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1 Introduction

The double auction institution encompasses different families of trading protocols that gather
buyers and sellers in a single exchange market; see Friedman (1993). The two prominent
instances are the call market and the continuous double auction, that differ in whether
orders are cleared simultaneously or asynchronously. Both kinds of protocols have been
widely studied with a three-pronged approach based on analytical derivations, laboratory or
field experiments, and computer simulations.

While the k-double auction has emerged as the standard model for the call market, there
is no dominant paradigm for the continuous double auction. The sheer number of possible
variants impairs the emergence of a single representative format. There is a vast literature
scattered over different formulations, using a devilish variety of assumptions on the richness
of the strategy space. This may depend on information as diverse as the past history of orders
or transactions, the current status of the book, the timing at which an offer is made, and
another myriad of protocolary details such as the option to cancel and resubmit orders or the
obligation to submit price-improving offers (a.k.a. as “NYSE spread-improvement rule”). In
order to make progress, it is necessary to give up on generality.

We study a simple model for the double auction where the strategies of the traders
depend only on their private types. This simplification allows to provide a unified model
for the k-double auction and the continuous double auction, where the only difference is
in the order-clearing rule. For the special case where the market has only one buyer and
one seller, we prove that the equilibrium strategies coincide but the equilibrium outcome is
different. This provides a sharp illustration of the direct effects of the order-clearing rule on
the performance of a trading protocol.

Our main objective is the study of which trading strategies emerge as strategically plau-
sible when the number of traders increases. This plausibility encompasses two requirements:
the profile of strategies must be (close to) an equilibrium and it must be the outcome of
an evolutionary process (e.g., learning) that justifies its prominence. (In other words, we
do not assume that “all equilibria are created equal”.) Our approach is to let agents use
genetic algorithms to maximize individual profits and coevolve a profile of (possibly random-
ized) trading strategies. This evolutionary approach circumvents many of the computational
difficulties that affects the search for equilibrium strategies in current models of continuous
double auctions.

In the long run, as evolution takes place, we show that agents learn to (approximately)
play equilibrium strategies. Our first result is consistent with the asymptotic approach to
the “equivalence principle” (see Aumann, 1987), according to which increasing the number of
agents diminishes their strategic influence and lead the system towards the competitive out-
come. Regardless of the order-clearing rule, as the market grows in size, allocative inefficiency
tends to zero and performance converges to the competitive outcome. For the k-double auc-
tion, this result is magisterially exemplified in Rustichini et al. (1994) that proves the stronger
statement that traders’ equilibrium offers asymptotically converges to truth-telling: they are
willing to accept any price below (above) their valuations (costs) so they act as perfectly
competitive price-takers.

Our main results concern the evolution of strategic behavior when the market grows in
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size. In a nutshell, we show that the asymptotic emergence of the competitive outcome does
not imply that all traders should learn to be price takers. Moreover, the order-clearing rule
affects in a fundamental way what kind of strategic behavior we should expect to emerge.
Under simultaneous order-clearing, as n increases, only marginal traders learn to be price
takers and make offers equal to their valuations/costs. This implies that the asymptotically
unique equilibrium strategies derived in Rustichini et al. (1994) are unlikely to be learnable.
Under asynchronous order-clearing, as n increases, all intramarginal traders learn to be price
makers and make offers equal to the competitive equilibrium price.

There is a growing literature on the application of evolutionary processes to the study
of market protocols and trading strategies. MacKie-Mason and Wellman (2006) provides a
survey centered around the general field of computational market design, where both protocols
and strategies may be allowed to change. This paper exploits genetic algorithms to evolve
and compare strategic behavior across two specific formats for the double auction. To the
best of our knowledge, Dawid (1999) is the first explicit application of genetic algorithms for
the derivation of strategic behavior in a double auction market. Phelps et al. (2006) provides
an evolutionary comparison between three families of strategies: it concludes that, as the
market grows in size, truth-telling becomes increasingly likely to emerge in a call market
while it tends to disappear in a continuous double auction. Anufriev et al. (2010) applies an
algorithm known as individual evolutionary learning to study the effects of public disclosure
of information on the evolution of strategic behavior in a continuous double auction.

Our paper is organized as follows. Section 2 presents a unified model for the k-double
auction and the continuous double auction, considered as games with incomplete information
where traders’ strategies depend only on their private types but different order-clearing rules
apply. Section 3 describes in detail the setup for our simulations. Section 4 collects our
results on the asymptotic emergence of outcome and strategic behavior for the k-double
auction, when order-clearing is simultaneous. Section 5 reviews and contrasts the analogous
results for the continuous double auction, when order-clearing is asynchronous. Section 6
provides an additional comparative analysis between the strategies evolved by our genetic
algorithm for the continuous double auction against the current benchmark in the literature,
as provided by Zhan and Friedman (2007). An appendix collects spurious material.

2 A unified model

There are many variants of the double auction; see Friedman (1993). We focus on whether
orders are cleared simultaneously or asynchronously. The first case characterizes the class of
trading protocols known as call markets or batch auctions. The second case characterizes the
family of the continuous double auctions. We study a model that encompasses both clearing
rules and make it simple to elucidate their effects on the asymptotic convergence of outcomes
and the emergence of strategic behavior.

The presentation is organized as follows. The environment described in Section 2.1 collects
the general characteristics of the economy, including agents’ preferences and endowments.
Section 2.2 summarizes the well-known model of a k-double auction for the call market and
reviews its main properties. For our purposes, its most important feature is that it is assumes
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a simple strategy space for each trader. Section 2.3 describes our own model for a continuous
double auction. We impose assumptions that make the strategy space of each trader as simple
as in the k-double auction. Analogous simplifications underlie other models of the continuous
double auction, ranging from the nonstrategic (e.g., Gode and Sunder, 1993) to the strategic
ones (e.g., Zhan and Friedman, 2007). Section A in the appendix discusses a special case
known as the bilateral trading model with one buyer and one seller, which provides a common
foundation for the k-double auction and our version of the continuous double auction.

2.1 The environment

There is an equal number n of buyers and sellers. All traders wish to maximize expected
profits. Each of them is in the market to exchange at most one unit of a generic good per day.
Each buyer i has a private valuation vi and each seller j has a private cost cj . Valuations
and costs are drawn from two (stochastically independent, as well as atomless and absolutely
continuous) distributions F and G over the same support, which we normalize to [0, 1] without
loss of generality. As a special case, it is customary to assume that F and G are uniform
distributions on [0, 1].

When all traders are price takers, it is customary to define intramarginal and extra-
marginal buyers (sellers) depending on their position on the demand (supply) function with
respect to the market-clearing price(s). We follow tradition but refine this qualitative dis-
tinction into a complete ordering. Define the strength of a buyer with valuation v as the
distance from the valuation of the weakest buyer (v = 0) and the strength of a seller with
cost c as the distance from the valuation of the weakest seller (c = 1). Stronger traders have
valuations (or costs) lying farther away from the market-clearing price(s).

2.2 Simultaneous order clearing

The standard model for a call market where orders are cleared simultaneously is the k-double
auction; see Satterthwaite and Williams (1993). Buyers and sellers are required to submit
price offers simultaneously. Each buyer declares the maximum bid price at which he is willing
to buy and each seller issues the minimum ask price at which she is willing to sell. Traders
decide strategically their price offers to maximize their expected payoffs. The strategy of a
buyer i is a bidding function βi : [0, 1]→ R+ that defines his bid bi = βi(vi) as a function of
his valuation vi. Similarly, the strategy of a seller j is an asking function αj : [0, 1] → R+

that defines his ask aj = αj(cj) as a function of her cost cj .
Buyers’ and sellers’ offers are aggregated to form the demand and supply functions. Their

intersection defines an interval [p1, p2] of market-clearing prices. The k-double auction selects
as trading price the value p∗ = (1 − k)p1 + kp2, where each choice of k in [0, 1] defines a
different mechanism. Trade occurs among buyers who bid no less than p∗ and sellers who
ask no more than p∗. (Some rationing may take place at the margin, but the exact details
are not relevant.) When a transaction takes place at price p between a buyer with valuation
v and a seller with cost c, the payoffs are v − p and p − c respectively. If he does not enter
into a transaction, the payoff for the trader is zero.

As discussed in Leininger et al. (1989), there exist infinitely many Bayes-Nash equilibria
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for the k-double auction, but two important families have been singled out. The first class
collects the equilibria where the strategies satisfy a pair of differential equations; the second
class is formed by the equilibria where the strategies are step functions. The literature usually
restricts attention to the subset of symmetric1 equilibria in the first class, where all buyers
use the same (differentiable) bidding function β and all sellers use the same (differentiable)
asking function α. This simplifies the specification of a profile of equilibrium strategies for n
buyers and n sellers to a single pair (β, α).

We say that the symmetric strategy profile (β, α) is nontrivial if: 1) traders never play
(weakly) dominated strategies; that is, β(v) ≤ v and α(c) ≥ c; 2) the set of buyers bidding
b > 0 and the set of seller asking a < 1 have strictly positive probability. The first requirement
upholds individual rationality : a buyer never bids above his value and a seller never asks below
her cost. The second requirement rules out “no-trade” equilibria. The general features of a
nontrivial symmetric and differentiable equilibrium of the k-double auction are stated in a
well-known result from Rustichini et al. (1994).

Theorem 1 For any nontrivial symmetric and differentiable equilibrium (β, α):

1) there exist values v∗ < 1 and c∗ > 0 such that a buyer with valuation v trades with
positive probability if and only if v > v∗ and a seller with cost c trades with positive
probability if and only if c < c∗;

2) β and α are increasing over (v∗, 1] and [0, c∗), respectively;

3) limv↓v∗ β(v) = v∗ = limc↓0 α(c) and limv↑1 β(v) = c∗ = limc↑0 α(c).

The intervals (v∗, 1] and [0, c∗] define the domain of serious offers where the bidding and
asking functions are uniquely defined. We call serious buyers (sellers) those traders who are
supposed to make serious bids (asks) in equilibrium.

For a given value n, in any symmetric and differential equilibrium serious buyers shade
their valuations and bid β(v) < v; similarly, serious sellers markup their costs and ask
α(c) > c. This misrepresentation marks a departure from naive price-taking behavior and
occurs as a result of the strategic interaction between all traders. Intuitively, when n gets
large, one expect the scope for strategic misrepresentation to shrink so that the equilibrium
price should tend towards the competitive value. This is formally shown in Rustichini et al.
(1994) who prove that, as n ↑ ∞, in any nontrivial symmetric and differentiable equilibrium
the amount of strategic misrepresentation |v− β(v)|+ |α(c)− c| drops to zero as O(1/n) and
the allocative inefficiency disappears at a rate O(1/n2). Satterthwaite and Williams (2002)
additionally proves that trade in the k-double auction is worst-case asymptotically optimal
within a class of plausible mechanisms.

2.3 Asynchronous order clearing

Roughly speaking, a continuous double auction works as follows. Agents sequentially submit
offers on the selling and buying books. Orders are immediately executed at the outstanding
price if they are marketable; otherwise, they are recorded on the books with the usual price-
time priority and remain valid unless a cancellation occurs. When a transaction takes place

1 We use a stronger notion of role-symmetry later in the paper.
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between two traders, their orders are removed from the books and they leave the market.
Hence, orders are cleared asynchronously in separate trades, usually at different prices.

The main complication associated with moving from the simultaneous clearing of the
call market to the asynchronous clearing of the continuous double auction is that the latter
trading protocol requires agents to make and revise choices sequentially. As usual, turning a
game with simultaneous actions into one with sequential moves greatly expands the strategy
space. In general, even in the simplified environment of Section 2.1, the complexity of a
trader’s strategy in a continuous double auction can be daunting, since he can make (or
withdraw) price offers depending on the past history as well as deciding the timing of his
actions. The model studied in this paper makes three appropriate assumptions and reduces
the complexity of the strategy space.

First, we assume the environment from Section 2.1. This forces each trader to make only
unit orders and mutes any issue about the quantity of good to be demanded or supplied.
Second, we assume that the order of arrival of traders is randomly drawn according to a
uniform distribution over all possible queues and that each trader gets only one chance to
act. This eliminates issues of timing or order cancellation. Third, we interpret the bid bi of a
buyer i as a limit order. (Analogous assumption holds for the seller.) When his bid bi reaches
the market, the protocol compares it against the outstanding ask a: if a ≤ bi, then his limit
order is marketable and trade occurs at price p = a. Otherwise, a > bi; then, a limit order
of bi is stored on the buying book and awaits for a matching offer. Thus, the strategy of a
buyer is a bidding function βi : [0, 1]→ R+ that yields a “limit bid” bi = βi(vi). Analogously,
the strategy of a seller j is an asking function αj : [0, 1] → R+ that defines her “limit ask”
aj = αj(cj).

This setup defines a game with incomplete information, where the strategy space of the
players is the same as in the k-double auction. Clearly, in general the two games underly-
ing the trading protocols with simultaneous or asynchronous order clearing are not payoff
equivalent; f.i., in the k-double auction all trade takes place at the same price while in the
continuous double auction each trade carries its own price. However, surprisingly enough,
Appendix A shows that they are strategically equivalent (i.e., equilibrium strategies coincide)
in the special case of the bilateral trading model when n = 1. This provides some justification
for our use of a unified model to single out the effects of the order-clearing rule.

3 Setup

This section illustrates the setup for our simulations. When obvious, we describe features only
on the buyers’ side because sellers are modeled symmetrically. For computational purposes,
we discretize both the sets of types and strategies. Given an integer m, let δ = (1/m) be the
tick size used to define an equispaced grid of buyers’ valuations (and sellers’ costs) over the
interval [0, 1]. We assume that buyers’ valuations are drawn from a uniform distribution on
the support V = {δ, 2δ, . . . , (m− 1)δ}. The set of buyers’ feasible offers O = {δ, 2δ, . . . , (m−
1)δ} is taken to coincide with V. (This choice is for simplicity: we found no relevant difference
in results by testing for an offers’ grid finer than the valuations’ grid.)

There is a pool of 2N potential traders. Half of them are potential (male) buyers and
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half are potential (female) sellers. Each of them has private information about his valuation
or her cost: in game-theoretic parlance, each trader in the pool is an agent who knows his
type. Given that there are (m−1) possible valuations (costs), the pool of N potential buyers
(sellers) naturally divides into (m − 1) groups of agents of the same type. In accordance
with the assumption that types are uniformly distributed, each of these groups has the same
cardinality r; thus, N = r(m − 1). For reasons that will be clear momentarily, we assume
that r is a multiple of 4.

A (pure) strategy for a buyer with valuation v in V is a discrete bidding function β : V →
O. Alternatively, one can think of a pure strategy as the string of (pure) actions taken by each
possible type of a buyer. In general, we wish to allow buyers to play randomized strategies.
Denote by ∆(O) the set of probability distributions over O. A randomized strategy q : V →
∆(O) is a function that associates with each valuation v in V a probability distribution
q(v, ·) over the bids b in O such that q(v, b) ≥ 0 and

∑
b∈O q(v, b) = 1. Assuming individual

rationality, we also impose q(v, b) = 0 for all b > v. Hence, a strategy q is defined as a
discrete probability distribution over the individually rational offers. Sellers’ strategies are
similarly defined. When it is his turn to make an offer, a buyer with valuation v uses his
strategy q to issue a bid according to the probability distribution q(v, ·). The same applies
on the sellers’ side.

Agents interact repeatedly and anonymously. A trading day is made of several rounds. In
each round, we randomly draw (without replacement) n buyers and n sellers from the pool of
available agents and let them visit the market (n� N). Conventionally, we set the number
of rounds played in a day so that on average each of the 2N potential traders has one chance
to trade: hence, a trading day consists of about N/n rounds. (We give us a bit of slack and
round down this value.)

We evolve traders’ strategies using a genetic algorithm, henceforth nicknamed GA for
brevity. This is a well-known and robust optimization method that we use to model how
agents learn what strategies they should play. Learning is driven by the average profit of a
trading strategy. Profits are v−p for buyers and p−c for sellers, where p is the price at which
the transaction occurs. We measure the performance of an agent (a.k.a. fitness of a genotype,
in GA parlance) by the average of his trading profits over the past τ days. For simplicity, we
refer to a consecutive sequence of τ trading days as the evaluation window. Periodically (i.e.,
after every τ days), we update agents’ strategies using a standard GA machinery based on
selection, crossover and mutation. Our model is often called “4-2” in the literature, because
genotypes are grouped in sets of 4 individuals and the worst couple is replaced by crossed
over and (possibly) mutated copies of the best genotypes. See Ashlock (2006) for details.

More precisely, recall that the pool of N potential buyers is formed by (m− 1) groups of
r agents with the same type. Within the group corresponding to type v, each agent holds
his own bidding strategy. (Once again, analogous assumptions hold for sellers.) We apply
the genetic algorithm separately for each v to mimic learning at the interim stage, when an
agent knows his valuation v and is interested only in choosing an action appropriate for v.
Thus, for each buyer i with type v, we update his randomized strategy qi(v, ·) as follows.

We compute the fitness index as the average profit over the evaluation window for each
buyer. We randomly partition the set of r buyers with valuation v into (r/4) foursome groups
and update each group as follows. (This is the only place where we use the assumption that
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4 divides r exactly.) Let f1 ≥ f2 ≥ f3 ≥ f4 be the fitness indices for the four agents in a
group. (Ties are broken randomly.) The two individuals with the largest fitnesses produce
by crossover two “siblings” that replace the other two individuals with the (lower) fitnesses
f3 and f4. Crossover is applied using the standard one-point operator: given two randomized
actions q(v, b) and q′(v, b), we pick a random position w and generate the siblings’ actions

q′′(v, b) =
[
q(δ), . . . , q(wδ), q′((w + 1)δ), . . . , q′((m− 1)δ)

]
and

q′′′(v, b) =
[
q′(δ), . . . , q′(wδ), q((w + 1)δ), . . . , q((m− 1)δ)

]
.

Mutation is applied to the siblings’ actions in two ways. First, inspired by Lettau (1997),
with probability linearly decreasing in time (as measured by the cumulative number of rounds)
we substitute one of the siblings’ (randomized) actions with a pure action selected with
uniform probability among all bids that are individually rational with respect to v. Second,
again with probability linearly decreasing in time, we apply a zero-mean additive shock to one
component of the other sibling’s action and accordingly renormalize his randomized strategy.

This process is repeated for each v across the corresponding groups. Hence, the actions
that make up buyers’ strategies are separately (and simultaneously) evolved. This matches
the intuition that learning takes place during the interim stage. The evolutionary success of
an individual is based on his capability to gain higher profits with respect to other traders
with the same valuation (or cost), while his overall gains depend on the actions that people
are similarly evolving for different valuations and costs. Agents strive for higher profits within
their peers but trade across the whole population.

The parameters used for all the simulations presented in this paper are shown in Table 1.
When more than one possible value is given, boldface is used to denote the baseline: the case
with n = 10 is used as benchmark. A full run of the genetic algorithm involves 5000 trading

Parameter Description Value

n Number of active buyers (and sellers) {1,10, 100}
δ Tick size (= 1/m) for grid of types 1/20
τ Length of the evaluation window 100
r Size of a same-type group of traders 16

Table 1: Description and value of the parameters used for the simulations.

days; given τ = 100, each agent is given 50 opportunities to revise his strategy. (Convergence
usually takes place within 40 revisions.) Based on n, a trading day lasts 300/n rounds. All
the results reported below are based on 20 runs where each trader is initially endowed with
a pure strategy chosen with equal probability from the set of his individually rational offers.
(We have extensively tested different initializations but there are no detectable differences in
our results.)
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4 Simultaneous order clearing: Results

This section presents the outcome of our simulations for the case of simultaneous order-
clearing. We keep this section brief, because we find it more instructive to provide more
details and expand the analysis of the continuous double auction.2 Therefore, we restrict
attention only on our main focus: the evolution of strategic behavior when the market grows
in size. Additional statistics and figures, such as the dynamics of transaction prices or traders’
profit as learning progresses, have been curtailed for brevity.

Recall Theorem 1 in Section 2.2: strategic misrepresentation should shrink to zero as the
number n of active traders on each side of the market in the market increases. Hence, as
n grows, all traders should learn to be price takers. In a nutshell, we show that this is not
warranted. Even a search procedure as powerful as our genetic algorithm may fail to learn
“price-taking” behavior.

For each possible valuation v, there are r = 16 buyers. (As usual, analogous statements
hold for sellers.) Each of these i = 1, 2, . . . , r buyers of type v is associated with a (possibly
randomized) strategy qi(v, ·), so our genetic algorithm maintains, compares and updates
r = 16 different strategies for a type v. At the end of a simulation, the algorithm evolves
strategies that tend to have very similar fitness indices but need not be identical. In other
words, buyers of the same type v are not constrained to learn the same strategy as far as
they find a way to attain similar profits.

The richness of strategic behavior that the genetic algorithm may generate can be visually
appreciated using the following representation. For each v in the grid, we randomly pick one
buyer i of type v and generate a bid bi(v) using his strategy qi(v, ·). Then we join these
pairs of points (v, bi(v)) and obtain a bidding function that shows a realization of bids for
each of the types of a buyer. This “sampled” bidding function is noisy and should not be
expected to exhibit special mathematical properties, except for those implied by individual
rationality: the graph of bidding (asking) functions is always below (above) true valuations
(costs), represented by the bisector. Moving from left to right, Figure 1 displays a bundle of
three different “sampled” bidding and asking functions for n = 1, 10, 100. The competitive
price p∗ = 0.5 is depicted as a dashed horizontal line. Price-taking behavior is equivalent to
stating an offer equal to the true valuation (cost) so it is represented by the bisector.

Looking at the picture, a few regularities emerge very clearly. Bidding and asking function
tend to be increasing in types, as it should be expected. Moreover, as we move from n = 1
to n = 10, there is a clear shift towards truth-telling behavior. Increasing the number of
traders make the environment more competitive and hence introduces positive incentives for
all types to learn and bid more aggressively. The more people around, the riskier it is to lie so
that all traders reduce the amount of their strategic misrepresentation. This aligns perfectly
with the result in Rustichini et al. (1994). But, when notching up from n = 10 to n = 100,
this effect seems to evaporate. What is going on?

In order to answer, we remove the noise and look at the two “smoothed” trading functions
that for each v (or c) plot the average over 20 runs of the expected bid (ask) for each group of

2 With obvious modifications, Results 1–3 listed in Section 5 for the continuous double auction hold also
for the call market.
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Figure 1: Bundles of realized trading functions for n = 1, 10, 100 (from left to right).

type v (c). Moving from left to right, these are displayed in Figure 2 for n = 1, 10, 100. When
we go from n = 1 to n = 10, the intuition above is fully confirmed. Moving from n = 10 to
n = 100, we see that it holds only for the marginal traders with valuations or costs around
p∗ = 1/2. A moment of thought explains the puzzle. Under simultaneous-order clearing,
all traders trade at a single price which (as n increases) is increasingly likely to be set by
the marginal traders. Bids and asks from extramarginal traders do not matter because they
are extremely unlikely to trade anyway; hence, there is no sufficient push for them to learn
anything. Similarly, bids and asks from deeply intramarginal traders do not matter because
trade is going to occur at price p∗ for any offer sufficiently away from p∗; again, there is no
sufficient drift for learning to be price-takers. The market protocol is so robust that mere
price-taking behavior from the marginal traders is sufficient to yield the competitive price p∗.
All the same, such robustness makes it highly unlikely that non-marginal traders may learn
the (unique) symmetric equilibrium.
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Figure 2: Average trading functions for n = 1, 10, 100 (from left to right).
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4.1 Quality control for the GA strategies

We speak of the evolved trading strategies as an “equilibrium” profile that is learned by
agents. However, it is clear by its nature that the genetic algorithm produces simply an
approximation and thus we need to provide some form of quality control. A natural measure
for the goodness of computational approximations to an equilibrium profile is suggested by
the notion of an ε-equilibrium.

For simplicity, we recall its definition with reference to a game with complete information.
Using customary notation, assume that G = (n, S, u) is a game with n players, S = S1 ×
. . . × Sn is the space of strategy profiles and u is the vector of n payoff functions for each
player. As usual, assume that players maximize expected payoffs. Given ε > 0, we say that
a (possibly randomized) strategy profile σ is an ε-equilibrium if, for all players i and for all
strategies si in Si,

ui(σi, σ−i) ≥ ui(si, σ−i)− ε (1)

Clearly, σ is a Nash equilibrium if and only if (1) holds for ε = 0. Therefore, if we denote
by ε∗(σ) ≥ 0 the least ε that satisfies (1), we obtain a direct estimate of the “distance” that
separates σ from being an equilibrium. Roughly speaking, ε∗(σ) is a worst-case measure for
the temptation of at least one agent to break away from the strategy profile σ. The lower
ε∗(σ), the lower the push towards exploring alternative strategies. The extension of this
notion to a game with incomplete information requires to check the analog of (1) for all types
ti of each player i: ui(σi(ti), σ−i; ti) ≥ ui(si(ti), σ−i; ti)− ε.

The notion of ε-equilibrium applies to a given strategy profile σ. An evolutionary process
like our genetic algorithm, however, is unlikely to lead always to the same strategy profile.
Each run of GA, in fact, ultimately evolves strategy profiles that are similar but not necessar-
ily identical. Hence, we need to find a measure of quality control ε∗(GA) taking into account
that each run of GA may end up recommending slightly different strategy profiles. To this
purpose, we extend the worst-case logic underlying the notion of ε-equilibrium as follows.
Recall that we execute a batch of 20 runs of GA. At the end of each run k = 1, 2, . . . , 20, GA
evolves a strategy profile σk. Assuming that all other agents play their part of σk, we check
for all types ti of each player i the difference between his average payoff from playing what
GA recommends (that is, σk(ti)) and an arbitrary pure strategy:

20∑
k=1

ui(σ
k
i (ti), σ

k
−i; ti)

20
≥

20∑
k=1

ui(si(ti), σ
k
−i; ti)

20
− ε (2)

We define ε∗(GA) ≥ 0 as the least ε that satisfies (2). It provides a direct estimate of the
“distance” that separates playing according to GA from being an optimal choice (against
any of the pure strategies). This value is used to apply a t-test for the null hypothesis that
ε∗ = 0.

Table 2 collects and display the data used for our quality control. Each row in the top
panel reports the number n of traders on each side of the market, the value of ε∗(GA), the
type of the agent for whom the incentive to deviate is greatest, the offer that constitutes his
optimal deviation and the p-value for the null hypothesis. For instance, the first row in the
panel for GA reports the information that a seller with cost c = 0.30 can make an additional
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n ε∗ type offer p-value

1 0.0033 c = 0.30 0.45 0.25
GA 10 0.0060 c = 0.25 0.30 0.0197

100 0.0014 c = 0.20 0.25 0.13

1 0.0858 v = 0.95 0.70 10−12

TT 10 0.0480 v = 0.65 0.60 0.0438
100 0.0009 c = 0.10 0.40 0.27

Table 2: Quality control for the trading strategies evolved by GA in a call market.

average profit of 0.0033 by offering an ask price of 0.45 instead of complying with GA’s
recommendation. This additional gain is not sufficiently high to reject the null hypothesis
for any reasonable level of confidence. It is apparent that ε∗(GA) is sufficiently close to zero
for n = 1 and n = 100. For n = 10, ε∗(GA) is still negligible although statistically significant
only at a confidence level above 2%. The left panel of Figure 3 provides a detailed graphical
representation for the values of ε for the sellers’ costs. (Due to the symmetry of our model,
the graph for the buyers’ valuations is analogous.) It is worth noting that the highest values
of ε cluster around intramarginal traders of intermediate strength.
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Figure 3: From left to right: values of ε∗ for sellers (GA) and buyers (TT).

For comparison, the bottom panel of Table 2 provides the same information under the
assumption that the strategy profiles are generated by truth-telling (TT). Consistent with
Rustichini et al. (1994), the p-values for ε∗(TT) are sharply increasing in n: the hypothesis
ε∗(TT) = 0 for n = 1 is rejected for any reasonable level of confidence; on the other hand,
this hypothesis goes unscathed for n = 100. A simpler way to summarize the evidence is to
focus on economic relevance and look at the order magnitude of ε∗: for any n under GA and
for n = 100 under TT, this is measured in thousandths; on the other hand, for n = 1, 10
under TT, it is measured in hundredths. The strength of the average temptation to deviate
comes out sizeably different. The right panel of Figure 3 provides details for the values of
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ε for the buyers’ valuations; note the different scale for the y-axis. (Sellers’ costs lead to a
similar graph.) For n = 1, there is an approximately monotonic relationship between the
value of ε and the strength of a trader.

5 Asynchronous order clearing: Results

This section presents the outcome of our simulations for the case of asynchronous order-
clearing. We first give evidence that our GA converges to a steady state that we dub the
“equilibrium” outcome; see Dawid (1999) for a similar approach in an environment simpler
than ours. Next, we describe and evaluate the trading strategies evolved by our simulations.
Section 6 elaborates on how these strategies compare with another class of equilibria provided
in the literature.

5.1 Transaction prices and profits

We begin with a quick look at the effects of evolving trading strategies on some fundamental
parameters of the market. Our first item is the time series of transaction prices. The left
panel in Figure 4 shows a typical sample of realized prices for the baseline sampled at days t =
100, 500, 1000, 1500, 2000 and 5000. Note that the width of the vertical bands is proportional
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Figure 4: On the left, realized transaction prices at fixed times. On the right, average (black),
median (red) and interquartile range (dashed) of the transaction prices for each period.

to the number of transactions. Therefore, as learning progresses, trading prices become less
volatile and volume increases. Moreover, the transaction prices approach the competitive
price p∗ in the long run. The right panel exhibits the average (in black) and the median daily
price (in red), together with the first and third quartile of the distribution of the intraday
transaction prices.
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Result 1 In a continuous double auction under uniform priors,3 the evolution of trading
strategies stabilizes prices around the competitive price p∗.

Furthermore, the amount of dispersion of prices around p∗ is a decreasing function of the
number n of traders in the market as shown in Table 3. This is aligned with well-known

n µ σ

1 0.506 0.124
10 0.497 0.053
100 0.499 0.014

Table 3: Average price µ and standard deviation σ of the intraday price for different markets.

general convergence results for trading protocols based on the alternative assumption of si-
multaneous order clearing; see Rustichini et al. (1994) for the k-double auction and Mendel-
son (1985) for Walrasian trading. On the other hand, it is understood that, ceteris paribus,
there is higher variability in the price of the continuous double auction as a consequence of
the assumptions of asynchronous order clearing and random arrival of traders.

Result 2 If n1 > n2, the distribution of the transaction price P (n2) is more diffuse than
P (n1).

Similarly reassuring results hold for the aggregate profits. The left panel in Figure 5 shows
the average daily gain per trader for a typical simulation run. Traders, who initially enter the
marketplace making individually rational but otherwise random offers, coevolutively learn to
extract much higher profits from trade. In turn, as shown in the right panel, this leads to an
increase in the volume of transactions effected within a trading day.

We conclude that evolution leads to trading strategies that are jointly fit to maximize
overall gains from trade. However, by construction, the GA does not attempt to maximize
these latter ones. Each agent strives to learn and improve his private gains within the group
of traders of his own type while the environment is coevolutively changing. Hence, the
globally successful extraction of the trading surplus is a byproduct of the joint and unrelated
maximizations of individual profits.

Figure 6 separately exhibits how the average gain per type evolves over time for buyers
and sellers. The left panel shows the average profit of buyers with valuations in the set
{0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45} arranged from the strongest (v = 0.95) to the weakest (v =
0.45) as we move downwards. Analogously, the right panel depicts the average profit of
sellers with costs in {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55} arranged from the strongest (c = 0.05)
to the weakest (c = 0.55). Profits are role-symmetric (up to the inevitable noise). Gains are
increasing in valuations and decreasing in costs: stronger traders realize higher gains from
trade, while marginal traders (with valuations and costs close to p∗) reap minute profits.
Indeed, zooming in on the bottom lines of Figure 6 shows that gains shrink over time for the
marginal types. This is due to the gradual improvement of the strategies used by the strong
intramarginal traders that makes them much less susceptible to being exploited by weaker
marginal agents.

3 For brevity, we leave this qualification implicit in the statement of similar following results.
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Figure 5: Traders’ average profit (left) and transaction volume (right) for each period.
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Figure 6: Average daily gains for buyers (left) and sellers (right). Groups of traders are
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Result 3 The evolution of trading strategies improves aggregate profits and is more beneficial
for stronger traders.

5.2 Trading strategies

The genetic algorithm mimics an attempt to learn equilibrium strategies. Proceeding as in
Section 4, we present our results. Moving from left to right, Figure 8 displays a bundle of
three “sampled” bidding and asking functions for n = 1, 10, 100. As before, the competitive
price p∗ = 0.5 is represented by a dashed line. There is a sharp dependence of the shape of

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c, v

S
(c

),
 B

(v
)

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c, v

S
(c

),
 B

(v
)

0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

c, v

S
(c

),
 B

(v
)

Figure 7: Bundles of trading functions for n = 1, 10, 100 (from left to right).

the trading strategies on the number n of agents. The pattern is even more transparent if
we remove noise and look at the “average” trading functions, reported in Figure 8. As the
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Figure 8: Average trading functions for n = 1, 10, 100 (from left to right).

market gets thicker, all intramarginal traders become less aggressive until (as clearly visible
for n = 100) they almost always offer exactly the competitive price p∗. On the other hand,
the variability of the bidding and asking functions for extramarginal traders is quite large
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and increasing in n: bids (asks) for v < 0.5 (c > 0.5) in Figure 7 fluctuate a lot. The simple
explanation is that extramarginal agents trade very rarely and, consequently, get almost no
chances to learn: the GA has no push to learn because it is pointlessly trying to optimize a
zero-profit constant function. The contrast between the rightmost panels from Figure 2 and
Figure 8 is particularly striking: under simultaneous order clearing, only marginal traders
get very strong incentives to learn, while under asynchronous order clearing learning takes
place for all intramarginal traders. Moreover, these latter ones learn to be price-makers and
offer a price equal to the competitive price p∗.

Indeed, a closer look at the trading functions confirms that all intramarginal agents learn
to play a pure strategy. Up to the inevitable noise inherent to the GA, each of them ends up
making an offer equal to p∗. Figure 9 displays a typical set of genotypes (probability vectors)
for the whole population when n = 100. The box on the left panel naturally divides into two
triangles. The bottom triangle pertains to buyers; the top triangle to sellers. We describe
only the buyers’ side; the analog holds for the sellers’. Probabilities are color-coded with
(bright) yellow and (dark) red meaning 1 and 0, respectively. The colors along the vertical
segment between the x-axis and the bisector represent the randomized strategy of a buyer
of type v over his bids. For instance, consider the vertical segment at v = 0.8: the only bid
with non-null probability (yellow) is p∗ = 0.5, while there is zero mass (red) on all the other
choices in O.
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Figure 9: Left panel: randomized strategies as a color-coded map with hues representing
different values of the probabilities. Right panel: plot of the modal value of the probability
distribution for each type of buyer when n = 100.

The diffusion of the red color demonstrates that positive probability is attached to a
small handful of bids and asks. For n = 100, the right panel of Figure 9 plots maxb∈O qi(v, b)
for each buyer i by adjoining values around v. Whenever this probability is close to 1, the
corresponding agent is using a pure strategy. (It is understood that negligible noise is an
intrinsic feature of GA.) All intramarginal traders offer the same price p∗. Extramarginal
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traders may end up with a nontrivial randomized strategy, but the previous discussion has
explained that this is ultimately irrelevant.

Result 4 As n increases, the trading strategies of the intramarginal agents move towards
price-making: they learn to make a constant offer equal to the competitive price.

This is our most important result. Ceteribus paribus, the details of the order clearing rule
for the market protocols determine what kind of trading strategies we expect agents to learn.
Regardless of whether order clearing is simultaneous or asynchronous, as the market grows
in size, there is convergence to the competitive outcome where (almost) all trades take place
at price p∗. However, the trading strategies used by agents evolve in very different directions.
Under simultaneous order clearing, marginal traders make truthful offers which set up the
price for everybody else and this deprives stronger intramarginal traders of the incentives to
learn and be price takers. Under asynchronous order clearing, all intramarginal traders end
up acting as price-makers.

6 Comparative analysis

This last section compares the equilibrium strategies evolved by the genetic algorithm against
the current benchmark in the literature, as provided by Zhan and Friedman (2007) or ZF
for short. They study the continuous double auction in an environment like ours, under
the same assumptions of Section 2.3. However, they restrict the choice of the bidding and
asking functions to subsets of functions that are easily interpreted as “markdowns” on v and
“markups” on c. (For simplicity, we usually speak only of markups.) They look at three
possibilities, but the leading example is the family of standard markups defined by

β(v) = v(1−md) and a(c) = c(1 +mu), (3)

where md,mu ≥ 0 are the markdown and markup coefficients.
The major difference between GA and ZF is apparent. ZF search for equilibria in pure

strategies within a (restricted) parametric class and do this by running an exhaustive search;
GA search for equilibria in randomized strategies within a (general) nonparametric class by
a non-exhaustive evolutionary approach. A second subtler but important difference is that
ZF consider ex ante equilibria, where the optimality of a strategy is evaluated assuming that
the trader does not know his own type and hence must look at the expected payoff over
all his private types. Instead, following standard game-theoretic practice, we derive interim
equilibria where each agent evaluates payoffs using knowledge of his own private type (but
not others’). In other words, ZF constrains all types of a player to adopt the same markup;
we allow each type of a player to pick his own markup.

Using computer simulations, ZF searches for ex ante equilibria4 within the class of stan-
dard markup strategies and finds unique pairs of equilibrium coefficients: md = mu = 0.3 for
n = 10, and md = 0.4,mu = 0.3 for n = 100. (We have independently confirmed this result.)
ZF does not study the case n = 1; using their methodology, we obtain md = mu = 0.3 as

4 They look at two cases: cartels and single players. We consider only this latter, as it is more appropriate.
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unique equilibrium values. (More precisely, we find that this constitutes an ε-equilibrium
with ε = 0.00002.)

ZF considers the performance of these markup equilibrium strategies with respect to
allocative inefficiency and traders’ surpluses. (The allocative inefficiency is defined as the
complement to 1 of the ratio between the realized surplus and the maximum attainable
surplus.) Table 4 compares the allocative inefficiency incurred by GA and ZF in a continuous
double auction. It is apparent that allocative inefficiency declines as the market grows in

n 1 10 100

GA 0.196 0.084 0.048
ZF 0.202 0.115 0.052

Table 4: Allocative inefficiencies for the continuous double auction.

size, regardless of whether trading strategies are obtained by GA or ZF.

Result 5 Allocative inefficiency is decreasing in market size. A plausible conjecture is that
it vanishes as n ↑ ∞.

A quick look confirms that the equilibrium strategies in ZF yield an allocative inefficiency
slightly superior than those evolved by GA, but are still within the same order of magnitude.
This may suggest that ZF is in some respect a comparable approach. We are going to argue
that this impression is deceptive, because it fails to properly account for the strategic issues
that underlie traders’ behavior. Equilibrium strategies per se do not attempt to maximize
overall gains from trade. Allocative efficiency is only a byproduct of the individual effort to
maximize private gains. Hence, an equilibrium should be judged by its strategic plausibility
rather than by its collateral social effects.

Our claim is that ZF has two serious shortcomings from a strategic point of view. The
first one is that it imposes an unjustified asymmetry between buyers and sellers. Figure 10
displays the average trading gains per type using GA or ZF strategies, for n = 1, 10, 100.
The first panel plots average gains for buyers’ types under GA. (We omit the panel for
sellers because it is virtually identical.) The second and third panel show the average gains
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using ZF’s equilibrium strategies for buyers’ and sellers’ types, respectively. To help a direct
comparison, the scale on the y-axis is the same for the three panels and traders’ types on
the x-axis are always arranged by decreasing strength. As expected, stronger traders reap
higher gains. However, it is apparent that ZF’s trading strategies let buyers extract more
surplus than sellers of equal strength, in spite of the perfect balance in the assumptions over
the trading environment.

This asymmetry in outcomes is due to a flaw in the definition of the standard markup
strategies. Define the strength of a bid b as its distance from the lowest bid (b = 0); similarly,
let the strength of an ask a be its distance from the highest ask (a = 1). A profile of trading
strategies is role-symmetric when the strengths of the bid and the ask issued by traders of
equal strength x are the same; that is, when β(x) = 1−α(1−x). Cervone et al. (2009) shows
that ZF’s markup strategies are not role-symmetric and hence lead to equilibrium outcomes
that favor buyers over sellers. To overcome this limitation, it introduces a role-symmetric
formulation called convex markup and illustrates its advantages by means of a comparison
over different market protocols.

The second shortcoming in ZF is perhaps more substantial. Similarly to Table 2 for the
call market, Table 5 displays values for ε∗(GA) and for ε∗(ZF), when n = 1, 10, 100. For

n ε∗ type offer p-value

1 0.0034 v = 0.90 0.65 0.62
GA 10 0.0054 c = 0.15 0.45 0.0655

100 0.0062 c = 0.05 0.50 0.0131

1 0.0481 c = 0.05 0.20 10−11

ZF 10 0.0776 c = 0.05 0.40 10−16

100 0.0771 c = 0.05 0.50 10−15

Table 5: Quality control for the trading strategies evolved by GA in a CDA.

trading strategies evolved by GA, these values are much closer to zero than for ZF. The
strength of the average temptation to deviate is sizeably different. At a confidence level of
5%, for n = 1 and n = 10 we cannot reject the null hypothesis ε∗(GA) = 0. The same holds
for n = 100, but at a confidence level of 1%. On the contrary, for n = 1, 10, 100, the null
hypothesis ε∗(ZF) = 0 is rejected for any practical level of confidence.

Furthermore, the trader who has the highest incentive to deviate turns out to be always
the strongest seller (who has cost c = 0.05). Besides the lack of role-symmetry hurting sellers,
there is a second effect at play.5 ZF’s trading strategies systematically expect stronger sellers
to ask too little. The equilibrium markup for sellers under ZF is mu = 0.3 for n = 1, 10, 100.
Hence, a seller with cost c = 0.05 should ask (on average) a(0.05) = 0.05 · 1.3 = 0.065.
Instead, as shown in the fourth column, the optimal ask is remarkably higher.

Moving from left to right, Figure 11 shows the values of ε for the sellers’ under GA (the
graph for buyers is analogous and hence omitted), as well as for buyers and sellers under ZF.
After noting that the scales on the y-axes are different, we see again that there is an order

5 In the language of mechanism design, ZF’s trading strategies from (3) are not incentive-compatible for
the sellers. The convex markup rule in Cervone et al. (2009) is incentive-compatible.
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of magnitude of difference between the ε∗ values for GA and ZF.
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Figure 11: From left to right: values of ε∗ for sellers (GA), buyers (ZF) and sellers (ZF).

6.1 Evolutionary stability

This last subsection rounds up our comparison between GA and ZF using the notion of evo-
lutionarily stable strategies (ESS) introduced in Maynard Smith and Price (1973). Roughly
speaking, a profile of trading functions is an ESS if, once it is adopted, it is not susceptible
to invasion by a new strategy. This notion formalizes the “robustness” of a strategy profile
as the ability to prevent the spread of competing alternatives under evolutionary pressure.
We claim that ZF does not pass the test of evolutionary stability against GA.

We consider a population of agents using ZF’s trading strategies and inject a small fraction
of traders playing the strategies evolved by GA. We measure the average profits made by
agents using the two competing strategies. For n = 1, 10, 100, Figure 12 depicts the level
curves for the joint distribution of average daily gains obtained by traders in the invading GA
population versus those collected by the ZF agents. (The fraction of invading GA traders is
set equal to 1/16 and we collect realized profits over 1000 trading days.)

As n increases, it is apparent that the advantage enjoyed by GA traders gets stronger.
Hence, the prospect of invadability for ZF increases when the market grows in size. The
intuitive explanation is clear. The ZF equilibrium trading strategies are linear functions. As
shown in Figure 7, for n = 1 the GA strategies can be decently approximated by a linear
function. Therefore, the scope for differentiation between ZF and GA is limited. On the
other hand, as n increases, the GA strategies morph towards a flat price-making offer (for
the intramarginal traders) that is sharply different from ZF’s prescription.

The evolutionary pressure can be quantified by looking at the (average) incremental profit
per trading day reaped by the invading GA agents pitted against ZF traders. For n = 100,
we find a value of 0.010 as sum of an average incremental profit of −0.005 for buyers and
0.025 for sellers. A “naive” statistician using a t-test for the overall value would require only
about 30 trading days to reject the null hypothesis that the GA strategy is less profitable
than ZF at a level of confidence of 0.1%. (Rejection would be even faster by testing only for
the sellers’ side.) Similarly, for n = 10, the evolutionary advantage to GA is 0.009 (buyers:
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Figure 12: Joint distribution of the average daily gains for GA agents (x-axis) invading a ZF
population (y-axis) for n = 1, 10, 100 (from left to right). The mean of the distribution is
plotted as a thick point, along with the line of equal average profits.

−0.002; sellers: 0.020); a statistically significant rejection at the same level of confidence
would occur after about 550 days. For n = 1, the average incremental profit for GA is 0.002
(buyers: −0.003; sellers: 0.007); more than 1000 trading days would be necessary for an
analogous statistical rejection.

Additional intuition is gained by considering Figure 13 that for n = 100 separately shows
the average incremental profits of buyers (on the left) as a function of their valuations and
of sellers (on the right) as a function of their costs. (As before, the fraction of invading GA
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Figure 13: Average incremental profits for GA invading ZF: buyers (left) and sellers (right).

traders is 1/16 and we compare profits realized over 1000 trading days.) Marginal and very
strong buyers perform slightly higher under GA, while intramarginal buyers of intermediate
strength are much better off sticking with ZF. On the other hand, almost all intramarginal
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sellers find GA more profitable than ZF and thus the stronger evolutionary pressure to break
free from ZF and shift towards GA lies on the sellers’ side.

A The bilateral trading model

The bilateral trading model (with simultaneous order clearing) was introduced in Chatterjee and
Samuelson (1983) and studied in Myerson and Satterthwaite (1983), spawning a long and still flour-
ishing literature. It describes a situation where one buyer and one seller are engaged in the trade
of a single object. The environment is the same as in Section 2.1, but there are only one buyer and
one seller so n = 1. Viewed as a game with incomplete information, it is equivalent to the k-double
auction described in Section 2.2 for k = 1/2 and n = 1.

An equilibrium profile (β, α) of bidding and asking functions for the bilateral trading model
requires that a buyer with valuation v offers a bid b = β(v) that solves

max
b

∫ 1

0

[
v − α(c) + b

2

]
1{b ≥ α(c)} dG(c) (4)

and a seller with cost c submits an ask a = α(c) that solves

max
a

∫ 1

0

[
a+ β(v)

2
− c
]

1{a ≤ β(v)} dF (v), (5)

where 1{·} is the indicator function.
The formal description of the bilateral trading model under asynchronous order clearing requires

only the following changes. There are two equally likely queues: the buyer arrives first, or the seller
arrives first. If a buyer with valuation v arrives first, he finds no outstanding ask and hence records
his bid b = β(v) on the buying book and, if trade occurs, the price is b. Similarly, if a seller with
cost c arrives first, she writes her ask a = α(c) on the selling book and, if trade occurs, the price
is a. Therefore, if trade occurs, it takes place at price b with probability 1/2 and at price a with
probability 1/2. Recall that, under simultaneous order clearing, the transaction price is p = (a+ b)/2.
Therefore, roughly speaking, the expected value of the trading price is the same under simultaneous
or asynchronous order clearing but the latter one adds some variability around it. (Formally speaking,
the distribution of the trading price is a mean-preserving spread.)

Given that traders are risk neutral, this immediately translates in the strategic equivalence of
the equilibria for the two models. We prove this claim by showing that the expected payoffs under
any strategy profile (β, α) are the same for the two models. In the bilateral trading model under
asynchronous order clearing, a buyer with valuation v who offers a bid b = β(v) obtains a payoff

max
b

1

2

∫ 1

0

[
v − α(c)

]
1{b ≥ α(c)} dG(c) +

1

2

∫ 1

0

[
v − b

]
1{b ≥ α(c)} dG(c). (6)

In the bilateral trading model under simultaneous order clearing, the payoff to a buyer with valuation
v who offers a bid b = β(v) is given in Equation (4). Clearly, (4) and (6) are identical. A similar
argument applies for the seller. Therefore, the set of equilibria under arbitrary priors for the two
models is the same. More generally, a similar argument applies to show the strategic equivalence of
the equilibria for a k-double auction and a continuous double auction where the buyer arrives before
the seller with probability k. Note that, while strategic equivalence holds, equilibrium payoffs coincide
only in expectation.
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