vietoris monad and the reason why it cannot have conditionals (de�nition 3.8) and be
a.s.-compatibly representable (de�nition 3.5) at once.

2 Preliminaries

This section recalls some basic category-theoretic concepts, most of them to be found
in any standard textbook, e.g. [15], or [19] for monoidal categories. As this section is
meant to just recall some notions, we will leave out technical details and concentrate on
the important parts of the de�nitions. Especially, we will discuss the notion of a Markov
category as developed in [4].

2.1 Monoidal categories

A monoidal category is a category with some extra structure that essentially allows us to
"combine" objects in a multiplicative way. Concretely, a monoidal category is equipped
with a bifunctor and an unit object, as we see in the following de�nition.

De�nition 2.1 (Monoidal category). A monoidal category (C,⊗, I) is a category C to-
gether with a bifunctor ⊗ : C× C → C and a speci�c unit object I ∈ C, such that certain
diagrams commute.

Example 2.2. Let Set be the category of sets with functions. The cartesian product -
which indeed corresponds to the categorical product - equips Set with a monoidal structure.

Monoidal categories are particularly useful in categorical probability since they ele-
gantly display the idea of parallel information �ow. For example, in the category FinStoch
of �nite sets with Markov kernels, as discussed in [4, Ex. 2.5.], the monoidal structure is
used to abstract the notion of independence in probability theory.
An important property of monoidal categories is symmetry. The symmetry of a

monoidal category can intuitively be understood as the word suggests.

De�nition 2.3. A monoidal category (C,⊗, I) is called symmetric, if for all objects
A,B ∈ C, there is a natural isomorphism γA,B : A⊗B → B ⊗A, that ful�ls some more
conditions.

For a detailed discussion of monoidal categories and the unmentioned conditions see
[19, Def. 5.3.1, Def. 5.3.2].
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2.2 Monads

We now want to introduce the idea of monads treating them as the extension of a space
to include generalised objects and morphisms. Suppose (X,A) is a measurable space.
Let PX denote the set of probability measures on (X,A). There is a canonical σ-algebra
on PX generated by functions pB : PX → [0, 1] : P 7→ P (B), for B ∈ A. This leads
to an endofunctor G : Mea → Mea, where Mea is the category of measurable spaces
and measurable maps, that sends every measurable space to its measurable space of
probability measures, known as the Giry monad developed and discussed by Giry in [9].
Obviously, since PX is an object of Mea we can also consider PPX, i.e. the space

of probability measures of the probability measures of the measurable space X. Fur-
thermore, by integration we can embed PPX in PX, yielding a natural transformation
µ : GG ⇒ G.
On the other hand, the Dirac-δ distribution induces a natural transformation δ : 1C ⇒

G that maps every x ∈ X to the corresponding Dirac-δ-measure δx. We recognize that
a monad intuitively extends the objects of a category in a natural way. This motivates
the following de�nition.

De�nition 2.4 (monad). A monad on a category C consists of an endofunctor P : C → C
and two natural transformations µ : PP ⇒ P called multiplication and δ : 1C ⇒ P called
unit, such that the following diagrams commute:

PPP PP

PPP

P PP P

P

Pµ

µP

µ

µ

δP Pδ

1C1C µ

Two important examples of monads in this paper are the powerset monad and the
Vietoris monad which will be discussed in the further sections.

Example 2.5. Let Set be the category of sets with functions and P be the non-empty
powerset functor, that maps every set to its corresponding non-empty powerset. For
every X ∈ Obj(Set) we de�ne µX : PPX → PX : A 7→

⋃
a∈A a which indeed de�nes a

multiplication. Furthermore, de�ne δX : X → PX : x 7→ {x} to receive the unit.

Example 2.6. Let Top be the category of topological spaces and continuous functions.
The Vietoris monad, as intensively investigated in [7, Sec. 2], is the monad which maps
every topological space to the space containing its non-empty closed subsets as points
equipped with the Vietoris topology, better known as its hyperspace. The multiplication is
obtained analogously to example 2.5 by taking the closure of the union and similarly the
unit is the closure of the singleton.
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2.3 Kleisli categories

The so-called Kleisli categories are categories that naturally arise from monads. It was
�rst discovered by Kleisli in [12] and later discussed in the context of probability theory,
also by Fritz et al. in [6], on whose ideas we will focus. We want to motivate the de�nition
by a basic example: the category that arises from the powerset monad as in example 2.5.
Hence, let X,Y, Z be sets. Morphisms with "generalised" objects - as we introduced

monads in section 2.2 - as targets f : X → PY and g : Y → PZ become relations, which
we would like to compose in the associated Kleisli category. To do so, we make use of the
multiplication and unit transformation of the monad. By applying δ to the morphism
g - sending all elements in Y and PZ to the corresponding singletons - we end up with
Pg : PY → PPZ which can be composed with f . Then applying the multiplication
- uniting the sets in PPZ to receive an element in PZ - yields the composition of
morphisms

X
f−→ PY

Pg−→ PPZ
µ−→ PZ, (1)

known as the Kleisli composition of f and g. These generalised morphisms together with
the Kleisli composition are already enough to de�ne the Kleisli category.

De�nition 2.7. Let (M,µ, δ) be a monad on a category C. The correlating Kleisli
category Kl(M) consists of

� objects Obj(Kl(M)) = Obj(C),

� generalised morphisms HomKl(M)(X,Y ) = HomC(X,MY )

� with the composition de�ned similar to 1.

Remark 2.8. For P the non-empty powerset monad on Set we de�ne SetMulti := Kl(P).
As explained in the introduction, the composition of two morphisms f : X → Y, g : Y → Z
is de�ned by

(g ◦ f)(x) :=
⋃
x∈X

g(f(x)). (2)

We now construct a topological analogue of SetMulti. Consider CHaus the category of
compact Hausdor� spaces with continuous functions. Michael proved in [14, The. 4.9.6.]
that the hyperspace of a compact Hausdor� space as in example 2.6 is compact Hausdor�.
Accordingly, the restriction of the Vietoris monad to compact Hausdor� spaces remains
a monad. Thus, we can construct its Kleisli category.

Example 2.9. Let V be the Vietoris monad on CHaus. Morphisms X → Y in Kl(V )
hence are continuous functions with domain X and codomain V Y , the hyperspace of Y .
Analogously to the thoughts for SetMulti and the the Vietoris monad in example 2.6, we
receive a Kleisli composition similar to 2 yielding

(g ◦ f)(x) =
⋃

y∈f(x)

g(y).

The categories SetMulti and Kl(V ) will be further discussed in the following sections
and the latter especially in section 5.
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2.4 Markov categories

Fritz recently investigated Markov categories as a suitable framework for categorical
probability in [4]. Basically, Markov categories are symmetric monoidal categories with
some extra structure. Indeed, their morphisms behave very similar to Markov kernels.

De�nition 2.10 (Markov category). A Markov category is a semicartesian, symmetric
monoidal category (C,⊗, I), where every object X is equipped with distinguished mor-
phisms copyX : X → X ⊗X and delX : X → I, written as

X X

X X

delXcopyX = = ,

such that they are compatible with the monoidal structure, meaning

=

X ⊗ Y X ⊗ Y

X ⊗ Y X Y

X Y X Y

for all objects X,Y in C.

Proposition 2.11. Equip SetMulti with the cartesian product as monoidal structure.
Then, SetMulti is a Markov category.

Proof. For all X ∈ Obj(SetMulti), there is exactly one non-empty relation between X
and {∗}, the monoidal unit. Hence, it is semicartesian. For X,Y ∈ Obj(SetMulti)
there is an obvious isomorphism X × Y → Y × X, thus it is a symmetric monoidal
category. We can trivially de�ne the mappings copyX : X → X × X : x 7→ (x, x) and
delX : X → {∗} : x 7→ ∗ which are obviously compatible with the cartesian product.
Therefore, SetMulti is indeed a Markov category.

Similar thoughts yield the result that Kl(V ) also is a Markov category. Actually, it
can be proven that a certain kind of monads respect the property of being a Markov
category under the construction of a Kleisli category as done in [10] and discussed in [4,
Sec. 3].
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3 Categorical probability

As we have now introduced Markov categories, we want to investigate their use in cate-
gorical probability. We will start by translating some general probabilistic concepts into
categorical syntax as done by Fritz in [4, Sec. 2] and later discuss the main object of
interest in this paper, the three axioms developed by Fritz et al. in [4, 8, 6, 5].
While the �rst part of this section is merely of interest for the categorical approach

to probability, these axioms already proved themselves to be an appropriate setting for
categorical probability. For instance, in [5] Fritz et al. proved a synthetic version of de
Finetti's theorem in purely categorical language, see section 4. Furthermore, in a slightly
more general framework Fritz et al. proved abstract versions of the zero-one laws by
Hewitt-Savage and Kolmogorov [8].

3.1 General theory

Lawvere already investigated the category of measurable spaces with Markov kernels
as morphisms in [13]. He interpreted morphisms with the one-element space, i.e. the
terminal object of the category, as domain as probability distributions. Indeed, the
category of measurable spaces with Markov kernels is a Markov category as de�ned in
the prior section. This motivates to de�ne a distribution in a Markov category to be a
morphism φ : I → X, where I is the monoidal unit and X some arbitrary measurable
space, denoted by

φ

X

as Fritz does in [4, Sec. 2], since a distribution principally is a Markov kernel that takes
no input and produces some random output.
This already motivates the de�nition of a random variable. If X and Y are two objects

(measurable spaces in the case investigated by Lawvere [13]), we call a deterministic
(de�nition 3.1) morphism f : X → Y random variable with distribution fφ : I → Y ,
denoted by

φ

X

Y

f

.
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Analogously for two objects X,Y of a Markov categeroy, the morphisms

φ

X Y

correspond to the joint distributions of the objects X and Y .
However, the just introduced concepts are not essential for the currently developed

aspects of categorical probability, but give a good understanding of how Markov cate-
gories "work". Let us now continue with the theory developed by Fritz et al. in their
recent work [4, 7, 5, 8, 6] and particularly discuss their three new axioms as to be found
collected in Assumption 4.3. in [5].

3.2 The axioms

Fritz et al. [5, Sec. 3] developed three axioms de�ning the notions of representability,
conditionals and in�nite products. The �rst one reproduces the fact, that for every
measurable space there is another measurable space of probability measures on that space.
The notion of conditionals is related to the classic one in probability theory trying to
generalise the concept of conditional probability. The last one axiomatises Kolmogorov's
extension theorem and hence implements in�nite products in this categorical approach
to probability.

3.2.1 Representability

As already discussed in section 2.2, there is a canonical σ-algebra on the space of prob-
ability measures of every measurable space. The �rst axiom tries to implement this fact
by essentially demanding the existance of a generalised object PX for every object X.
For a precise de�nition, though, we need to de�ne some more properties of morphisms
in Markov categories.
The �rst one is the de�nition of deterministic morphisms. Imagine you roll a dice and

"copy" the output. In general, this will yield a di�erent result to rolling two dices and
writing down their output. In other words, rolling a dice is not deterministic but there is
some kind of uncertainty when producing the output, i.e. the rolled face on the dice. In
categorical language in the setting of Markov categories this can be described as follows.

De�nition 3.1 (deterministic morphism). Let f : A → X be a morphism in a Markov
category C. We call f deterministic if

=

f

f f

.

We denote the subcategory of deterministic morphisms of C by Cdet.
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For a detailed discussion of the term see section 10 in [4]. We will move on by ab-
stracting the term of "equal almost everywhere" as done by Cho and Jacobs in [2] and
developed by Fritz et al. in [6] to a more general setting. In standard measure theoretic
language two functions are equal almost everywhere, if their output values are the same
for all inputs in the domain but a subset of measure zero. Indeed, this property relies
on a measure and its negligible subsets of measure zero. This already motivates the
following de�nition of almost sure equality.

De�nition 3.2 (a.s.-equality). Given p : Φ → A, we call two morphisms f, g : A → X
p-almost surely equal, denoted by f =p−a.s. g, if

=

Φ Φ

p p

A X A X

gf

.

Example 3.3. In the case of the Markov category BorelStoch, i.e. the category of stan-
dard Borel spaces with Markov kernels as morphisms, as described by Fritz in [5], this
property specialises to equality of two Markov kernels with probability 1 for all values of
Φ. In general, two morphisms are a.s.-equal, if they are only di�erent for events that are
negligible for p.

Example 3.4. Let p, f, g be morphisms in SetMulti according to de�nition 3.2. Remem-
ber that ∀φ ∈ Φ : p(φ) ⊂ A and that ∀φ ∈ Φ : (f ◦ p)(φ) =

⋃
y∈p(φ) f(y), (g ◦ p)(φ) =⋃

y∈p(φ) g(y). Thus, f =p−a.s. g, if ∀y ∈ p(Φ) : f(y) = g(y). That is, f and g are
p-almost surely equal, if they map the same subsets generated by p to the same subsets of
X. Note that f and g may di�er when applied to single elements of A.

Now we are ready to de�ne the notion of a Markov category to be representable respec-
tively a.s.-compatible representability. Those notions are needed to prove the abstract
version of de Finetti's theorem.

De�nition 3.5 (representable Markov category, a.s.-compatible representability). Let C
be a Markov category. We call C representable if for all objects X in C there exists a
distribution object PX, such that

HomC(A,X) ∼= HomCdet
(A,PX), (3)

for arbitrary A and naturally in A. We denote the deterministic counterpart of f : A → X
under this bijection by f# : A → PX. Accordingly a representable Markov category is
called a.s.-compatibly representable if for all objects A,X and all morphisms f, g : A → X

f =p−a.s. g ⇔ f# =p−a.s. g
#, (4)

for all p : Φ → A.
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Fritz et al. discuss the notion of representability extensively in [6]. For example, they
argue that the category BorelStoch as described above is indeed a.s.-compatibly repre-
sentable [6, Ex. 3.19.]. Another important morphism when talking about representability
is the one induced by setting A = PX in equation 3. It de�nes a correspondence to the
identity on PX which we call samp since it intuitively "samples" from a given probability
distribution. Furthermore, by composing the right-hand side of the equivalence in 4 with
the sample morphism we immediately obtain the left-hand side, hence only the reversed
direction is not trivial.
We now will discuss the category SetMulti in terms of representability.

Proposition 3.6. A morphism f in SetMulti is deterministic if and only if it is single-
valued, i.e. SetMultidet ∼= Set.

Proof. A
f−→ B is deterministic if and only if (f ⊗f)(A×A)

!
= f(A)×f(A) which holds

if and only if f is single-valued.

Proposition 3.7. SetMulti is a.s.-compatibly representable.

Proof. A morphism in SetMultidet(A,PX) is a function f# : A → PX, which we
again - by proposition 3.6 - can interpret as a relation and hence SetMultidet(A,PX) ∼=
SetMulti(A,X).
Now it is open to prove the a.s.-compatibility. As already described, the su�ciency

in equation 4 is trivial, thus we only need to show necessity. Let p : Φ → A and
f, g : A → X be p-a.s. equal morphisms in SetMulti. We obtain the corresponding
deterministic morphisms f#, g# : A → PX by applying the natural transformation δA
to f respectively g. Let φ ∈ Φ:

(f# ◦ p)(φ) =
⋃

y∈p(φ)

f#(y) =
⋃

y∈p(φ)

f({y}) =

Ex. 3.4
=

⋃
y∈p(φ)

g({y}) =
⋃

y∈p(φ)

g#(y) = (g# ◦ p)(φ)

Hence, f# =p−a.s. g
#.

3.2.2 Conditionals

The second axiom implements a well-known fact from probability theory, the chain rule
for random variables. Let f be the joint distribution of two random variables X,Y .
Then,

f(X,Y ) = f|X (Y,X)f(X).

The idea of this axiom was �rst developed by Golubtsov in [10] and discussed by Cho
and Jacobs in [2] and then further developed by Fritz et al. in [4, 5]. Our main focus lies
on the results from the last ones. Thus, let us de�ne the axiom.
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De�nition 3.8 (conditionals). Let C be a Markov category. Let f : A → X ⊗ Y be a
morphism in C. We call f|X : X ⊗A → Y a conditional of f , if

=

A

f

X Y

A

f

X Y

f |X

.

Accordingly, we say that C has conditionals, if a conditional exists for every such mor-
phism.

Intuitively, we can imagine that if we apply f to A and "delete" the Y -information,
givenX and A, f|X restores the lost information. Of course, the same holds if we exchange
X and Y . Again, BorelStoch does indeed have conditionals, see [4, Ex. 11.7.]. As we will
see, SetMulti also has conditionals.

Proposition 3.9. SetMulti has conditionals.

Proof. Let f : A → X × Y be a morphism in SetMulti. Since SetMulti is the Kleisli
category of the non-empty powerset monad, for all a ∈ A we can interpret f(a) to be
a non-empty subset of X × Y . If we �x one x ∈ X, we must distinguish two cases to
construct f|X .

1st case: ∃y ∈ Y : (x, y) ∈ f(a). By f(a)x we then denote the corresponding non-
empty subset of Y . Hence, we set f|X (x, a) = f(a)x.

2nd case: ∄y ∈ Y : (x, y) ∈ f(a). In this case, f|X (x, a) as constructed in the �rst case
would be empty and hence f|X not a morphism in SetMulti. However, since they do
not contain any relevant information - we only care about the x which we obtain
from a together with a y - we can just extend f|X . Thus, let M be an arbitrary
non-empty subset of Y . We extend f|X by setting f|X (x, a) = M .

Therefore, we have found a conditional of f and since this holds for arbitrary f ,
SetMulti does indeed have conditionals.

Remark 3.10. In the proof of proposition 3.9 we see that the conditional of a morphism
needs not be unique. Precisely, Fritz proved in [4, Prop. 11.15.] that in a Markov category
C that has conditionals, they are unique if and only if any two parallel morphisms are
equal.
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3.2.3 In�nite products

One more property we would expect from an useful attempt to probability theory is the
ability to handle in�nite products. We thus want to introduce a way to treat in�nite
products of objects in Markov categories as extensively discussed by Fritz and Rischel in
[8].
The main idea of this axiom is the Kolmogorov extension theorem. It states that

the joint distributions of an in�nite family of random variables are in bijection with the
corresponding families of �nite marginal distributions. The idea is to turn this fact into a
de�nition, as done in [8, Def. 3.1., Def. 4.1.]. In the same paper Fritz and Rischel stated
and proved abstract versions of the zero-one laws from Hewitt-Savage and Kolmogorov
in a purely synthetic manner in terms of Markov categories using the mentioned notion
of in�nite products.

De�nition 3.11 (in�nite products, Kolmogorov powers). Let (Xj)j∈J be an arbitrary
family of objects in a Markov category C. We call XJ :=

⊗
j∈J Xj an in�nite (tensor)

product of the family, if there is a natural bijection between morphisms

f ∈ C(A,XJ ⊗ Y )

and families of morphisms
(fF : A → XF ⊗ Y ),

where A and Y are objects in C and F ⊂ N �nite. Additionally, we demand

A

fG

XG Y

=

A

fG

XG Y

πF,G

, (5)

for G ⊂ F , where we call πF,G : XF → XG �nite marginalisation, acting as identity on
G but delX to the remaining factors. Furthermore, we call XJ a Kolmogorov power, if
the �nite marginalisation morphisms πF : XJ → XF are deterministic.

Remark 3.12. Notice that we need to add the extra factor Y in de�nition 3.11 in order
to preserve compatibility with the �nite product. If we add a single factor we still want
the in�nite product to exist.

As mentioned above, we are able to show some classical results in probability theory
using this notion of in�nite products. Nevertheless, in order to prove de Finetti's theorem
as done in [5] it is enough to postulate an even less general case of in�nite products,
namely countable Kolmogorov powers of single objects, see de�nition 3.10. in [5]. For
example, BorelStoch does have countable Kolmogorov powers of every object, as argued
in example 3.6. in [8] making use of the Kolmogorov extension theorem. On the other
hand, SetMulti does not have all Kolmogorov powers.
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Proposition 3.13. SetMulti does not have all Kolmogorv powers.

Proof. Let A be a 2-element set. A morphism I →
∏

i∈NA is a non-empty subset B of∏
i∈NA. We will see that the universal property of the product is not satis�ed. Let a, b ∈∏
i∈NA be two distinct points and Ba =

∏
i∈NA \ {a}, respectively Bb =

∏
i∈NA \ {b}.

For �nite J ⊂ N, the morphisms induced by these subsets with respect to the projection
maps both satisfy equation 5 and are valid �nite marginalisations, hence the demanded
natural bijection does not exist. Therefore, the product does not exist.

4 De Finetti`s theorem

In this section we will concentrate on de Finetti's theorem named after Bruno de Finetti
who discovered its original version in the 1930s, see [3]. Intuitively, de Finetti proved
that every (in�nite) exchangeable (de�nition 4.1) zero-one valued sequence - e.g. from a
tossed coin - is a "mixture" of iid sequences of Bernoulli random variables.
The importance of this statement is easy to accept when thinking of frequently tossing

a coin. While we may not decide on the independence of the joint distribution of the
tosses we indeed can assume the tosses to be exchangeable. De Finetti then yields the
non-trivial statement that there is a family of iid random variables which determine the
distribution.
This theorem later was generalised to not only contain Bernoulli random variables but

a wide range of measurable spaces. This broader version goes back to Hewitt and Savage
in the 1950s, see [11], and is the one Fritz et al. adapted to a slightly di�erent category
theoretical version in [5]. Before we address the abstract statement, we want to revise the
classic measure theoretic one in a more general setting than de Finetti's original valid for
standard Borel spaces. To start o�, we need to recall what it means to be exchangeable
for a probability measure.

De�nition 4.1. Let X be a measurable space. Consider XN, the product of countable
many copies of X equipped with the product σ-algebra and a probability measure p on
XN. Let σ : N → N be a �nite permutation and n ∈ N be the largest integer not �xed by
σ. In this setting we call p exchangeable if,

p(A1 × . . .×An) = p(Aσ(1) × . . .×Aσ(n)),

for measurable subsets A1, . . . An ⊂ X, where A1× . . .×An is shorthand for the cylinder
event A1 × . . .×An ×X ×X × . . ..

After revisiting the idea of exchangeability we are already able to state de Finetti's
theorem characterising exchangeable measures on standard Borel spaces as in [5, Theo.
2.1.].
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Theorem 4.2 (de Finetti's theorem). Let X be a standard Borel space and PX the (again
measurable) space of measures on X. A probability measure p on XN is exchangeable if
and only if there exists a probability measure µ on PX such that for every �nite collection
of measurable subsets A1, . . . , An ⊂ X,

p(A1 × . . .×An) =

∫
PX

q(A1) · . . . · q(An) dµ(q).

With this measure theoretic statement in mind we will now come into the realm of a
synthetic adaption of theorem 4.2 as Fritz et al. devoted themselves in [5] on it. Instead of
standard Borel spaces they formulated and proved a characterisation of exchangeability
of morphisms in Markov categories. First of all, we need to again de�ne the notion of
exchangeability, this time in terms of morphisms in Markov categories, although, having
de�nition 4.1 in mind, exchangeability of morphisms is very intuitive to understand as
it apparently is only translated into another language.

De�nition 4.3. Let A and X be objects in a Markov category C that has countable
Kolmogorov powers of every object. Let σ : N → N be a �nite permutation. By Xσ :
XN → XN we denote the morphism sending the n-th component of XN to its σ(n)-th
component. We then call a morphism p : A → XN exchangeable, if

p
p

Xσ

= .

Again, the synthetic version characterises exchangeability but this time more generally
for Markov categories. Beside being more general than theorem 4.2, the synthetic result
even provides a more intuitive proof based on string diagrams, for full details, again, see
[5]. Let us move on by stating the result, to be found as theorem 4.4. in [5].

Theorem 4.4 (synthetic de Finetti's theorem). Let C be a Markov category that has
conditionals, is a.s.-compatibly representable and has countable Kolmogorov powers of
every object. Then a morphism p : A → XN is exchangeable in the sense of de�nition
4.3 if and only if there is a morphism µ : A → PX such that

=p

samp samp

µ

...
...

.

This result is indeed a generalisation of theorem 4.2 as we can immediately deduce it.
As mentioned in section 3.2, BorelStoch has conditionals, is a.s.-compatibly representable
and has countable Kolmogorv powers. Hence, by considering A = I it is straightforward
to infer theorem 4.2 as an instance from theorem 4.4 as Fritz et al. do on page 17f. in
[5].

14



By now, there are no non-trivial Markov categories known to ful�l the presented axioms
that are substantially di�erent from BorelStoch. Of course it would be nice to �nd more
interesting Markov categories, maybe of topological spaces or with some other interesting
properties, in order to expand this novel attempt to categorical probability. For instance,
an interesting category of topological or measurable spaces could help to adapt the theory
in order to make it even more suitable and help it discover a proper measure theoretic
background.
Although we are not yet able to provide a proper suggestion in which direction this

journey will go, we will discuss one way of how we can decide on the suitability of a
Markov category for this approach to categorical probability. As an (counter)example
we will provide the category Kl(V ), introduced in example 2.9. We will discuss the
details in the following section.

5 The Vietoris monad

We now will have a close look at the category that arises from the Vietoris monad on
compact Hausdor� spaces as its Kleisli category as already mentioned in 2.9. Thus, we
will start by recalling the concept of so-called hyperspaces.
Let (X, τ) be a topological space. One way to construct another topological space

from this one is to have its non-empty closed subsets Cl(X) as points. There are several
ways to equip this point set with a topology that all have in common that they aim to
make the embedding

ι : X → Cl(X) : x 7→ {x} (6)

continuous. Beer [1] gives an introduction to several such hyperspaces, though we are
particularly interested in one of those many possibilities - the topology now known as
Vietoris topology �rst investigated by Vietoris in [17, 18]. Later, Fritz et al. discussed a
coarser topology called lower Vietoris topology in a categorical setting in [7].
From now on, when mentioning a hyperspace, it will be equipped with the Vietoris

topology. We denote the corresponding point space by V X and its topology by V. A
base for the Vietoris topology is obtained by elements of the form

⟨U1, . . . , Uk⟩ = {C ∈ V X|C ⊂
k⋃

i=1

Ui ∧ ∀i = 1, . . . , k : C ∩ Ui ̸= ∅}, (7)

with U1, . . . , Uk ∈ τ . As already mentioned we will later concentrate on hyperspaces
of compact Hausdor� spaces. Apparently, hyperspaces of compact Hausdor� spaces are
again compact and Hausdor�.

Proposition 5.1. Let (X, τ) be a compact Hausdor� space. (V X,V) is compact and
Hausdor�.

Proof. We split the proof into two parts.
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Hausdor�: Let A,B ∈ V X be two distinct points. Without loss of generality ∃a ∈ A :
a ̸∈ B. Hence, A ̸∈ ⟨X \ {a}⟩, but obviously B ∈ ⟨X \ {a}⟩. As X is Hausdor� we
can �nd an open set U that contains a but does not intersect with B. Furthermore,
again because X is Hausdor�, we can �nd an open set V containing all closed sets
intersecting with U . We see that A ∈ ⟨V ⟩ but B ̸∈ ⟨V ⟩. Thus, we found two
disjoint neighbourhoods one containing A and the other B, making V X Hausdor�.

Compact: Let {ci|i ∈ I} be an open cover of V X. Since equation 6 is a continuous
embedding, {ι−1(ci)|i ∈ I} is an open cover of X. Since X is compact, we can
�nd a �nite open subcover {ι−1(ci)|i ∈ J} of X for J ⊂ I �nite. Thus, since
ι(X) = V X, {ci|i ∈ J} is a �nite open subcover of V X.

From this proposition we can conclude that the functor V : CHaus → CHaus sending
compact Hausdor� spaces to their corresponding hyperspaces is an endofunctor. Fur-
thermore, we are able to de�ne two natural transformations µ, δ as in de�nition 2.4 and
obtain a monad. The multiplication is obtained analogously to example 2.5 by

µX : V V X → V X : A 7→
⋃
a∈A

a

and
δX : X → V X : x 7→ {x}.

It is easy to check that the de�ning diagrams commute.
We now will use this in order to construct an interesting category. All morphisms of

CHaus itself are deterministic in the sense of de�nition 3.1, , as it is a concrete category,
making it "boring" in this approach to categorical probability. A lot more exciting is the
Kleisli category Kl(V ) arising from the monad V applied on CHaus that behaves much
like SetMulti but has some advantages as we will discuss later.
First, let us construct Kl(V ) following de�nition 2.7. We again obtain compact

Hausdor� spaces as objects. A morphism f : X → Y becomes a continuous function
f : X → V Y with the hyperspace of Y as codomain. Hence, it remains to de�ne the cor-
responding Kleisli composition as in equation 1 in section 2. This is also straightforward
using the just de�ned multiplication of the monad V and yields

(g ◦ f)(x) =
⋃

y∈f(x)

g(y) (8)

for f ∈ Kl(V )(X,Y ), g ∈ Kl(V )(Y, Z) and all x ∈ X. As per propositionem 3.1. in [6]
Kl(V ) is a Markov category with the cartesian product with the product topology as
monoidal product and the closure of the diagonal as the copy morphism.
We now want to discuss the usability of Kl(V ) in categorical probability. Although

Kl(V ) behaves a lot like SetMulti, it indeed has Kolmogorov products of any cardinality
while SetMulti does not even provide countable Kolmogorov powers of single objects, see
proposition 3.13. The proof is analogous to the one by Fritz and Rischel for the lower
Vietoris monad in [8, Prop. 6.4.].
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In this manner, Kl(V ) indeed is an interesting candidate to investigate in a categorical
probability setting. Thus, it would be interesting to know whether it also satis�es the
other two axioms in order to, on the one hand, apply other yet known results in this
approach to categorical probability and on the other hand to better understand the
measure theoretic background of this approach and hence improve it.
Unfortunately, we will see that Kl(V ) cannot satisfy both of the other two axioms.

To do so, we �rst take a closer look on how to handle certain morphisms of Kl(V ).
Later we will use de Finetti's theorem in its abstract version in order to construct a
counterexample showing that one of the other two axioms must be violated.
As described before, Kl(V ) is a lot like SetMulti. Particularly, we can regard its

morphisms as some kind of generalisation of SetMulti to topological spaces. Let us
demonstrate this by an example of one certain class of morphisms: Kl(V )(I, {0, 1}N).
Those morphisms are continuous functions with domain {∗} and codomain V {0, 1}N, i.e.
the hyperspace of {0, 1}N. Since these functions are continuous and have a singleton as
domain, they are in bijection with the codomain. In other words, Kl(V )(I, {0, 1}N) ∼=
V {0, 1}N. Hence, we can again imagine morphisms p ∈ Kl(V )(I, {0, 1}N) to be elements
p ∈ V {0, 1}N, that is, they are nothing else but closed non-empty subsets of {0, 1}N.
Let us now choose one of those morphisms, namely

q = {(xi)i∈N ∈ {0, 1}N|∃≤1i ∈ N : xi = 1}. (9)

Using a base representation (product topology) we immediately see that q is a closed
subset of {0, 1}N. We choose this morphism due to its exchangeability according to
de�nition 4.3. As a simple logical conclusion, if Kl(V ) satis�ed all three axioms, theorem
4.4 would be applicable to q. Thus, if it is not applicable, Kl(V ) cannot satisfy all three
axioms.

Proposition 5.2. Kl(V ) cannot have conditionals and be a.s.-compatible representable.

Proof. To prove this, we translate de Finetti's theorem into this setting. In this case,
theorem 4.4 states that a morphism p : I → {0, 1}N is exchangeable if and only if there
is a morphism µ : I → V {0, 1} such that

=
p

samp samp

µ

... ...
. (10)

Let us have a look at the putative morphism µ. Analogous to our thoughts before,
µ# ∈ V V {0, 1} = PP{0, 1}. Possible candidates for µ thus are representable by el-
ements of the non-empty powerset of the non-empty powerset of {0, 1}, i.e. µ# ∈
{{{0}}, {{1}}, {{0, 1}}, {{0}, {1}}, {{0}, {0, 1}}, {{1}, {0, 1}}, {{0}, {1}, {0, 1}}}.
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We go on by concentrating on the right-hand side of 10. As per de�nitionem 3.5 the
composition samp ◦µ specialises to

samp ◦µ =
⋃

A∈µ⊂V {0,1}

(A×A× . . .).

As q from 9 is exchangeable there should exist some µ such that

q =
⋃

A∈µ⊂V {0,1}

(A×A× . . .).

However, checking the listed possibilities for µ from above yields that there is no such
representation for q.
As a consequence, Kl(V ) cannot satisfy the three axioms. Since we already know that

Kl(V ) has all Kolmogorov powers, it must dissatisfy at least one of the other two axioms,
i.e. it either does not have conditionals or is not a.s.compatible representable.

Hence, Kl(V ) is not the category we are looking for. It does not ful�l all three of
the axioms and therefore will not help to improve this certain approach to categorical
probability, while we do not want to note it unimportant.
Therefore, closed subsets of compact Hausdor� spaces are obviously not the right

choice. Nevertheless, we can also think of restricting us to clopen subsets. Unfortunately,
in some sense, this is even worse as we in general lose endofunctorality when considering
the subspace topology of clopen sets of the hyperspace.

Proposition 5.3. Let (X, τ) be a compact Hausdor� space with an in�nite number of
clopen subsets that do not include one another. The subspace topology (C,VC) of clopen
subsets of (V X,V) is not compact.

Proof. Since ∀c ∈ C : c open, we can consider the base elements ⟨c⟩ as described in
equation 7. Additionally, ∀c ̸= d ∈ C : c ∈ ⟨c⟩ but d ̸∈ ⟨c⟩. Thus, the collection
{⟨c⟩|c ∈ C} is an open cover of C that has no �nite subcover. Per de�nitionem, (C,VC)
hence is not compact.

The following example shows that there actually are compact Hausdor� spaces with
an in�nite number of clopen subsets not containing one another.

Example 5.4. Again consider the compact Hausdor� space {0, 1}N with the product
topology. The sets

XJ = {(xi)i∈N ∈ {0, 1}N|(xj)j∈J = (x̃1, · · · , x̃#J)}

for J ⊂ N �nite and �xed sequences (x̃1, · · · , x̃#J) ∈ {0, 1}#J are clopen in {0, 1}N. Now
choose Jn = {n} for n ∈ N and x̃n ∈ {0, 1}. (XJn)n∈N is an in�nite family of clopen sets
that do not contain one another and hence the restriction of the hyperspace to clopen sets
does not preserve endofunctorality.
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In summary, in this thesis we were not able to �nd another suitable category that helps
to improve the categorical approach to probability theory developed by Fritz et al. in
[4, 7, 5, 8, 6], though we were able to further investigate the category Kl(V ) in terms of
categorical probability. The investigation of this particular question - what other cate-
gories satisfying the presented axioms there are - could include polish spaces as they are
the foundation to the yet known category BorelStoch or even totally di�erent directions.
Nevertheless, category theory appears to not only be a very rich mathematical branch
but also particularly useful in probability theory.
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