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Abstract

This paper studies whether the evident statistical predictability of bond risk
premia translates into economic gains for bond investors. We show that affine
term structure models (ATSMs) estimated by jointly fitting yields and bond excess
returns capture this predictive information otherwise hidden to standard ATSM
estimations. The model’s excess return predictions are unbiased, produce regres-
sion R2s beyond those reported in the literature, exhibit high forecast accuracy,
and allow to generate positive bond portfolio excess returns in- and out-of-sample.
Nevertheless, these models cannot beat the expectations hypothesis (EH) out-of-
sample: the forecasts do not add economic value compared to using the average
historical excess return as an EH-consistent estimate of constant risk premia. We
show that in general statistical significance does not necessarily translate into eco-
nomic significance because EH deviations mainly matter at short horizons and
standard predictability metrics are not compatible with common measures of eco-
nomic value. Overall, the EH remains the benchmark for investment decisions and
should be considered an economic prior in models of bond risk premia.
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1 Introduction

Empirical research documents that the expectations hypothesis (EH) of the term structure of
interest rates is rejected by the data and argues, almost unequivocally, that deviations of the
EH reflect time-varying risk premia.’ ( ) ( ), and

( ) are among the first to provide such evidence, while more recent studies that
document the violation of the EH include ( ), ( ),
and ( ). This evidence is strengthened by work showing that bond risk premia
are predictable; see e.g. ( ). In this paper, we evaluate the relevance
of EH deviations by studying whether bond investors benefit from conditioning on information
about time-varying risk premia.

We estimate risk premia using affine term structure models (ATSMs). Based on the pioneer-
ing work of ( ) and ( ), ATSMs receive a particular
focus in the finance literature on dynamic term structure models because of their richness,
tractability, and ability to produce reasonable risk premium dynamics. Interestingly, research
on the EH and on ATSMs has, to a large extent, evolved along separate paths.? Only a few
papers attempt to bridge this gap and, for example, the results of ( ) and

( ) support the notion that the failure of the EH is due to the invalid
assumption of constant risk premia. Recent research, however, argues that the evident pre-
dictability of bond risk premia cannot by captured by ATSMs because the necessary predictive
information is not spanned by the cross-section of yields (see e.g. , : ,

). By contrast, in this paper we show that such ATSMs do capture the predictability of
bond excess returns when employing an extended estimation procedure that jointly fits yields
and past risk premia to the data. This finding suggests that ATSMs represent a suitable vehicle
for evaluating the economic consequences of EH deviations for bond investors.

Our paper contributes to the literature by evaluating whether ATSM forecasts are statisti-

cally more accurate and economically more valuable than EH-consistent forecasts or whether

IThe EH is the postulate that the long-term interest rate is determined by the current short-term rate
and the market expectation of the short-term rate over the maturity of the long-term rate, plus a constant
risk premium. The case where the risk premium is zero is termed the “pure EH.” Under the EH, therefore,
pure discount bonds are perfect substitutes and bond excess returns are not predictable. The EH is originally
credited to ( , ), and further refined and popularized by ( ), ( ) and
(1953).
2While empirical EH research often argues that the theory’s failure is due to time-varying risk premia,
these papers put little effort into modeling risk premia, focusing instead on formal statistical tests of the EH.
Similarly, research on ATSMs is usually motivated by the empirical rejection of the EH, but does not establish
a direct link to the EH.



presuming that the EH holds is a suitable first-order approximation for bond investment deci-
sions. We conduct an empirical evaluation of the EH that is in many respects more compre-
hensive than evaluations in previous research. First, using ATSMs, we consistently model the
whole term structure and not only a subset of yields or excess returns, as e.g. in

(1987), (1991), (2001),
( ). Second, the extended estimation proposed in this paper accounts for predictive infor-
mation in and beyond the term structure, thereby producing a stronger challenge to the EH.
Through this extension, we allow estimates of the state variables and the parameters to not
only reflect information embedded in the term structure but, beyond that, any (unspanned)
information that conveys predictive ability for bond excess returns. Recent research suggests
that such additional information that adds to statistical predictability may originate from for-
ward rates, macroeconomic factors, technical indicators, option markets, the market variance
risk premium, or a ‘hidden factor’ (see, e.g., : : ,

: , : ; : , : , ). Third, while
related research generally either focuses on a particular segment of the term structure (short
end or long end) or analyzes a single prediction horizon only, we analyze the term structure of
bond risk premia for prediction horizons ranging from 1 month to 5 years.® Fourth, while many
other papers focus on statistical evidence in-sample, e.g. ( ),

( ), ( ), ( ), we measure
both the statistical accuracy as well as the economic value added by conditional risk premium
predictions, and we complement the in-sample results with an out-of-sample analysis. Finally,
unlike the aforementioned papers, with the exception of ( ), we ex-
pand our analysis beyond the US bond market and show that our findings apply uniformly to
Switzerland, Germany, the UK, and Japan. Our paper is thus related to, but more general
than ( ), who specifically investigate the economic value that can
be generated in US bond markets when using one-year out-of-sample forecasts based on the
single factor of ( ).

We use data for five countries to evaluate 25 combinations of prediction horizons and bond
maturities, with bond maturities ranging from one month to ten years. The patterns of sta-
tistical predictability and economic value results are very similar across countries. We find
that the extended estimation strategy increases predictive ability and adds economic value

over standard estimations which, in line with e.g. ( ), cannot account for the pre-

3The usual horizon in related papers is one year, e.g. ( ), ( ).



dictability of bond risk premia. Conditional risk premia from the extended estimation are
generally unbiased, thereby explaining deviations from the EH, and entail high explanatory
power for bond risk premia beyond results reported in related work. For instance, the aver-
age R? of regressing realized on model expected excess returns across maturities and across
countries is about 26% at the one-month prediction horizon and about 79% at the one-year
horizon. These findings suggest that our estimation strategy is flexible enough to capture long-
and short-term predictive information that emerges from different sources. As a result, the
model allows investors to forecast bond risk premia with high accuracy and to earn positive
bond portfolio excess returns in-sample and out-of-sample.

Compared to the standard procedure, the forecast errors from the extended procedure are
substantially smaller and bond investors would be willing to pay an annual premium in the
range of 2% to 4.8% to switch from the standard to the extended estimation. To evaluate
the model against the EH, we use the average historical bond excess return as a consistent
estimate for the EH-postulate of constant risk premia. The extended estimation beats the EH
in terms of statistical forecast accuracy, however, the model’s comparably higher predictive
ability does not lead to superior portfolio performance out-of-sample: while the model forecasts
are more accurate than the EH for 61% of the horizon/maturity combinations across countries,
bond portfolio investors using the model instead of presuming that the EH holds earn higher
portfolio returns in only 26% of combinations but suffer economic losses in more than 50% of
combinations. These results suggest that there is a wedge between the statistical and economic
relevance of EH deviations. Overall, we find that the EH presumption of constant risk premia
still provides a useful benchmark to investors for out-of-sample purposes, and we view the
finding that bond investors generally cannot benefit from using conditional risk premia relative
to using the historical average as the bond market analogue to the result of
( ) for stock markets. All of our results are robust across countries, yield data sources, and
ATSM specifications.

One may argue that our findings could be specific to the use of ATSMs. We therefore
provide a general discussion on why — for any forecast model — conclusions based on metrics
of forecast accuracy may deviate from those reached using economic value measures. On the
one hand, EH deviations may be statistically significant but too small to be meaningfully
exploited by bond investors. On the other hand, common predictive ability measures evaluate
loss functions that are in many respects unrelated to the economic success of bond investments.

As a consequence it cannot be taken for granted that even models with high forecast accuracy



allow for economically meaningful bond investment returns. We illustrate the validity of these
general arguments using the results of our model estimations, but these arguments are equally
valid for the mounting number of papers on statistical predictability of bond excess returns.
Finally, to acknowledge the usefulness of the EH as a benchmark, we show how ATSM
estimations can be augmented to use the EH as an economic anchor for model-implied bond
risk premia. We impose the EH as a prior in the estimation procedure to limit (excessive)
variability of risk premia and we find that doing so increases that economic value added by
model forecasts. While these results further support the role of the EH, they also leave room
for future research on the optimal balance between economic restrictions to prevent overfitting

and keeping sufficient flexibility to model the dynamics of bond risk premia.

2 Empirical Model and Estimation

Consider a long-term bond with T" years maturity and a short-term bond with 7 years maturity.
We denote by p! the time-t price of a T-year zero coupon bond with a certain payoff of 1 at

maturity. The corresponding (effective) yield is given by

y = —log[p;]. (1)

Analogously, we use the notation p; and y; for the price and the yield of the short-term bond
with 7 < T. The prices (or equivalently yields) of the short- and long-term bonds imply the

time-t forward rate effective for T'— 7 periods beginning at ¢ + 7

o = loglp] /p!]. (2)

The return of buying a T-year bond at time ¢ and selling it at time ¢ + 7 (h{, ) is given by
hi'yr =loglpi 7 /p/); (3)

and the corresponding bond excess return (ra, ) is thus

szj—&-r = ET*T - ygji-;T (4)

The EH presumes that the forward rate is equal to the expected yield (under the physical



probability measure) plus a constant risk premium. To accommodate potentially time-varying
risk premia, we now turn to the specification of an affine term structure model (ATSM).
Model-implied conditional expectations of bond excess returns are affine in the state variables
and they contain a time-invariant as well as a time-varying component. Subsequently, we
describe our Bayesian approach for the estimation of the model, where we use (i) a standard
estimation procedure to fit model-implied to observed yields and (ii) an extended estimation

that additionally requires model risk premia to match past bond excess returns.

2.1 Affine Term Structure Model and Bond Risk Premia

Based on the findings of ( ), it has become well-established
practice to employ term structure models with three factors. Accordingly, we use an ATSM
specification with three latent factors. Our main model is the Ay(3) purely Gaussian three
factor model of ( ) but all our findings are robust to changing the ATSM

specification to account for a larger number of factors and/or stochastic volatility (see Section

=

5.3).

2.1.1 Affine Term Structure Model

For our empirical analysis, we use a continuous-time affine term structure model for an economy
that is driven by the latent state variables X living on a canonical state space D = R x
R™ m,n >0,d=m+n > 1. Under a given probability measure M the evolution of X solves

the stochastic differential equation

dX; = (WM — M X)) dt + o(X,)dWM, (5)

T

where o(z)o(z)" = a+ ax, ais a d x d matrix, and « is a d X d X d cube. Throughout we

assume boundary non-attainment conditions for X;;,1 < ¢ < m in order to ensure existence

of transition densities ( , ) and to use generalized affine market prices of
risk from ( ) in addition to the admissibility conditions from
( ). This means that 2b§w > a,4,1 <1 < m. In what follows we will make use of two

specific probability measures: Q, the pricing measure, and P, the time-series measure.
We impose a lower-triangular form of the mean-reversion matrix ™ for M € {P,Q}.
Furthermore, we restrict its diagonal to strictly positive values. This ensures a stationary

system and existence of unconditional moments. The remaining parameterization (in particular



the diffusion function) is modeled in its most flexible form according to the
( ) specification.

We model the instantaneous short rate to be affine in X, r(t) = d¢ + 6y X;, which implies
that bond prices p! at time ¢ for a maturity 7" are exponentially affine in the state variables

X
p;F — E? [ei () d“] = e‘b(T)er(T)TXt’ (6)

where ¢ and v solve the differential equations

. 1

b= —bx = 8%+ v av, $(0) =0, 7)

. 1

6= =00+ 6%+ S0 ap, ¢(0) = 0. (8)
We collect the set of parameters governing the evolution of X by defining 8% = {bP, 6% a, a},
69 = {bQ, B2 a, a, b, 5)(}, and 0% = 02 U #F. The coefficients ¢ and ¢ are functions of time

and the parameters, but we will suppress this dependence if the context permits for lighter

notation.

2.1.2 Bond Risk Premia: Conditional Expectations of Bond Excess Returns

We combine Egs. (1) and (6) to express the yield from ¢ to ¢t + T as

i = —loglp{] = —(o(T) +4(T)" Xo) (9)

T

and us the no-arbitrage condition fg;_T =1y, — vy, to compute the forward rate fET_T:

b T =0(7) = O(T) + (U(7) = (1)) X, (10)

Equipped with these relations, we calculate expected yields and expected excess returns (risk
premia). To appreciate the structure of the risk premium induced through the affine state

variables we note that for affine models

Ef [Xt+‘r] = A(T) + B(T>Xt7 (11>



where B(t) = ¢ %7 and A(r) = V¥ Jy Blu)du; see ( ,b). We may then
write

E/ [y ] = —(6(T = 7) + (T — )" (A7) + B(1)Xy)). (12)

Putting together Egs. (10) and (12), we can express
Ef [rai,] = ((r) = (1) X, + (T —7) " (A(r) + B(r)X,).

Collecting coefficients, making explicit the dependence of ¢ and 1 on the parameters, and

introducing

7T (Ogp) = ¢(7,00) " — (T, 0g)" + (T —7,0g) " B(r,0p) (13)
0" (Ogp) = (T — 7,00) " A(T, 0p) (14)

the time-¢ risk premium turns is affine in 7 and v

E]f [TIL’ZT} = nT’T + ’yT’TXt. (15)
The risk premium in Eq. (15) depends on 7, T', and on ¢ (through X). It comprises a constant
component as well as a time-varying component that is driven by the evolution of X;. By
adding and subtracting the unconditional expectation of X we can rewrite the conditional
expectation in Eq. (15) as
Ef [ray.] =n™" + 97" E [X] = 97" (EV[X] - X0) . (16)
This relation interprets the time-variation in risk premia as deviations of X; from its uncon-
ditional expectation. The first two terms only depend on 7 and T" and are thus time-invariant,
consistent with the EH notion of a constant risk premium. Empirically, the question whether
the EH holds can be assessed by analyzing whether the last term, which should be just noise
under the EH, induces predictability of bond excess returns. Note that when estimating the
model, the sum of the first two terms will correspond to the average excess return observed
in the data and the last term will average to zero. In that sense, the time-invariant part
determines for a given horizon the shape of the (average) term structure of risk premia. Build-

ing on these insights from Eqs. (15) and (16), we estimate the EH-postulated constant risk



premia using historical sample averages of bond excess returns. To estimate ATSM-implied
conditional risk premia that aditionally capture the time-varying component, we employ the

estimation methodology described in the next subsection.

2.2 Model Estimation

For our empirical analysis, we follow two estimation strategies. The first is standard likelihood-
based inference where the filtering equation requires model-implied yields to match the ob-
served term structure. In the second, extended estimation, we additionally require that model-
implied bond excess returns match past realized excess returns. We choose Bayesian method-
ology over moment-based, or maximum likelihood procedures to naturally accommodate the
notion of an investor updating her beliefs about the model’s predictability and to include past
failures and successes into the parameter and state variable estimates. Without changing the
structure of the model, this explicitly accounts for the time-series properties of EH deviations
in addition to the cross-sectional properties of yields. With this novel approach we account for
information that is not embedded in the term structure of interest rates but adds to predictive

ability for bond excess returns.

2.2.1 Standard Estimation Procedure

Our data set comprises zero yields with 24 maturities (expressed in years) 77, . .., Tsy, covering
1,2,3,4,6,7,9, 12 /13, 15, 18, 24, 25, 27, 30, 36, 48, 60, 61, 63, 66, 72, 84, 120 months; for
details about the data, see Section 3. We estimate our model using filtering equations

vt (T 0N +U(TL0TX | g

where 5tT",i =1,...,24 are assumed i.i.d normally distributed with mean zero and V [5?"] =
e~2(ataTitarT?) o yee these equations for filtering and smoothing the latent state variables
X and define ° = {ag, a1, a} and finally 6 = 6% U #°.

In a Bayesian setting, for a discretely observed data sample at times %, ..., ¢ty the joint log

posterior ¢ of the latent states with the parameters for a window [t,,,t,],t1 < t,,, < t, <ty is

n

24
oe.x) =3 {1og P(Xe | Xop 1 0F) + > logp(eX | 6.) + log m(6), (18)
=1

k=m



with

Igp, admissibley 0 € R

m(0;) o (19)

Lo, admissible .
{0, dei ble} 0, R.,.
The first term on the right hand side of Eq. (18) contains the transition densities, the second
reflects yield pricing errors, and the third the prior distribution of the parameters. Draws 6, X

from the complicated distribution in Eq. (18) are obtained by sampling in turn from X | 0
and 0 | X.

2.2.2 Extended Estimation Procedure

Bond investors pay close attention to bond excess returns and evaluate past forecast errors to
account for this information in their predictions and portfolio choices. To reflect this behavior
we propose an extended estimation which matches model risk premia with past realized excess
returns using Eq. (15). We therefore additionally consider the set of all possible (34) forecast
equations given the available yield maturities

Jord T =y T = T (%) 4 7T (09) X e (20)

t,Tq

74,Tij . . . 70T
The forecast errors ¢}, are assumed i.i.d normal with mean zero and variance V [etjm_”] =

e~ 2(ClaotarTs+aaTl )+ (bo+baritber?)) W now define 6 = {ag, a1, as, by, by, by, C'} and finally
0 = 0% U6, and use Eq. (20) in addition to Eq. (17) for filtering and smoothing the latent
state variables X. The joint, augmented log posterior £ of the latent states with the parameters

is now*

n

24
ne.x) =3 {1og p(Xe, | Xop 1, 65)+ ) logp(el:
i=1

k=m

Oce)
(21)
+ Z IOgP(EtT,:VTi’j ’ ees)n{tk—O—TiStn}} + 10g7‘-<9)7

1<i<5,1<5<J;

4The augmented likelihood contains both a filtering (second term in the first line) and a forecasting (first
term second line) component. We keep the filtering component in this likelihood, since it is necessary for
out-of-sample forecasting. At time t; the bond investor can learn about the realizations of the latent state
variables only from the time ¢; term structure of interest rates, but not from past forecast errors. However, she
needs the current state variables to form her conditional expectations, i.e. to make her forecast.

10



with 7(0;) as in Eq. (19). The first term in the second line of Eq. (21) reflects the excess
return forecast errors €, which affect estimates of 6 and X.%® We stress here that in the out-
of-sample bond investment decision to be made at time t;, the investor first samples from
the joint distribution of the parameters and latent states through the augmented likelihood
Eq. (21) using only forecast error information available prior to time ¢;. For each draw of 6
and X from this joint distribution she then makes an out-of-sample forecast, records it, and
with enough draws (we use 100,000) chooses the sample mean of all recorded forecasts as the

forecast to be used in her investment decision.

3 Data and Yield Pricing Errors

We obtain monthly interest rate data for Switzerland, Germany, the UK, Japan, and the US
from Datastream. The data set comprises money market (Libor) rates with maturities of 1
through 11 months, and swap rates with maturities of 1 to 10 years. We bootstrap riskless
zero-coupon yields from these money market and swap rates; ( )
show that swap rates are the best parsimonious proxy for riskless rates.” Given the availability
of data, our sample period starts in April 1987 for Germany, the UK and the US, January
1988 for Switzerland, and September 1989 for Japan. For the United States, we also report
results using the yield data set of ( ); this data set covers the period from
1952 to 2003 and the authors also show that it is virtually identical to that of
( ) over the respective period from 1952 to 1987. Our results using these data are
thus directly comparable to the large EH literature on the US bond market.
Table 1 summarizes the Ay(3) models’ yield pricing accuracy when using the standard
estimation and the extended estimation procedure that also matches risk premia. The fact

that the latter has to match 34 risk premia in addition to the 24 yields has, not surprisingly, an

5 Augmenting the likelihood function with forecast errors, any information in bond excess returns is absorbed
by the latent state variables and the parameters regardless of the drivers. For example, if the data were
truly Markovian, these forecasting equations would be irrelevant and would affect neither parameter nor state
variable estimates. Note also that the approach chosen is very different from ( ). In
their latent variable exercise expected excess returns are treated as observables. In our extended estimation
the information from past realized forecast errors is allowed to affect state variable and parameter estimates.
This admits a learning effect, but we do not consider learning to be built into the conditional expectations
directly, a computationally intensive approach taken by ( ).

SNote from Eq. (20) that the procedure of matching risk premia also incorporates information from forward
rates, which ( ) find to be an important source of predictability.

"To obtain non full-year maturities greater than one year, we use the ( ) model. This model
represents an extension to the approach by ( ) and is used by many central banks to
estimate yield curves, for instance the Federal Reserve Board, as described in ( ). Results
are virtually identical when using other interpolation schemes.

11



impact on yield pricing errors. The standard model has in most cases lower root mean squared
pricing errors (RMSEs) ranging from 6 to 24 basis points across countries and maturities as
compared to 10 to 24 basis points for the extended estimation. Differences in RMSEs of
the extended compared to the standard estimation are largest at the short end of the term
structure (bond maturities less than one year) but become very small as the maturity increases,
with the exception of Switzerland. Notwithstanding this trade-off in yield pricing accuracy,
the extended estimation does a good job in fitting yields across countries; e.g. the pricing
errors are smaller than the comparable numbers reported by ( ) for their
best model across various countries.® These statistics suggest that both estimation strategies
match the term structure of yields satisfactorily. Moreover, for the long US data set we do not
find yield pricing errors to be different for the two estimation procedures. The patterns are

very similar for standard deviations of pricing errors.

4 Forecasting Bond Excess Returns and Economic Value

We now evaluate the statistical accuracy and economic value of bond excess return forecasts
generated by ATSMs estimated with the extended procedure, both in- and out-of-sample.
Extended estimation forecasts are unbiased predictors for realized excess returns with high
regression R2s. The forecasts are statistically more accurate compared to using standard
estimation forecasts and compared to using the historical average bond excess return as EH-
consistent forecast of constant risk premia. Investors are willing to pay a sizable premium to
switch from the standard to the extended estimation; however, out-of-sample investors do not

benefit compared to using the EH forecast.

4.1 Bond Risk Premium Regressions

Table 2 presents results for regressing realized excess returns on model risk premia for 25 com-
binations of horizons and maturities, for the standard estimation and the extended estimation,
respectively.” We assess the significance of the slope coefficients b by calculating standard

errors adjusted for autocorrelation and heteroskedasticity based on ( )

8 ( ) report mean absolute pricing errors for maturities of 6 months to 10 years ranging
from 17 to 34 basis points for Germany, 26 to 32 for the UK, 18 to 24 for Japan, and 22 to 36 for the US.

9As mentioned above, we included 34 combinations in our estimation, which corresponds to all possible
combinations that can be formed from the yield maturities we use. The subset of 25 combinations that we
report contains the most commonly examined horizon and maturity combinations. The results for the other 9
combinations are qualitatively identical to those reported in the paper, but are not reported to conserve space.

12



and ( ); we report statistical significance for the null hypothesis that b = 0 and
also for b = 1.

For the standard estimation, the results in Panel A reveal that most slope estimates are
positive and many are close to one. However, most of them are neither different from zero (with
rejection of the null b = 0 indicated by the asterisks) nor from one (where rejection of the null
b = 1 is indicated by the diamonds), with the exception of the long US data set. Furthermore,
there is large cross-country variation in the model’s explanatory power, with R?s being largest
for Japan and the long US data set. Across countries and longer-term bond maturities, the
average one-month and one-year prediction horizon R?s are 3% and 8%, respectively.

The results for the extended estimation in Panel B show that model risk premia are gen-
erally unbiased predictors of realized excess returns. Almost all estimates are different from
zero at a high level of significance and in most cases we cannot reject the null hypothesis that
b = 1. The results also show that model-implied risk premia have high explanatory power for
realized excess returns. In general, the explanatory power increases with horizon, at least up
to a horizon of one year. At the one-month prediction horizon the average R? across countries
and maturities is around 26%, and at the one-year horizon it is around 79%.

Overall, we find that the extended model estimation dominates the standard estimation
in terms of explanatory power for realized risk premia. These extended estimation results
are consistent with previous research documenting that bond excess returns are predictable at
shorter and longer horizons (see e.g. , ; , ;

, ) and that this predictability is to a large extent not spanned by the term

structure of bond yields and thus not captured in standard ATSM estimations (see e.g. ,
). The finding that model expectations are unbiased is in line with research showing that
accounting for risk premia from ATSMs can explain why coefficients of classical EH regressions
suggest a rejection of the EH (see e.g. , ).1% In what follows, we take
a closer look at the relative forecast accuracy of the two estimation strategies and compute
measures for the economic value that accrues to investors using the extended instead of the

standard estimation procedure and relative to EH-consistent constant risk premium forecasts.

1ONote that this is true for ATSMs independent of the specification and estimation procedure. Our results
show that regression coefficients based on standard estimation-implied risk premia are neither different from
zero nor from one, whereas extended estimation-implied risk premia reflect unbiased and significant predictors.
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4.2 Statistical Accuracy of Bond Excess Return Forecasts

To evaluate the accuracy of extended estimation forecasts against the standard estimation and
the EH constant risk premium benchmarks, we report values for a R2-metric defined similarly

as in ( ):
R2=1- MSE™/MSE, (22)

where MSE* =1/(N —7+1) i\;_lT(m:tTH —~E* [rz],])? denotes the mean squared forecast
error of the model (k = m) and the benchmark (k = b), respectively. R2 takes positive values
when forecasts from model m are more accurate than those from benchmark model b and
negative values when the opposite is the case.'' To judge the significance of R2-statistics, we
estimate confidence intervals as the 5%- and 95%-percentiles using a block bootstrap procedure.

The results in Table 3 reveal that the extended estimation produces more accurate fore-
casts than the benchmarks, both in- and out-of-sample. Panel A shows that the in-sample
R2 estimates of the extended versus the standard estimation are positive in 146 of 150 hori-
zon/maturity combinations with estimates being significant in most cases (as indicated by the
*). Only a single forecast, the 5-year forecast of the 1-month excess return in Japan, is more
accurate when using the standard estimation procedure (as indicated by the °). The extended
estimation forecasts are also more accurate than constant risk premium forecasts with 135
of 150 R2 estimates being positive and 114 of these R2 values being statistically significant.
Out-of-sample (Panel B), the extended estimation beats the benchmarks as well, with R2
estimates versus the standard estimation being positive (and significant) in 124 (68) of 150
horizon/maturity combinations whereas only 26 (9) are negative. Using the EH benchmark,
R2s are positive in 91 (30) combinations while R2 are negative in 59 (27) cases.

The results show that the extended estimation picks up information relevant for predicting
bond risk premia that is hidden to affine models that are estimated by only fitting yields.
Accounting for the information in forward rates and past bond excess returns substantially
improves the model’s forecast accuracy in- and out-of-sample. Moreover, the model’s forecasts
are more accurate than constant risk premium forecasts in 90% of horizon/maturity combi-
nations in-sample and in 61% out-of-sample, suggesting that the model beats the EH from a

statistical perspective.

Note that many common measures of predictive ability are based on squared loss functions (e.g.
, ) and therefore lead to the same conclusions that we reach in this paper using R2.
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4.3 Economic Value of Bond Excess Return Forecasts

We now investigate whether the superior predictive ability of the extended estimation compared
to benchmark forecasts translates into economic benefits for bond investors. We evaluate
optimal bond portfolios within the quadratic utility framework of ( ).'? For an
investment horizon 7, the investor chooses to allocate his wealth between bonds with maturities
7 and T > 7. Since the maturity of the shorter-term bond exactly matches the investment
horizon, the 7-bond represents the risk-free asset. The longer-term 7T-bond, with remaining
maturity T'— 7 at the end of the horizon, represents the risky asset. Let ,uz’i denote the N x 1
vector of conditional expectations of risky asset returns generated by model k£ and denote
the associated covariance matrix by ;... For a given target volatility ¢*, we maximize the
portfolio excess return to obtain the N x 1 vector of mean-variance optimal portfolio weights
(wk) for the risky asset
0" 1 Tk

k
wy = —2
t t+rHt+1>
Cy

where C; = utTjL’iTZ; J:Tufjf;. The weights of the riskless asset are given by 1 — wF, where 1

is a N x 1 vector of ones and the resulting gross portfolio return from t to ¢ + 7 is given by
R, =1+y] +wf-raf,,.

To measure the economic value generated by model m over model b, we compute the
performance measure © proposed by ( ). © quantifies the risk-adjusted
premium return that the portfolio based on forecasts from model m earns in excess of the

benchmark portfolio and is calculated as

12 1 " -
O = In (N S I+ RM/(1+ R ) (23)

(1—p)r —T+14&=

where p denotes the coefficient of relative risk aversion. In contrast to the commonly reported
Sharpe ratio, © alleviates concerns related to non-normality and related to underestimation
of dynamic strategy performance. Furthermore, compared to the performance fee of

( ) it does not assume a specific utility function. We repeated the empirical analysis
using the performance fee and find qualitatively identical and quantitatively very similar results
as we do for © (not reported to conserve space). Throughout the empirical analysis we set

the target volatility of the portfolio investor to o* = 2% p.a. and the coefficient of relative

12For US bond markets, this approach is used by, e.g., ( ) and

(2012).
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risk aversion to p = 3. All our results are robust to choosing different values of ¢*, varying p
between 2 and 6, as well as short sale constraints.

We report portfolio excess returns of investors using forecasts from the extended estimation
and performance measures relative to the standard estimation and EH forecasts in Table 4. The
results show that bond excess returns increase with the maturity of the longer-term bond and
decrease with prediction horizon. In-sample (Panel A), portfolio excess returns are positive
for all horizon/maturity combinations. Relative to the standard estimation, © values are
positive and suggest a superior performance in 127 out of 150 horizon/maturity combinations,
four © values are negative, and the remaining 19 estimates are zero. Premium returns in
excess of portfolios based on EH forecasts are also positive in 114 of the 150 horizon/maturity
combinations, while negative only for 11 of the combinations, suggesting a rejection of the EH
also in terms of economic significance. © estimates increase with the maturity of the longer-
term bond but decrease with prediction horizon, suggesting that, in particular, EH deviations
over longer horizons are of limited relevance in economic terms.

In the out-of-sample analysis (Panel B), we find that portfolios allocated based on ex-
tended estimation forecasts deliver positive excess returns in 140 of 150 horizon/maturity
combinations. © estimates relative to the standard estimation are positive in 123 of the 150
combinations. With the exception of Switzerland, we find that the economic value added by
the extended over the standard estimation tends to increase with bond maturity and to de-
crease with forecast horizon. For Switzerland, the standard estimation short-term forecasts
deliver higher portfolio returns for 3 out of 5 bond maturities but long-horizon investors earn
a risk-adjusted premium of 2% p.a. to 3% p.a. when they switch to the extended estimation
strategy. For all other countries, bond investors earn highest premium returns for short-horizon
long-term bond portfolios, ranging from approximately 2% p.a. to around 4.8% p.a. Rela-
tive to the EH, however, the © estimates are positive in only 39 of 150 cases, negative in 79
cases, and zero in 32 cases. Thus, in contrast to the statistical predictability results above,
these findings do not suggest that using extended estimation instead of constant risk premium
forecasts adds economic value for bond investors.

Overall, these results suggest that the information hidden to affine models estimated with
the standard procedure but captured through the extended procedure results in economic gains
for bond investors. Relative to the EH, however, bond investors only earn premium returns

in-sample whereas the EH cannot be outperformed - in an economic sense - out-of-sample.
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4.4 Can anything beat the EH?

Our results show that extending ATSM estimations beyond fitting yields to additionally match
past excess returns captures information otherwise unspanned or hidden to standard ATSM
estimations ( , ). The extension leads to a substantial improvement in forecast
accuracy for bond excess returns that translates into economic gains for portfolio investors
who would be willing to pay fees in the range of 2% p.a. to 4.8% p.a. to switch from the
standard to the extended estimation.

More generally, model risk premia generate unbiased bond excess return predictions that
entail high explanatory power for EH deviations; the average R?s of 79% for one-year excess
returns is beyond that of forward rate-based forecasts ( : ). To
evaluate the EH postulate of constant risk premia, we use the historical average bond excess
return as a benchmark predictor. While the model beats EH forecasts in terms of statistical
accuracy in- and out-of-sample, investors do not gain economic value from model forecasts out-
of-sample. The finding that bond investors generally cannot benefit from using conditional risk
premia as compared to using the historical average can be viewed as the bond market analogue

to the result of ( ) for stock markets.

5 Discussion of Results, Extensions, and Robustness

Checks

We first show why statistical and economic criteria may lead to apparently conflicting con-
clusions about the validity of the EH. Subsequently, we discuss the potential benefits of aug-
menting ATSM estimations by imposing EH priors. Finally, we summarize various robustness

checks.

5.1 Statistical Accuracy versus Economic Value

While there are many papers on predictability of bond risk premia that are concerned with
statistical forecast accuracy, it is important to note that statistical accuracy per se does not
imply economic value for bond investors. Our results above indeed suggest that the EH is
rejected from a statistical but not from an economic value perspective: 61% of model forecasts
are more accurate than the EH but only 26% of forecasts add economic value. We present

general, model-free arguments as to why there may be a gap between statistical and economic
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significance and evaluate our model results along these lines. These arguments are also useful
when interpreting the results of other papers that study the predictability of bond risk premia

using various forecasting approaches.

5.1.1 Economic Relevance of EH Deviations

One reason for apparently conflicting results is that departures from the EH might be statis-
tically significant but too small to be exploited by bond investors. In other words, failure to
generate economic value may not imply that a model fails to capture EH deviations accurately
but rather that the EH holds in an economic sense. Since there is no “natural” upper bound
for economic value measures (similar to a regression R? capped by one or forecast errors floored
by zero), we compare the economic performance of model forecasts to the performance of the
same strategy under perfect foresight. If perfect foresight returns of the strategy are high but
the model evaluated only captures a (small) fraction of these excess returns, EH deviations
are not exploited because the model fails. If the model captures a large fraction of perfect
foresight returns but returns are nevertheless economically small, this suggest that “true” EH
deviations are indeed economically irrelevant.' '*

To get a feeling for the economic relevance of EH deviations, we plot average excess returns
of buy-and-hold and perfect foresight portfolio investors in Figure 1. Buy-and-hold excess
returns capturing constant risk premia exhibit very similar patterns across countries in that
returns increase with maturity and decrease with forecast horizon. The patterns are very
similar for perfect foresight investors but with average excess returns on a higher level. It is
more valuable for investors to accurately predict short-horizon as compared to long-horizon
bond excess returns. For instance, in the long US data, investors buying and holding the
long-term bond (7" — 7 = 60 months) over horizons of 7 = 1, 12, and 60 months earn average
excess returns of 3.12%, 1.25%, and 0.40% p.a.. The perfect foresight excess returns for the
same horizon/maturity combinations are 14.41%, 4.83%, and 3.05% p.a. This shows that EH

3For a simple investment strategy that just goes long when the expected excess return is positive and short
when the expected excess return is negative, the returns of the strategy based on model forecasts relative to
using perfect foresight forecasts would be bounded by minus one and plus one. For optimal portfolio investors,
model-based returns could exceed those of perfect-foresight-based portfolios; however, this would imply a less
than optimal risk-return-trade-off. Using relative risk-adjusted returns, i.e. the performance measure © of
model forecasts over constant risk premium forecasts relative to the © of perfect foresight over constant risk
premium forecasts, leads to qualitatively the same conclusions that we report for returns below in Figure 2.

4Note that even models that perfectly capture risk premia may not generate an economic performance
equal to that based on perfect foresight because departures from the EH may not be exclusively driven by
(predictable) risk premia. Similarly, in the presence of noise or other determinants of EH deviations, it would
not be possible to achieve an R? of 1 with perfect risk premium predictions in regressions of realized excess
returns.
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deviations are economically less important for increasing 7 and, as a consequence, having a less
then perfect forecast model for short horizons may add more economic value than a perfect
forecast model for longer horizons.

In Figure 2, we plot the excess returns of portfolios allocated using forecasts based on
constant risk premia (in green), the standard estimation (in red), and the extended estimation
(in black) relative to perfect foresight portfolio returns. The graphs show that EH deviations
are not as important economically as statistical results might suggest: EH-consistent constant
risk premium forecasts capture a large fraction (increasing with horizon) of perfect foresight
returns. The extended estimation forecasts capture a larger fraction of perfect foresight returns
than standard estimation forecasts. The fraction of perfect foresight returns captured by
extended estimation forecasts generally increases with horizons, similar to the regression R?s
in Table 2 and R2-statistics in Table 3. In contrast, the economic value measures reported in
Table 4 decrease with horizon, consistent with comparably lower statistical accuracy at short
horizons adding higher economic value than more accurate forecasts for longer horizons at
which EH deviations are not relevant in economic terms. In other words, statistical accuracy

cannot lead to economic value when EH deviations are too small to be exploited by investors.'®

5.1.2 Information in Economic Value versus Statistical Accuracy Measures

Conflicting conclusions based on metrics of statistical accuracy and economic value may also
result from the construction of the measures used. Common measures of predictive ability
are based on loss functions involving squared or absolute forecast errors and — by definition —
ignore the sign of forecast errors. Getting the sign right, however, is of utmost importance for
investors since the sign of the forecast determines whether to take a long or a short position. To
illustrate this point, consider two competing forecasts of excess returns being -1% and 8% and
suppose the realization is 2%. Standard measures of predictive ability consider the forecast of
-1% more accurate because the absolute error is just half of that of the 8% forecast. In terms
of investment performance, however, the first forecast would have resulted in a loss while the
second would have resulted in a positive performance.

As a measure of directional accuracy, we compute hit ratios measuring the fraction of

correctly signed forecasts. Table 5 reports the hit ratios of the extended estimation relative to

15Consider, for instance, the one-year out-of-sample forecasts in Japan: extended estimation forecasts have
high accuracy (R2 from 0.11 to 0.70), capture more than 90% of perfect foresight returns, but their the economic
value is close to zero (-2 to +7 basis points p.a.) because EH deviations are very small and constant risk premia
already capture around 80% of perfect foresight performance.
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the hit ratios of constant risk premium forecasts, with asterisks (circles) indicating that model
hit ratios are significantly higher (lower) than those of constant risk premium forecasts. While
the model generally has high directional accuracy in-sample, model hit ratios exceed constant
risk premium hit ratios only in 49 of the 150 horizon/maturity combinations out-of-sample.
This contrasts with the R2 results in Table 3 where 91 of 150 combinations suggested that
the model has higher predictive ability compared to constant risk premium forecasts. Thus,
our finding that the economic value analysis is more in favor of the EH than the statistical
accuracy results can partly be explained by forecasts having small squared/absolute errors but
nonetheless pointing in the wrong direction.'®

To further gauge the relation between statistical versus economic significance, we plot con-
stant risk premium forecast errors (black circles) and model forecast errors (red crosses) against
realized excess returns for the long US data set in Figure 3. The shaded areas represent areas
where forecasts have the wrong sign and hence forecast errors that lead to bond portfolio losses.
Differences in hit ratios are thus reflected in different numbers of observations falling in the
shaded economic loss areas. While standard predictive ability measures are only concerned
with the distribution of forecast errors across the x-axis in absolute terms, the economic value
accruing to investors depends on the forecast errors’ joint distribution with realizations (on the
y-axis): the magnitude of signed forecast errors as well as their dispersion, kurtosis, and skew-
ness matter. The graphs reveal that the distribution across the x-axis is relatively similar for
model and constant risk premium forecasts for most of the 25 horizon/maturity combinations
but also that the model forecast errors exhibit a larger dispersion across the y-axis. These
patterns explain why statistical predictability of bond excess returns does not (necessarily)

map into economic gains for bond investors.!”

5.2 Extension: Imposing EH Priors on Affine Models

Given the empirical result that bond investors using (extended estimation) ATSM instead of
EH forecasts suffer economic losses in 60% of horizon maturity/combinations, it is natural
to ask whether imposing EH restrictions on ATSMs may improve performance. Despite the

fact that model-implied risk premia can be decomposed into a constant and a time-varying

16See, e.g., the 3-month out-of-sample forecasts in the long US data set for bonds with T — 7 up to two
years: while the R2s of the model estimates are positive (Table 3), the model hit ratios are lower than those
of constant risk premium forecasts, leading to negative estimates of economic value (Table 4).

I"Examples that illustrate this point include the 1- and 3-month forecasts of 5-year bond risk premia where
R2s are positive, model hit ratios are equal and slightly higher than constant risk premium hit ratios but
portfolio returns are nevertheless lower and economic value added is negative.
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component, see Eq. (15), it can be shown that it is not possible to impose parametric EH
restrictions on ATSMs in general, but only in special cases that are very restrictive and hinder
realistic modeling.'® In a Bayesian setting, however, the EH can be imposed in a “soft way”,

through a prior distribution rather than a hard parameter restriction. Consider
1 —_ T
log m(6%) oc =59 (Bge) 29" (flge) " (24)

with = positive semi-definite. Depending on the specification of =, this prior arbitrarily reduces
or amplifies, for a given sample path of the latent state variables, the time-variability of risk
premia across maturities. More specifically, the prior imposes a penalty on v, the coefficient
that controls the time-variation of expected excess returns in Eq. (15), with the penalty
increasing in the determinant of =. Intuitively, the prior should prevent overfitting ( ,

) and alleviate related concerns on parameter uncertainty ( , ): while
the prior does not directly restrict the variance of expected risk premia (which also depends
on the variance of the state variables), it penalizes all parameters constellations that make
expected risk premia excessively time-varying. This approach can be viewed as a soft version
of excluding economically unrealistic model outputs, in the spirit of ( ).

In a preliminary exercise, we repeat the out-of-sample analysis for the long US data set
using the extended estimation procedure with a “weak” and a “strong” EH prior and present
results in Table 6."Y Tmposing the weak EH prior (Panel A) substantially augments predictive
accuracy for horizons of one year or longer and leads to higher hit ratios in 24 of 25 hori-
zon/maturity combinations compared to the estimation without prior; in nine cases these hit
ratios exceed those using constant risk premium forecasts. Furthermore, there is an increase in
bond portfolio excess returns and in economic value across horizons and maturities. While for
the estimation without prior all © estimates are negative (reported above in Table 4), we find
positive estimates for ten horizon/maturity combinations with the weak prior. Nevertheless,
the economic value added by conditioning on an affine model instead of constant risk premium
forecasts is on average very small.

For the strong EH prior, we also find that predictive accuracy improves for horizons of one

18First, the pure EH can be imposed when the term structure is flat and mean reversion in the state variables
is infinitely fast. Infinite speed of mean reversion is in strong contrast to the empirical observation that interest
rates are very persistent. Second, the EH can be imposed on a subset of yields by numerically finding the roots
of v and n from Eqgs. (13) and (14), but not the entire yield curve. Proofs are omitted from the paper but
available on request.

19We define the “weak” and “strong” prior with = identity matrix times 10,000 and times 1el2, respectively.
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year and beyond. The R2-statistics are comparably small in absolute value, suggesting that
model and constant risk premium forecasts errors are of similar magnitude. The hit ratios
are very similar to those using constant risk premia, being equal in eleven cases and slightly
higher or lower in seven cases each. Bond portfolio returns and economic value increase with the
imposition of the strong EH prior, and the © estimates averaged across horizons and maturities
are slightly positive (albeit often close to zero). Finding that the predictive accuracy and hit
ratios of strong EH prior and constant risk premium forecasts are very similar and that the
economic value is close to zero illustrates how one can approach the aforementioned “soft”
imposition of the EH on ATSMs in our Bayesian setup.?’

Overall, we find that imposing EH priors increases the economic value generated by ATSM
forecasts. We leave the precise specification of the prior that balances EH-imposed penalties

versus variability in risk premia for future research.

5.3 Robustness Checks

We now summarize various robustness checks that support our findings. The results are not

reported to save space but available from the authors on request.

5.3.1 Alternative Yield Data

We use bond prices (from Datastream) directly to estimate zero yields using the approaches
of ( ) and ( ), as well as the smoothed and unsmoothed
versions of the ( ) method. The results are qualitatively identical to those
reported above. We also use term structure data provided by central banks (for countries where
data is available) and reach the same conclusions. Thus, our findings do not depend on the
mechanism used to estimate the zero curve in general and, more specifically, our conclusions
are not affected by credit risk issues that have become relevant in Libor and swap markets
during the recent crisis. The latter argument is also supported by the results reported above
for the US yield data set from 1952 to 2003 since this data does not involve Libor or swap

rates and the sample ends well before the recent crisis.

20Given such a soft imposition of the EH, one might also consider testing the EH in a generalized version of
the bivariate VAR framework of ( ) using ATSMs to jointly model not only a pair of
yields but the full term structure (under no-arbitrage).

22



5.3.2 Alternative ATSM Specifications

We verify that our conclusions are robust to changes in the ATSM specification and repeat
the empirical analysis using a larger model with four factors (Ag(4) model) and a stochastic
volatility model (A;(3) model). In general, changing the specification can have an impact
on yield pricing errors and/or forecast accuracy. We find that changing the specification
may improve or deteriorate particular results but the overall picture does not change and our

conclusions remain the same.

5.3.3 Forecasting Bond Excess Returns with Forward Rates

Previous research documents (in-sample) predictability of bond excess returns using lagged
forward rates; see e.g. ( ) and ( , CP). While
we do not impose the CP-factor in the model structure, the extended estimation procedure
that matches model risk premia to the data incorporates forward rates that the CP-factor is
based upon and it additionally accounts for past forecast errors. In line with previous research,
we find that forward rates contain information for in-sample predictions of bond excess returns
but do not generate economic value out-of-sample ( , ). Forecasts
based on the extended ATSM estimation proposed in this paper have larger predictive ability
and add more economic value than the CP-factor forecasts in- and out-of-sample, thus, posing

a stronger challenge to the EH and thereby providing more general findings.

6 Conclusion

In this paper, we offer new insights on the validity of the expectations hypothesis (EH) by
studying the economic benefits that accrue to bond investors who exploit predictable devi-
ations from the EH. We estimate conditional bond risk premia using affine term structure
models (ATSMs) by employing a novel estimation strategy that jointly fits the term struc-
ture of model yields to the observed yield curve and additionally matches model risk premia
with bond excess returns observed in the past. This extended procedure allows investors to
capture predictive information beyond the cross section of yields and to update beliefs about
the model’s predictive ability based on its past performance. We use the model to generate
forecasts of bond excess returns and, based on these forecasts, we determine optimal bond

portfolios. To evaluate the model against the EH, we compare the model’s forecast accuracy
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and corresponding portfolio performance to EH-consistent forecasts and accordingly allocated
benchmark portfolios, where we use averages of historical bond excess returns to consistently
estimate constant risk premia as postulated by the EH.

We find that, for 25 combinations of horizons and maturities ranging from one month to
ten years, bond risk premia have very similar properties across countries, leading to uniform
conclusions for the US, Switzerland, Germany, the UK, and Japan. We show that the extended
estimation captures predictive information otherwise hidden to standard ATSM estimations,
thereby providing investors with forecasts that are statistically more accurate and economi-
cally more valuable; out-of-sample, investors would be willing to pay an annual premium in
the range of 2% to 4.8% to switch from the standard to the extended estimation procedure.
More generally, regressing realized on model-implied excess returns reveals that extended es-
timation forecasts are unbiased and have high explanatory power with R2?s of about 26% at
the one-month prediction horizon and about 79% at the one-year horizon. From a statistical
perspective, the model beats the EH forecasts of constant risk premia as judged by standard
metrics of predictive accuracy in- and out-of-sample. Furthermore, portfolios allocated based
on the extended estimation forecasts earn positive excess returns; however, out-of-sample these
portfolios perform worse than the corresponding EH benchmark portfolios. In other words,
investors cannot beat the historical average, which suggests that our findings can be viewed
as a bond market analogue to ( ).

At first sight, our results may appear to offer conflicting conclusions for statistical and eco-
nomic assessments of the EH. We show that this finding is not rooted in the use of ATSMs but
potentially applies to any approach for modeling and predicting bond risk premia. We demon-
strate that there is a wedge between the statistical and economic relevance of EH deviations
for two reasons. First, departures from the EH can be statistically significant but too small
to be exploited by investors, in particular over longer horizons. Second, metrics of statistical
accuracy evaluate loss functions that are in many respects unrelated to the economic success
of bond investments. As such, even models with high regression R?s or measures of predic-
tive ability per se cannot guarantee to provide bond investors with economic gains relative to
presuming that the EH holds.

Overall, our results suggest that the EH presumption of constant risk premia, while being
statistically rejected by the data, still provides a good first approximation to the out-of-sample
behavior of bond excess returns for the purpose of asset allocation in fixed income markets,

especially so over long forecast horizons. This finding is in line with the EH, despite being cen-
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turies old, having remained a benchmark for a number of practical purposes in many financial
firms and policy institutions, e.g. for extracting information about future inflation, interest
rates, and economic activity. At the same time, ATSMs are well established in the literature
because of their virtues in modeling interest rates. Taken together, these insights suggest to
examine models of bond risk premia that grant flexibility in their specification but account
for the EH as an anchor. As a first step in this direction, we consider ATSMs on which we
impose the EH through priors in the estimation in order to limit (excessive) variability of risk
premia. The results of this preliminary exercise suggest that imposing EH priors improves the
performance of bond portfolios and we leave it to future research to further explore modeling

and estimation approaches that balance flexibility and economically reasonable restrictions.
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Table 1: Yield Pricing Errors.

Yield Maturity AT Im<T<12m 12m<T <60m 60m <7 < 120m
Number of Yields 24 7 10 7
Switzerland
RMSE  standard estimation 6.80 7.54 6.77 6.03
extended estimation  11.92 12.49 11.21 12.30
Sd standard estimation 6.80 7.54 6.77 6.03
extended estimation  11.92 12.49 11.21 12.29
Germany
RMSE  standard estimation 7.88 8.64 7.07 8.17
extended estimation  19.74 33.34 10.02 8.96
Sd standard estimation 7.88 8.65 7.06 8.11
extended estimation  19.74 33.34 10.01 8.96

United Kingdom

RMSE  standard estimation 11.02 15.95 8.94 6.89
extended estimation  23.48 39.72 12.05 10.27

Sd standard estimation 11.01 15.94 8.93 6.88
extended estimation  23.46 39.61 12.03 10.22

Japan

RMSE  standard estimation 5.84 5.63 5.86 6.02
extended estimation  10.46 15.94 712 6.98

Sd standard estimation 5.84 5.63 5.85 6.03
extended estimation  10.45 15.90 7.12 6.98

United States

RMSE  standard estimation 10.16 13.18 9.28 7.53
extended estimation  15.85 25.36 10.65 7.48
Sd standard estimation  10.15 13.17 9.28 7.41
extended estimation  15.85 25.31 10.62 7.48

United States (long data set)

RMSE  standard estimation — 23.62 41.41 9.41 8.40
extended estimation  23.61 41.22 9.88 8.55
Sd standard estimation  23.61 41.41 9.37 8.32
extended estimation  23.61 41.11 9.83 8.54

Notes: The Table summarizes root mean squared yield pricing errors and standard deviations of yield pricing errors for the standard estimation
(the estimation procedure only fitting yields) and the extended estimation (the estimation procedure fitting yields and matching model risk premia
to bond excess returns observed in the past) of the Ap(3) model. We estimate the models using monthly data from September 1989 for Japan,
January 1988 for Switzerland, and April 1987 for Germany, UK, and US. The sample period ends in March 2011 for all countries. For the US we
also report results for a longer data set covering the period from January 1952 to December 2003.
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Table 2: Time-Varying Risk Premium Regressions.

Panel A: Standard Estimation Procedure Panel B: Extended Estimation Procedure
T—T1 [ Im 3m 12m 24m 60m T —71 [ 1m 3m 12m 24m 60m
Switzerland Switzerland
T 1m b 0.44 0.74% 0.51 1.33%%%F 0.857°F T 1m b 0.98%FF 0.90*F 0.9677F 1.217%F 1.057F%F
R? | 0.01 0.02 0.01 0.07 0.04 R% | 0.25 0.26 0.29 0.31 0.23
3m b | 0.54 0.52 0.54 0.85% 0.64%* 3m b | 0.855**  0.87F%*  1.00%**  1.16***  1.07***
R? | 0.03 0.03 0.03 0.06 0.06 R? | 054 0.57 0.61 0.60 0.52
12m b [-0.05 0.28 0.28 0.46 0.45 12m b | 0.98%**  1.00%**  1.02%**  1.11***  1.04***
R? 0.00 0.01 0.01 0.04 0.06 R? 0.73 0.88 0.84 0.87 0.82
24m b | 0.86 0.35 0.10 0.08 0.1466 24m b | 1.14%**  1.02%**  0.94%**  0.94***  (0.89%**
R? | 0.07 0.02 0.00 0.00 0.01 R? | 0.42 0.65 0.62 0.61 0.62
60m b [-0.0466 —0.33600 —0.4lo60 —0.30600 —0.20000 60m b | 0.59 0.70%**  0.71***  0.61** 0.59%**
R? | 0.00 0.07 0.14 0.09 0.06 R? | 0.06 0.27 0.35 0.29 0.37
Germany Germany
T Tm b | 0.3700 0.50 —0.2700 0.12 0.51 T Tm b | 0.9177F 0.797* 0.87* 1.16° 7 1.14~*
R? | 0.01 0.02 0.00 0.00 0.01 R? | 0.22 0.20 0.22 0.27 0.28
3m b | 0.48 0.44 0.15 0.38 0.61 3m b | 0.80***  0.83***  0.99%**  1.15%**  1.04***
R? | 0.03 0.02 0.00 0.01 0.02 R? | 0.33 0.40 0.51 0.55 0.49
12m b [-0.65¢60606 —0.06 0.20 0.40 0.61 12m b | 1.02%**  1.07***  1.14%**  1.20%**  1.02%**
R? | 0.06 0.00 0.01 0.02 0.06 R? | 0.60 0.84 0.83 0.84 0.77
24m b | 0.10 0.05 0.07 0.19 0.41 24m b | 1.28%**  1.20%**  1.11***  1.06***  0.90***
R? 0.00 0.00 0.00 0.01 0.06 R? 0.30 0.56 0.58 0.56 0.53
60m b | 044 0.0l600 —0.11g66  0.0lgoo  0.18600 60m b | 096 0.83**  0.605**  0.52%X*  0.46%%,
R 0.04 0.00 0.01 0.00 0.05 R 0.07 0.18 0.17 0.16 0.18
United Kingdom United Kingdom
T 1m b | 1.167 0.907% 1.307°F  1.56° %  1.26°~ T Tm b | 0.93%*F 0.867*F 1.087* 1.197** 0.91°~*
R? | 0.02 0.02 0.04 0.06 0.03 R? | 0.10 0.20 0.23 0.28 0.18
3m b | 0.73* 0.80% 0.78% 0.87* 0.76 3m b | 0.91%**  0.92%**  1.01***  1.04***  0.90***
R? | 0.03 0.04 0.04 0.05 0.03 R? | 0.44 0.46 0.47 0.51 0.38
12m b | 1.00** 0.64 0.31 0.26 0.37 12m b | 1.25%**  1.13%**  1.12%**  1.10***  0.97***
R? | 0.08 0.05 0.01 0.01 0.02 R? | 0.62 0.85 0.86 0.86 0.78
24m b | 0.77 0.32 0.004¢ 0.134¢ 0.304 24m b | 1.48F%*  1.23%**  1.05%**  0.98%**  0.84%**
R? | 0.05 0.01 0.00 0.00 0.02 R? | 0.53 0.66 0.57 0.56 0.53
60m b | 0.14606  0.03666  0.0d066  0.25600  0.48%%, 60m b | 0.24600  0.443, 0.47 0.48 0.46%%
R? | 0.00 0.00 0.00 0.04 0.20 R? | 0.01 0.12 0.17 0.23 0.37
Japan Japan
T 1m b 1.18F%F 1.18%F 0.39 0.33 0.967% T 1m b 0.60355  0.7733% 1.047F% 1.137%% 13433
Rr? 0.09 0.06 0.01 0.01 0.05 Rr? 0.25 0.41 0.50 0.37 0.34
3m b 1.26* 0.86 0.76 0.81 1.05%* 3m b 0.725%> 0.83%5%* 1.07*** 1.22%%* 1.39%%%
2 N N N N N P N OO0 N foleded - N 000 N OO0
R 0.12 0.05 0.07 0.09 0.13 R 0.54 0.69 0.82 0.75 0.64
12m b | 0.11 0.50 0.81 0.85 0.83% 12m b | 1.24Z%*  1.11%FF 1.14%*% 1.14%** 1.08%**
R? | 0.00 0.06 0.22 0.29 0.33 R? | 0.61 0.78 0.81 0.80 0.70
24m b [-0.036606  0.41¢ 0.69 0.75*% 0.76%** 24m b | 0.08600  0.7135%  1.07***  1.07***  0.97***
R? | 0.00 0.13 0.30 0.38 0.48 R? | 0.00 0.51 0.87 0.87 0.74
60m b | 0.89%**  0.65 0.53 0.62 0.62 60m b | 0.266¢ 0.88***  1.11%**  1.13%**  1.08***
R? | 0.16 0.27 0.18 0.25 0.28 R? | 0.02 0.60 0.93 0.92 0.82
United States United States
T Tm b | 0.1500 0.3600 1.13% —0.40 0.77% T Tm b [ 0.73%FF  0.74g5r 1.000F 1.1l  0.987~
R? | 0.00 0.00 0.02 0.00 0.01 R? | 0.16 0.21 0.29 0.26 0.21
3m b | 0.33, 0.31 0.84 0.13 0.55 3m b | 0.83***  0.86***  1.02***  1.09***  0.97***
R? 0.01 0.01 0.02 0.00 0.01 R? 0.46 0.52 0.59 0.56 0.45
12m b | 0.88 0.85 1.42 0.95 0.72 12m b | 1.38%5*  1.22%3%  1.20%%%  1.1635%  0.96%**
R? | 0.03 0.04 0.10 0.05 0.05 R? | 0.65 0.85 0.86 0.86 0.74
24m b [-1.97 0.11 1.19 0.92 0.70 24m b | 1.20%%*  1.27F%F  1.25%**  1.14%**  0.91%**
R? | 0.12 0.00 0.12 0.09 0.10 R? | 0.21 0.55 0.61 0.60 0.58
60m b | 0.16 0.43 0.40 0.36 0.33, 60m b | 0.12 0.36 0.31, 0.2760 0.3060
R2 | 0.00 0.05 0.06 0.06 0.11 R? | 0.00 0.03 0.03 0.03 0.06
United States (long data set) United States (long data set)
T Tm b [ 0.57455 0637 0.967  0.727 7 0.927°~ T Tm b [ 059557 0.68.57  0.82557 0.82;7F 088~
R? | 0.09 0.04 0.03 0.02 0.04 R? | 0.08 0.12 0.14 0.12 0.11
3m b | 0.70%**  0.93%* 1.00%* 0.80% 0.87%** 3m b | 0.755%*  0.78%%*  0.94%**  0.95%**  0.99%**
R? | 0.10 0.07 0.03 0.02 0.04 R? | 0.28 0.29 0.36 0.35 0.32
12m b | 1.08%* 1.22%% 1.37%* 1.25%* 1.15%* 12m b | 0.91%**  0.98%**  1.127%r  1.14%%%  1.18%%*
Rr? 0.14 0.14 0.15 0.15 0.19 R? 0.74 0.85 0.89 0.88 0.79
24m b | 0.79%**  0.99%**  1.04** 0.98** 0.93** 24m b | 0.8335*  0.94™**  1.06***  1.07***  1.07***
R? | 0.09 0.13 0.14 0.15 0.21 R? | 0.45 0.62 0.66 0.68 0.66
60m b | 1.18%**  1.04***  0.98%**  0.91***  0.84** 60m b | 0.97***  0.86%**  0.88%**  0.88%** = 0.84***
R?2 | 0.21 0.28 0.27 0.27 0.29 R? | 0.21 0.30 0.34 0.37 0.40

Notes: The Table presents results for regressing realized bond excess returns on risk premia implied by the Ag(3) model using the standard
estimation procedure that only fits yields (Panel A) and using the extended estimation procedure that fits yields and matches model risk premia
to bond excess returns observed in the past (Panel B). For each country, we report estimates for 25 horizon (7) and maturity (T'—7) combinations.
The horizons are indicated in the rows, the maturities in the columns. b is the estimate of the slope coefficient. ***, ** * and ¢¢0, oo, o indicate
that the estimate differs from zero and/or one respectively at the 99%, 95%, 90% level. Significance is assessed using standard errors with HAC
adjustment based on ( ) where the optimal truncation lag is chosen following ( ) using a quadratic spectral
kernel (standard errors not reported for space reasons). R? denotes the in-sample coefficient of determination. We estimate the models using
monthly data from September 1989 for Japan, January 1988 for Switzerland, and April 1987 for Germany, UK, and US. The sample period ends
in March 2011 for all countries. For the US we also report results for a longer data set covering the period from January 1952 to December 2003.
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Table 5: Directional Accuracy of Bond Excess Return Forecasts.

In-Sample Out-of-Sample
T— 1 1m 3m 12m 24m 60m 1m 3m 12m 24m 60m
Switzerland
T 1m 0.99 1.07 1.15 1.03 1.12% 0.45°° 0.66° 1.04 0.72° 0.63°°
3m 1.12 1.18* 1.27** 1.25%* 1.17* 0.63°° 0.84 0.81° 0.72° 0.71°°
12m 1.31* 1.33** 1.30** 1.30** 1.32%* 0.98 1.00 1.00 1.03 0.93
24m 1.04 1.09 1.17 1.17 1.16 1.00 1.00 1.00 1.00 1.01
60m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Germany
T 1m 0.91 1.02 1.13 1.01 1.08 0.69°° 1.00 1.13 1.01 1.03
3m 1.00 1.18* 1.24* 1.21%* 1.20* 0.99 1.18 1.07 1.06 1.05
12m 1.23* 1.32%* 1.31%* 1.36** 1.30** 1.05 0.97 0.96 0.99 0.99
24m 1.03 1.12 1.14 1.16 1.20* 0.98 0.98 1.00 0.99 0.99
60m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
United Kingdom
T 1m 0.97 1.147% 1.20% 1.14% 1.147% 1.03 1.41%% 1.21% 1.217% 1.08
3m 1.32%* 1.45** 1.36** 1.28** 1.20* 1.33** 1.15 1.21 1.24* 1.11
12m 1.38* 1.42** 1.39** 1.31** 1.29** 1.39* 1.27 1.12 1.06 1.10
24m 1.19* 1.20* 1.21* 1.19* 1.26* 1.11 1.07 1.03 1.08 1.05
60m 0.99 1.01 1.01 0.99 0.92 0.77° 0.87 0.90 0.80 0.64°
Japan
T 1m 0.88 1.00 1.05 0.95 1.03 0.52° 0.64 0.94 0.88° 0.90
3m 0.94 1.03 1.04 1.04 1.08 0.59°°  0.68°°  0.91 0.97 1.00
12m 1.04 1.03 1.02 1.07 1.12 0.89 0.92 0.99 1.00 1.02
24m 1.00 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.00 1.00
60m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
United States (87-11)
T 1m 0.93 1.14 1.13 1.03 1.10 0.84° 1.13* 1.13 0.97 0.91
3m 1.10 1.22* 1.22* 1.22** 1.25%* 1.10 1.18 1.14 1.10 1.14
12m 1.14 1.18* 1.20* 1.26** 1.23** 1.12 1.10 1.10 1.15 1.11
24m 0.96 0.97 1.00 1.01 1.04 1.00 1.00 1.00 1.04 1.08
60m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99° 0.81°°
United States (52-03)
T 1m 0.84°° 0.88° 1.03 1.13%% 1.117% 0.83° 0.79°° 0.87° 0.93 1.00
3m 0.87° 0.95 1.19**  1.26**  1.25%*| 0.74°°  0.78°°  0.90 0.96 1.02
12m 1.12* 1.30**  1.51**  1.61** 1.57**| 0.67°°  0.73° 0.80° 0.87 0.87
24m 1.09 1.16* 1.30** 1.36** 1.39** 0.68° 0.64°° 0.77° 0.77° 0.85
60m 0.97 1.06 1.23 1.42** 1.73** 0.62°° 0.53°° 0.59° 0.74° 0.85

Notes: The Table presents measures of the directional accuracy of extended estimation compared to EH-consistent constant risk premium forecasts
based on hit ratios that measuring the ratio of correctly signed forecasts. Values reported are computed as the fraction of the ATSM model hit ratio
relative to the EH hit ratio. Estimates with a * indicate that the model hit ratio exceeds the 95%-percentile of the bootstrapped constant risk premium
hit ratio distribution. ** indicates that the 5%-percentile of the model distribution is higher than the 95%-percentile of the constant risk premium hit
ratio distribution. © and °° indicate analogous results when the model hit ratio is lower than the constant risk premium hit ratio. We present in- and
out-of-sample results for 25 horizon (7) and maturity (T' — 7) combinations, respectively. The horizons are indicated in the rows, the maturities in the
columns. For the in-sample analysis, we estimate the models using monthly data from September 1989 for Japan, January 1988 for Switzerland, and
April 1987 for Germany, UK, and US. The sample period ends in March 2011 for all countries. For the US we also report results for a longer data set
covering the period from January 1952 to December 2003. In the out-of-sample analysis, we estimate for each country data set the first model based
on the first ten years of data available. Subsequently, we generate return forecasts every month ¢ by re-estimating the model using only information
available up to time ¢.

Table 6: Statistical Accuracy and Economic Value of Bond Excess Return Forecasts with EH Priors.

Panel A: Imposing a Weak EH Prior

Statistical Accuracy Relative Hit Ratios Portfolio Excess Returns Economic Value
T —71 1m 3m 12m 24m 60m Im 3m 12m 24m 60m Im 3m 12m 24m 60m 1m 3m 12m 24m 60m
T 1m —0.06 —0.03 —0.01 0 —0.06 0.90° 0.87°%  0.92° 1.02 0.98 111 133 150 239 297 -23 -26 0 106 -37
3m —0.06 —0.03 —0.01 0 —0.05 0.88°° 0.84°  0.97 1.07 1.04 65 7 122 182 274 | -20  -27 23 63 44
12m 0.16 0.22 0.22 0.22 0.12 0.92 0.99 1.03 1.03 0.97 38 58 96 135 213 -2 7 22 31 9
24m 0.14 0.19 0.23 0.22 0.16 1.00 0.91 1.04 0.97 0.95 20 30 55 80 134 1 0 0 -13 -46
60m —0.08 —0.1 0.02 0.11 0.21 0.95 0.93 1.06 1.12 1.16 15 17 40 79 196 -3 -11 -31 -33 34
Panel B: Imposing a Strong EH Prior
Statistical Accuracy Relative Hit Ratios Portfolio Excess Returns Economic Value
T —T1 1m 3m 12m 24m 60m 1m 3m 12m 24m 60m 1m 3m 12m 24m 60m 1m 3m 12m 24m 60m
T 1m —0.04 0 0 0 —0.01° 1.00 1.00 1.00 0.98 1.04 134 158 140 101 345 0 0 0 -8 48
3m —0.01 0 0.01 0.01* 0 1.00 1.00 1.00 1.00 1.05 85 103 87 113 213 0 0 0 16 18
12m 0 0.03 0.03* 0.02* 0.01* 1.00 1.00 1.08 1.08 1.00 39 48 96 111 133 0 0 28 19 7
24m 0.01 0.03* 0.01 0 0.01 1.00 0.97 1.09 1.08 1.05 18 26 57 s 130 0 -2 3 10 11
60m | —0.16° —0.10° —0.07° —0.06° 0 0.93 0.96 0.91 0.91 1.11 13 23 38 56 134 -4 -4 -13 -14 13

Notes: The Table presents results for extended estimation forecasts with EH priors imposed relative to EH-consistent constant risk premium forecasts.
For descriptions of the metrics employed to measure statistical and directional accuracy as well as portfolio returns and economic value added see the
notes to Tables 3, 4, and 5. Panels A and B report results for a “weak” and a “strong” EH prior defined as by = identity matrix times 10,000 and
times 1lel2, respectively. We present in- and out-of-sample results for 25 horizon (7) and maturity (7' — 7) combinations, respectively. The horizons
are indicated in the rows, the maturities in the columns. For the in-sample analysis, we estimate the models using monthly data from September 1989
for Japan, January 1988 for Switzerland, and April 1987 for Germany, UK, and US. The sample period ends in March 2011 for all countries. For the
US we also report results for a longer data set covering the period from January 1952 to December 2003. In the out-of-sample analysis, we estimate
for each country data set the first model based on the first ten years of data available. Subsequently, we generate return forecasts every month t by
re-estimating the model using only information available up to time ¢.
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Figure 1: Average Excess Returns.
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Notes: The Figure plots averages of annualized excess returns of trading the longer-term bond with maturity 7" over a horizon 7. Each line represents the
term structure of excess returns for a given horizon 7 for maturities indicated on the x-axis. The left column represents the excess returns of a buy and
hold strategy. The right columns plots excess returns of optimal bond portfolios of investors that have perfect foresight; for an investment horizon 7, an
investor with target volatility of o* = 2% and relative risk aversion p = 3 optimally allocates his wealth between the risk-free bond with maturity 7 and
the risky bond with maturity 7" > 7. The graphs are based on monthly data from September 1989 for Japan, January 1988 for Switzerland, and April
1987 for Germany, UK, and US. The sample period ends in March 2011 for all countries. For the US we also report results for a longer data set covering
the period from January 1952 to December 2003.
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Figure 3: Forecast Errors and Excess Returns.
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Notes: This Figure illustrates the relation between out-of-sample forecast errors (x-axis) and realized bond excess returns (y-axis). Forecast
errors from using EH-consistent constant risk premium forecast errors are represented by black circles and forecast errors from using extended
estimation ATSM forecasts are represented by red crosses. Shaded areas represent areas where forecasts have the wrong sign and hence forecast
errors that lead to (bond portfolio) losses. Each plot represents one of the 25 horizon (7) and maturity (7" — 7) combinations as indicated by the
plot labels “r x (T'— 7)”. We use the long data set for the United States covering monthly data from January 1952 through December 2003. We
estimate the first model based on the first ten years of data available. Subsequently, we generate return forecasts every month t by re-estimating
the model using only information available up to time t¢.
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