Radka Symonova


Present position:

Research Scientist, guest scientist

Research area:

Molecular evolutionary ecology


+43 512 507-50264
+43 512 507-50299


Employment History · Research · Staff · Projects · Teaching · Publications and Awards

Employment History


  • January 2015-June 2017: Research Scientist at the Research Institute for Limnology, Mondsee, University of Innsbruck

  • 2009-Jan 2015: Postdoctoral Research Associate, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech republic

  • 2004-2015 Research Assistant in Invertebrate Zoology, Department of Zoology, Faculty of Science, Charles University, Czech Republic

  • 2009: PhD Thesis defended at the Charles University, Prague, Czech Republic

  • 2005-2008: EU Marie Curie Research Training Network: SexAsex, Munich, Germany

  • 2005: State Doctoral Examination

  • 2004-2009: PhD Program in Biology (Zoology), Charles University, Prague, Czech Republic

  • 2004: MSc in Biology (Zoology), Charles University, Prague, Czech Republic
  • 2003: 5 months Erasmus-Socrates Program at the University of Greenwich, London, United Kingdom,



CGR-cover Symonova 2013

molecular cytogenetics in invertebrates and lower vertebrates, genome evolution in hybrids and polyploids, asexual reproduction, 3D visualization and reconstruction in biology



PhD students

  • Zuzana Maitánová (PhD student) Molecular cytogenetics and genomics dealing with the evolution of hybridization and polyploidization in fishes, Charles University in Prague, since 2011 ongoing



  • Jan 2017-Dec 2017 Evolutionary importance and dynamics of multiplied rDNA sites in fish genomes (TWF)
    The goal of this project is to investigate 1) structural roles of rDNAs reflecting their preferential occupancy in (peri)centromeric regions of acrocentric chromosomes and their location in interphase nuclei and on metaphase chromosomes; 2) their evolutionary dynamics in diverging lineages on multiple taxonomic levels across North America and Eurasia and under different ecological conditions; 3) functional analysis of epigenetic regulation in the “true” and “additional” rDNAs and in the case of 5S rDNA, differentiation between transcriptionally active and inactive sites comparable with the conventional AgNOR staining of 45S rDNAs.

  • 2015-2017 Fish Epigenetics as a tool in genome evolution research, NWF15/BIO-7 (young researcher fellowship of the University of Innsbruck)
    Die epigenetischen Modifikationen spiel(t)en eine wichtige Rolle in der Genomevolution, werden jedoch meistens bei Säugetieren erforscht, obwohl sie eben in der Grundlagenforschung der Fi-sche ein großes Potenzial repräsentieren. Die Fische sind eine wichtige Gruppe in der Genomevo-lution, weil sie die basalsten Vertebraten sind, bei denen sich im Gegensatz zu den höheren Ver-tebraten noch andere Mechanismen der Genomevolution durchgesetzt haben - u. a. Polyploidisierung, die die Erhöhung der Genomkomplexität anderer Vertebraten ermöglicht hat und schließ-lich auch zu der Evolution der höheren Vertebraten geführt hat. Polyploidisierung hat wichtige Auswirkungen auf das ganze Genom, kann zur Artbildung führen sowie zum Aussterben, und bei den Linien, die überlebten und davon profitierten, können unterschiedliche Spuren im Genom mit diversen Methoden nachgewiesen werden. Welche Spuren zu entdecken sind, ist vor allem davon abhängig, vor wie langer Zeit die Polyploidisierung stattgefunden hat, wie dynamisch der Prozess von sekundärer Re-Diploidisierung abgelaufen ist und auch auf welcher Ebene man sucht. Im Stammbaum der Vertebraten sind zwei ganz archaische Polyploidisierungen aufzuspüren, die einige Hundert Millionen Jahren alt sind, bei den Fischen sind dazu noch andere Polyploidisierungen zu finden, die obwohl auch einige Millionen Jahren alt sind. Durch diese weiteren Ge-nomduplikationen entstand eine "unübersichtliche Situation" im Genom und auch wegen einer unterschiedlichen Genomorganisation ist es manchmal kompliziert neue Methoden bei den Fi-schen einzuführen. Der DNA-Methylierungs-Status zusammen mit Histon-Modifikationen auf den diversen Ebenen zeigt: 1/welche DNA Regionen durch diese epigenetische Modifikation gesteuert werden, 2/ er kann beitragen die anzestrale polyploide Homologe im Karyotyp von Pa-läeo-Polyploiden unterschiedlichen Alters zu identifizieren und damit kann er dienen als 3/ wich-tige Marker in der bisherigen zytogenomischen Forschung.
  • 2014-2016 Ploidy and hybrid diversity in sturgeons (Acipenseriformes) and its impacts on conservation and breeding, Czech Science Foundation No.14-02940S (member of the team)

Finished projects

  • 2012-2013 Molecular-cytogenetic analyses of genomes of sturgeons, paddlefishes and gars – living witnesses of ancient evolutionary experiments with the earliest vertebrate genome, Czech Republic – Mexico, bilateral agreement, No. CZ/MEX 003MX2011 (PI)

  • 2011-2013 Allopolyploidization as a key factor in genome evolution of basal vertebrates´ lineages. Czech Science Foundation, post-doctoral project, No. P506/11/P596 (PI)

  • 2013-2014 Molecular Cytogenetics in Teleost Fishes (Coregoninae and Cyprinidae). Project AKTION of Austrian-Czech collaboration. Nos. 68p6, 69p15 (co-PI)

  • 2004-2006 Development of reproductive modes of European freshwater ostracods in Holocene and their recent distribution. Grant Agency of the Charles University No. 186/2004 (PI)



Lectures and practica

  • Wahlmodul Genomevolution (BSc) SS2015 , SS2016 and SS2017 at the Research Institute for Limnology, Mondsee, of the University of Innsbruck

  • MB170P09 Invertebrate Zoology, practicals, semestral course, Faculty of Sciences, Charles University, Prague

  • MB17C12 Introduction to Molecular Palaeontology, semestral course, Charles University, Prague

  • MG420P02 Geobiology I., semestral course, together with other lecturers, Charles University, Prague

  • Bi8750 Crustaceology, Faculty of Sciences, Masaryk University, Brno, together with other lecturers

  • Molecular Cytogenetics in Fish - Universidad Juarez Autonoma Tabasco, Villahermosa, Mexico, invited lectures and course 2012, 2013

Master theses (topics for MSc theses available)

  • Developing FISH probes for U1 and U2 snRNA and histone genes as markers in fish molecular cytogenetics.
  • Genome evolution of Coregonus based on molecular cytogenetic data – implication for phylogeny of Salmonids.

Please contact for more details!




  • Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G., Pelikánová Š., Kovařík A. (2017). Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genomics
  • Symonová R., Havelka M., Amemiya C.T., Howell W.M., Kořínková T., Flajšhans M., Gela D., Ráb P. (2017). Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula), BMC Genetics 18(1): 19, doi: 10.1186/s12863-017-0484-8.

  • Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. (online first). "Holostei versus Halecostomi" problem: insight from cytogenetics of ancient non-teleost actinopterygian fish, bowfin Amia calva. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution doi:10.1002/jez.b.22720

  • Dion-Côté A.-M., Symonová R., Lamaze F.C., Pelikánová Š., Ráb P., Bernatchez L. (online first). Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation. Molecular Ecology, doi: 10.1111/mec.13816


  • Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Johnson Pokorná M., Doležálková M., Flajšhans M., Normandeau E., Ráb P., Meyer A., Bernatchez L. (2016). Genome Compositional Organization in Gars Shows More 1 Similarities to Mammals than to Other Ray-Finned Fish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution  doi:10.1002/jez.b.22719

  • Havelka M., Bytyuskyy D., Symonová R., Rab P., Flajshans M. (2016). The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet. Sel. Evol. 48:12. doi. 10.1186/s12711-016-0194-0

  • Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. (2016). Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei). PLOS One 11(1): e0146872. doi:10.1371/journal.pone.0146872


  • Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. (2015). Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evolutionary Biology 15:251 DOI 10.1186/s12862-015-0532-9 PDF

  •  Symonová R., Sember A., Majtánová Z., Ráb P. (2015). Characterization of fish genomes by GISH and CGH. in: C. Ozouf-Costaz, E. Pisano, F. Foresti, L. Foresti de Almeida Toledo: Fish Cytogenetic techniques (Teleosts and Chondrichthyans). CRC Press, pp. 118-131,

  • Dion-Côté A.-M., Symonová R., Ráb P., Bernatchez L. (2015). Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proceedings of the Royal Society B 282:20142862. Link 


  • Matzke-Karasz R., Neil J., Smith R.J., Symonová R., Mořkovský L., Archer M., Hand S., Cloetens P.,  Tafforeau P. (2014). Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia. Proceedings of the Royal Society B.


  • Symonová R., Flajšhans M., Sember A., Kořínková T., Gela D., Rodina M., Rábová M., Ráb P. (2013).  Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: an evolutionary story narrated by repetitive sequences. Cytogenetic and Genome Research 141:153 -162 DOI:10.1159/000354882

  • Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. (2013). Chromosome studies of European cyprinid fishes: Cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenetic and Genome Research, 139: 276-283 DOI: 10.1159/000350689

  • Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J., Rábová M., Ráb P. (2013). Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evolutionary Biology,13: 42 DOI:10.1186/1471-2148-13-42


  • Bruvo R., Adolfsson S., Symonová R., Lamatsch D.K., Schön I., Jokela J., Butlin R.K., Müller S. (2011). Few parasites, and no evidence for Wolbachia infections, in a freshwater ostracod inhabiting temporary ponds. Biological Journal of the Linnean Society 102(1):208–216.


  • Symonová R. and Smrž J. (2009). The first record of free cells in freshwater ostracods. Journal of Crustacean biology 29(1):18-25.

  • Matzke-Karasz R., Smith R.J., Symonová R.,  Miller C.G., Tafforeau P. (2009). Sexual intercourse involving giant sperm in Cretaceous ostracode. Science 324:1535.


  • Symonová R. (2007). Ultrastructure of hepatopancreas and its possible role as a haematopoietic organ in nonmarine cypridoidean ostracods (Crustacea). Hydrobiologia 585(1):213-223.


  • Symonová, R. (2015). Canada award for young academics at the University of Innsbruck



Nach oben scrollen