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Abstract

We develop a model of rational bubbles, based on the assumspti unknown matr-
ket liquidity and limited liability of traders. In a bubblé¢he price of an asset rises
dynamically above its steady-state value, which must b#dipgsby rational expecta-
tions about possible future price developments. The hitifteeexpected future price
increase, the more likely is the market potential reachedyhich case the bubble
will burst. Depending on the interaction of uncertainty abthe market liquidity,
fundamental riskiness of the asset, the compensation schéthe fonds manager,
and the risk-free interest rate, we give a condition for \Wwhetational bubbles are
possible. Based on this analysis, several widely-disclipséicy measures are in-
vestigated with respect to their effectiveness to prevabbles. A modified Taylor
rule, long-term compensation, and capital requirementsheae the desired effect.
Caps on bonuses and a Tobin tax can create or destroy théiptyssif bubbles,
depending on their implementation.
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1 Introduction

When are asset price bubbles possible, and what can prédwem®t In the light of re-
cent economic experience, this question seems importantogical. The last 15 years
have seen at least two important market developments tbatoausidered as bubbles by
now. Both, the so-called dot-com bubble in the late '90s dredreécent housing bubble
in the United States and elsewhere have produced larg@cattins of wealth during
their buildup, and especially after their respective ceashilThese bubbles have not only
affected the parties directly participating in the bubblaerkets, also outsiders were im-
pacted heavily, e. g., by layoffs that took place followihg trashes. Although bubbles
are a phenomenon known (at least) since the tulip mania ifM,1&&nomic policy has
apparently not been able to prevent their repeated ocaardyeither does a commonly
accepted theoretical model of bubbles exist, which coulddsal to derive policy impli-
cations. Our paper contributes to the development of sucimdarstanding, which might
eventually help in guiding policymakers. To this end, wealep a theoretical model,
show under which circumstances bubbles can occur, and wlbiaty measures can help
in their prevention.

We construct a simple workhorse model of a bubble, based ewrricial assumption
that the potential amount of liquidity in the market is noegsely known. We think
that, as financial markets become more complex and opaaguassumption of imprecise
information about the market size seems very natural. Walubble, managers are only
willing to invest if they believe that there might be anotimefestor in the future to whom
they can sell the asset at an even higher price. As alreadynadasby Tirole (1982), if
the maximum market liquidity were known, the highest pdsspisice of the concerned
asset could be derived by the traders, and by backward ietund bubble could emerge
from the beginning.

The second important feature of our model is limited lidhilin particular, we consider
investors who delegate investment to fonds managers. Thielnapplies, however, di-
rectly to more general intermediated finance such as thrbagks, investment banks,
insurance companies, private equity firms etc., as well asoteintermediated, debt-
financed investments. In the absence of a bubble, we findhtbaisk appetite induced by
limited liability of fonds managers pushes asset pricevalioeir fundamental values (as
already noted by Allen and Gale, 2000); because of limitahility in case of a low or

zero return, the manager can increase her expected payefidgging in riskier assets.

IAlso Santos and Woodford (1997) show that the conditiongHerexistence of bubbles are very re-
strictive, if one is to assume a fixed number of householdspagicipate in the asset market and own a
finite aggregate endowment. Tirole (1985) extends the nmafdétole (1982) to an overlapping-generations
model with perfect foresight, showing that under certainditions bubbles can occur. In models with this
mechanism, including Martin and Ventura (2010), bubblesidbgrow faster than the real interest rate,
different to our model.



Asset prices are therefore driven above fundamentals,nbatstatic way. These price
deviations are not induced by expectations, and there asedaen corrections (bursts).

Adding the assumption of unknown market liquidity extentks $pace of possible price
paths drastically. Combined with a high-powered incentigheme, an expectations-
induced bubble with a dynamic price path may emerge. Higtieepincrease the proba-
bility that the current asset holders do not find future bayer higher prices. Given this
increased risk, today’s buyers demand a higher expectedfigan the asset. This ac-
celerator mechanism drives prices up over time, until tHeblicollapses because either
the previously unknown ceiling is hit or the underlying famdental breaks down (e .g.,
a bankruptcy of the issuing firni)importantly, the model allows for bubbles only under
certain circumstances. Depending on the interaction afduariiability, uncertainty about
the market size, riskiness of the asset and the interesbned@ alternative safe asset the
prerequisites for bubbles can be fulfilled or not. This stamdcontrast to previous mod-
els, in which bubbles always exist if the ceiling in the markeunknown, or are always
ruled out if this ceiling is known (Brunnermeier, 2008). kmete kinds of models, no
comparative statics and policy implications can be derived

Since the model allows us to derive conditions under whidbbbes can exist, we can
also test several policies that could prevent bubbles. iStparticularly important, since
bubbles harm the welfare of market participants in the mddek of the widely-discussed
possible policy measures is a cap on bonuses. We find thatearsifsat reduces the bonus
payments but keeps their proportionality to investmentess could actually backfire and
make bubbles possible. A maximum cap on bonuses, on the lodinel; can effectively
prevent the emergence of bubbles. Similarly, a financialsiation ('Tobin-’) tax can
create the possibility of bubbles if levied on all forms ofdlintial assets. On the other
hand, if it is imposed on the risky asset only, it can effesdfivprevent the emergence
of bubbles. Also a monetary policy rule that takes assetpndiation into account,

2Note that this result does not require heterogenous trad@symmetric expectations. This differenti-
ates the models from Allen, Morris, and Postlewaite (19BB)vhich private information can drive a price
above its fundamental value, and those of Scheinkman andgXi2003) and Bolton, Scheinkman, and
Xiong (2006), who assume that buyers of an asset hope td selhveroptimistic agents in the next period.
This is only possible in case of heterogenous beliefs. Natedifferent to our model, the latter paper is con-
cerned with executive compensation, as Calcagno and H&@6éi7). Allen and Gorton (1993) show that
asymmetry of information between investors and heterogenmanagers can lead to deviations of prices
from fundamentals. The model of Brunnermeier and Abreu 8206lies on dispersed opinions. Together
with coordination failure, they can trigger bubbles. Instiebntext, Froot, Scharfstein, and Stein (1992)
analyze which information can influence trading, potehtitdading to herding equilibria. Allen, Morris,
and Shin (2006) analyze the role of higher-order expectatiitraders have asymmetric information.

3Referring to the dot-com bubble, Brunnermeier and NageD42@rovide evidence that hedge funds
were riding the bubble, a result similar to a previous findiggMermers (1999). They relate this to, among
others, a short-term horizon of the managers. This is inviitle our model. Here, riskiness and herding are
no opposites, such that the argument of Dass, Massa, anid E2268)—high-powered incentive schemes
will induce managers to break out from herding—does notyappl



as discussed in Bernanke and Gertler (2001), can rendeldsulsbpossible. Finally,
mandatory long-term compensation and/or capital requaresfulfill the same purpose.



The remainder of this paper is organized as follows. Se&imtroduces the model. Sec-
tion 2.2 constructs a steady-state (rational expectatieaqgilibrium price process. Sec-
tion 3 constructs a simple example of a non steady-stateredtexpectations) equilib-

rium price process, which we call a bubble. We give a necgssat sufficient condition

for the existence of such example-bubbles. In section 4,hegghat this very condi-

tion is necessary and sufficient for the existence of bubibleggeneral. This condition

lends itself to basic policy analysis, done in section 5 kscdssing several policy mea-
sures. Some measures require a slight generalization ofdidel. In the same section,
we show that bubbles are welfare reducing. While all otheti@es take the managers’
compensation scheme as given, we consider one (of possiéily)ways to endogenize
bonus payments in section 6. Section 7 concludes. All praxsn the appendix.

2 The Model

2.1 Setup

Consider an infinite horizon economy with overlapping gatiens of two types of agents,
investors and fonds managers. In each period, a continuumeakure/N investorsis
born, each with an endowment of 1 dollar. Investors die imtind period. They consume
only in the period they die. Investors cannot participatiafinancial market. Thereis a
continuum of fonds managers (short: managers), and in twdevest in bonds or stocks,
each investor needs to employ one of these manager. Sinnarfiger of managers is as-
sumed to be unlimited, an investor will always find a managéwndle her wealth. Each
manager can handle the funds of one investor only. The marsagempensated by a lin-
ear scheme with limited liability. Her compensation cansishof a success-depending
bonus and a base salaty Earning a yieldy, she receivemax{a(y — (3); 0} + .S, with

a € [0;1] andg, S > 0. So if a manager invests 1 dollar into an asset at gri@nd the
price rises tQ; 1, she receivesax{a(p;+1/p: — 3); 0} + S. The contract will be treated
as exogenous within this section and will be endogenizeddtian 6. Note that this for-
mulation encompasses different set ups. For example,faotenteed, non-intermediated
investments would corresponddo= 1, andj corresponding the interest rate on the debt.
This kind of contract is also developed in Bernanke, Gerdled Gilchrist (1999) due to
monitoring costs.S might be negative due to the potential purchase of a credéedk
swap.

There are two assets, safe assets (bonds) of unlimitedysapgla single risky asset. The
safe bond bears a net interestrofThe risky asset can be interpreted as the shares of a
firm. This firm pays total dividends af each period. However, in each period, there is a

40One may also interpret the asset as real estate. If the heletethend is the rent per period.



probability 1 — ¢ that the firm will go bankrupt and cease to pay dividends feredMence,
the time of bankruptcy is determined by a Poisson processtdthl amount of shares of
the firm is normalized to 1. The risky asset is traded in eaclogelts price follows a
time-discrete stochastic proceS§s }:>o.

The number of investord/ is stochastic with distributiod’(N') and densityf(V), but
constant over time. The geometric version of the hazardsatesumed to be a constant
To be concrete, we assume thag N is exponentially distributed, thuB(N) = 1 —
e~ (log N—log No) for some positive constamf,, hencel'(N) = 1 — (N/N,)~7.5 Here,N,
is a lower bound on the number of investors (and thus on litwid the market). The
smaller~, the more uncertainty exists about the number of investesmore uncertain
is the liquidity potential in the market. In fact, the mearttod distribution isu = No —

forv > 1, andy = oo for v < 1. The standard deviation is = N, Vil (772)1/2 for
~v > 2, ando = oo for v < 2. The following figure 1 shows the distributions and density
functions for Ny, = 20 and shape parameteys= 2 (dashed) and, = 4 (solid). For

v — 00, we get the limiting case of a known number of investors.

Figure 1: Density and Distribution Functions for Constaetd®ve Hazard Rate
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5The hazard rate is defined Esz}’(ﬁsv) | L) hence as the probability thaf is in the
nextinfinitesimal interval, given that it has not been rem:before One can define the relative or geometric
hazard rate ag% ]HO = 1]\12((%)), as the probability thaV is in realized for the nextlative
increase of the target, given that it has not been reachedet(absolute) hazard rate is a constafr
the exponential distributiol’(N) = 1 — e~7(V=No)  the relative hazard rate is a constarif log N is
distributed exponentially’(N) = 1 — (N/Ny)~". For our results, the assumption of a constant relative
hazard rate is too strong; it would be sufficient to have thetive hazard rate converge to some positive

constant.




2.2 The Steady-State Price

Consider the following simple stochastic process. Theepofthe asset is a constant,
p: = p. Only if the underlying firm goes bankrupt (with probability— ¢) and cash
ceases to flow, the price dropszio= 0. Hence, the price follows a very simple binomial
process withPr{p,.1 = p|p = p} = ¢. The zero is an absorbing state. Let us derive the
pricep for which this process can be a rational expectations dxyjiiin.

In a market equilibrium, prices must be such that the masagempensation is the
same for storage and for the risky asset. If the managerssttiie compensation is
max{0; a(1+7r—p)}+ S5 =a(l+r— 3)+ S, assuming for now that < 1 +r.° If

the manager buys shares of the firm at a ppice p, she benefits from the dividend with
probabilityq. She thus earng/p, with probabilityq. If the firm does not pay a dividend,
the price drops to zero. Otherwise, the price remains.at= p, and the manager gets
additionallyp, 1 /p; = p/p = 1 from selling the asset. This stochastic process is depicted
in figure 2 (with parameters = 2, 3 = 0.9, ¢ = 95%, d = 1, andr = 10%).

Figure 2: A Binomial Price Process
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Given this price process, a datenanager’s expected compensation is
. Di+1 d
EtmaX{O,qa(—+——ﬁ)}+S (1)
Dt 2
In the market equilibrium, managers must be indifferentMeen the asset and storage,
hence

a(1+r—ﬁ)+S:Etmax{O;qa(%jtﬁ—ﬁ)}%—ﬁ (2)

5This assumption is confirmed for an endogenized contra&dtian 6.



Since the left-hand side is positive, we get
p+ d
04(1+T—6)+S:q04<%—6)+5. 3)

The steady-state pricg is above the fundamental value of the asset that would offtain
investment were not delegated to managers, denotedbyi q/(1 — g +r).

. dq
P o= a-—g+r

If 6 = 0orif g =1, the two prices are equah, = p. The effect that managers with
limited liability push up prices of risky assets above tHeindamental value has been
analyzed before by Allen and Gale (2000). Like Allen and Gade find that an increase
in uncertainty (i.e. a highey), keeping the fundamental value constant, drives the gtead
state pricep up.

(4)

Remark 1 Keeping the fundamental value constant, the steady-state pf a riskier
asset is higher above its fundamental value.

Let us make one important clarification. In the above nunaéegample, the fundamental
value isp = 6.33, but the steady-state pricejis= 9.05. This price deviation is due to
the limited liability of managers. However, it issdatic deviation, which is driven by
fundamentals¢, d, andr) and the managers compensation packayearnd «, where

« is irrelevant). The price deviations is hence driven by fonthnagers’ expectations
about future risk ) and dividendsd), but not on their expectations about future price
developments. The deviation is constant over time and ddoumst, such that its existence
is less interesting from a financial stability perspectidevertheless, this deviation can
magnify price movements. By contrast, the bubble descritbé&uk following is dynamic
by nature. It can be sustained only if the price is expectedeep on increasing in the
future. Price deviations will be fueled by the expectatiwat in the future, other managers
will buy at an even higher price (if the bubble has not burgil timen).

3 An Example for a Bubble

Assume that the price; is abovep at some daté. The only conceivable reason to
buy is that managers expect the price to rise even furthézaat with some probability.
Otherwise, as shown above, it would be a dominant strategyémagers to store rather
than to invest in the asset. However, a price increase to gpme- p, could also require

"The proofs for this remark and all propositions are in theeaglix.



more liquidity than investor’'s aggregate endowment. I ttase, the price would hit a
ceiling, no more price increase will be expected, and thélaubvould have to collapse
back top,,; = p. Alternatively, if the underlying firm goes bust, the pricdlwrop to
per1 = 0. As a consequence, the simplest process that can exhiblitdenis trinomial.
Let us hence look at a process with

0, with probability1 — ¢
Dir1 =& D, with probabilityq — @, (5)

per1,  With probability Q,
with Q; < ¢. Note the notational difference betwegn, andp;. . p;,1 is the stochastic
price at dateé+ 1 that can assume three different values is the largest of these values,
per1 > p > 0. A possible price process is depicted in figure 3 (with patanseas above).
The process starts at some prige> p, and the bubble potentially grows further and
further. However, it can hit the ceilingy at any time and burstV cannot be pictured in
the figure, since it is unknown. The ceiling will be hit withglrability 1, but the date at
which the bubble bursts is (and must be) unknown.

Figure 3: A Trinomial Price Process with a Bubble

For a price increase from, to p,,1, the probability of a continuatiompn-collapse) of
the bubble is

1-F N /p]
Qr=q—— ;]();)1) =q ]f,oy/f;? =40} [Pls1- (6)
Hence,q is the probability that a firm continues to operate, ghds the probability that
the firm’s asset price continues to rise. The probability the bubble just bursts although
the firm is still solventis thus — @, — (1 — ¢) = g — Q;.

If the share price falls because the firm is insolvent, thenpttice will drop to zero and
no dividends will be paid. The payment to the manager is then

0 O
amax{—+——ﬁ;0}=0. (7)
Pt Dt



If the share price falls because a bubble bursts, the pri¢erep top, and dividends will
still be paid. The payment to the manager is then

_ dq
d d+ T3 a=g5

bt Dt Dt

This implies that, if the price is only slightly above theadg-state pricg (hence the bub-
ble is small), the manager will earn a bonus even when thelbutuiosts. The according
condition is

. dq
mer= (g g/ ®)

Otherwise, the manager gets nothing if the bubble burstsud start with discussing the
second case. If she invests in the risky asset, she gets a hathuprobability;. Then
a modified version of (3) must hold,

a(1+r_ﬁ)+52Qta((pt—l—l"’d)/pt_ﬁ) + 5,
=0 (F=) a (e +d)/p =)+

t+1

1+T_6=(pt ) <@+i—ﬁ). (10a)
q DPi+1 Db Db

If, on the other handy; is belowp such that (9) is satisfied, another version of (3) must
hold,

a(l—O—T—ﬁ)—i—S:Qta((ptH+d)/pt—ﬁ)+(q_Qt)a((p+d>/pt_6)+S’

G G () o

Equations (10a) and (10b) respectively implicitly detevena price process in a rational
expectations equilibrium. To be precise, féb,.1, p;) be defined as the right-hand side
minus the left-hand side of equations (10a) and (10b), déipgron whether (9) holds.

Definition 1 A rational-expectations equilibrium is a path of pricgs }.~, and transi-
tion probabilities{ (¢, Q:) } such that forE: [ f (p:+1/p+)|(¢, Qr)] = 0 for all t > 0.

For any giverp, > p, (10a) (or 10b) implicitly defing,, and (6) defines the according
Qo, so all variables fop; in (5) are defined. Then starting from in a next step, (10a)
(or 10b) and (6) definp, and(;, sop, is defined. Following this procedure defines the
complete process recursively. One such process is showe tove figure 3.

However, equations (10a) and (10b) do not necessarily haa@udion for any set of
parameters. The higher the potential future pfice, the likelier it is that the ceilingV



is hit and the bubble will burst. The likelier a bursting oéthubble, however, the higher a
potential price increase must be in order to compensategean#or the risk they face. A
multiplier effect evolves. This feedback does not necdygsaach an equilibrium price
pi41 for all t. As a consequence, a bubble can burst with certainty at saee,dand
@; = 0. If the bubble cannot be sustained at date 1, managers will anticipate this
already before, and a backward induction argument shovishkabubble will not be
sustainable right from the start. An example is given in fgdi(withr = 20%, all other
parameters as above). At date 7, the price has risen tooihgglabove the dashed line,
and the bubble can no longer be sustained. Consequentlgctioeding initial pricepg
cannot be part of an rational expectations equilibrium gssdn the first place.

Figure 4: A Trinomial Price Process with a Non-sustainahiblide
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We are interested in conditions under which a bubble canmoratebe sustained. In order
to be sustainable, the implicit equations (10a) and (10lstinave a solution for any date
t. Rewrite (10a) and (10b), defining the auxiliary variable= p,,,/p; as the relative
price increase,

1 — d
5=t ﬁzwg—ﬁ for p, > p. (11a)
t
ol M =¢i+ (o] — 1) P + @) (i — 6) otherwise. (11b)
q Dt Dt

The value oy, .1 = ¢, p, is implicitly defined by (11b) ifp, < p, and otherwise by (11a).
The right-hand side of the equation is always the same, théadad side is depends on
the starting poinp,. The following figure 5 shows the right-hand side (thick)dahe
left-hand side for a couple of parameters. Figst= p < p. In this case, the right-hand
side of (11b) becomes; + (¢; — 1)+ ¢; (d/p; — 8). From the figure, one can see that the
only intersection with the thick curve is at = 1, which implies thap;,1 = ¢; p; = ps,
hence there is no price increase. Starting witk= p, we are of course in the steady state,
and the price does not change over time. There is no bubble.

10



Figure 5: Possibility of a Bubble
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But if the initial price is slightly abovey, the curve bends downward, implying that it
intersects with the curve at some > 1. In the next period, the price will be higher still,
and hence the intersectian,; will be even higher. A bubble emerges, and the speed
&1 = per1/pe iIncreases with time. When the pripe= p is reached, the right-hand sides
of (11a) and (11b) are equal, and we are at the dashed line iiigilre. The intersection

is again at some; > 1. This implies that the price will increase even more, resglt

in a further parallel shift downwards of the line. For an iitBrpricep;, the limiting line

q(¢ — B) is reached. From the figure, one can see that the intersgmiohmoves right
asp; increases. As a result, over time (with increasipyg the bubble becomes less and
less stable, the probability of a burst increases.

Remark 2 In a bubble process, the relative price increase= p;.1/p; grows over time,
Q) falls over time, and the bubble becomes less stable.

As a consequence, in order to show that a bubble can be setsiaia market, it suffices
to consider large prices. Hence, we may concentrate on the case- p. In the limit
py — 00, equation (11a) simplifies to

¢T(1+7r—=P0)=q(¢—0). (12)

The equation does not depend on time, so we have droppeddbetinIf (12) has a
solution for¢, the according market can sustain a bubble. For arbitrhrgi pricesp,,
there is always a pricg;,; that is high enough to make fonds managers buy at#dfe
(12) does not have a solution fgr then there is exists a prige that is so high that a
further increase is impossible. Nobody will buy, and thelidalwill burst. Hence, using
backward induction, the bubble cannot get started atdat®. The only possible initial
price is therpy, = p.

11



Numerical Examples. Unfortunately, this innocent looking equation (12) has losed-
form solution for¢. Becausey > 1, the left-hand side of (12) exceeds the right-hand side
for large . The above figure 5 shows the left and right side of (12) forrthmerical
exampley = 2, 5 = 0.9, ¢ = 95%, d = 1, andr = 10%. There is a solution at = 1.21
(and, for completeness, anotherdat= 3.54).8 Let us briefly explain this number. For
these parameters, (3) yields= ¢/((1 — 3) (1 — ¢) + r) = 9.05. Hence, the minimum
asset price would be much above the fundamental valygof-¢+r) = 6.33. However,

a price 0f9.05 would be stable. Each period, with probability- ¢ = 5%, the firm would
stop to pay dividends, in which case the price would drop to.ze

Now if, as a zero probability event, the price of the assetes@bover = 9.05, this new
price is the starting point of a bubble. Figure 3 shows a baitiat starts gi+0.8 = 9.85.

At the starting point of the bubble, the probability of aliiss — Q = 1 —q (p;/pi+1)? =
5.7%, only slightly abovel — ¢ = 5%. In later periodsp,.,/p; converges towards
1.21, as calculated above. The probability of a burst then cgegetowardd — Q =
1-0.95 (1/1.24)? ~ 34.7%. The bubble can burst for two reasons. First, as a fundamenta
reason, the underlying firm can go bankrupt. Second, as acfadaeason, the resources
in the market can be exhausted. Figure 3 shows these twobpmsiavelopments of
the market. The black curve starts with the steady-statemi9.05. The price never
increases. With probability — ¢ = 5%, the price drops to zero, but otherwise it remains
stable. The gray curve starts slightly above the steadg ptate atp = 9.25. This price
can only be rational if further price increases are expected

In another numerical example, let us see what happens if bléub not sustainable.
Settingr = 20% (and letting all other parameters unchanged), we get tHewirlg
figure 6. Here, because of the higher interest ratérops to 4.63 (the dashed and the
curved line are higher). There is no solution for equatio®),(k0 a bubble cannot be
sustainable. One can calculate the maximum ppicor which (11a) has a solution,
namely atp... = 9.23 (upper dashed line). j§, > 9.23 at some date, then,; does not
exist. In a bubble, prices need to rise, hence the price aathp,,., at some time and
the bubble is not sustainable.

Figure 4 uses this parameter constellation. The price ibdhbble rises. At date= 7, it
rises above,,.. = 9.23, so the bubble will bust no later than= 8. Backward induction
yields that the bubble cannot get started in the first plabe.ohly possiblerice path is
the steady state, with a price pf= 4.63.

8There are at most two solutions to (12) with> 1 (values of¢ < 1 would stand for bubbles with
falling prices and, formally, negative probabilities of ar$t). We do not consider the high solution in the
following since the corresponding equilibrium is unstaiNete that a situation in which the straight line is
above the curved one in figure &) (1 +r — 8) < q (¢ — ), implies a low probability of a burst relative
to the expected gains. Hence, the price is drivengufalls) and we move to the left. The same argument
holds for the opposite case, driviggup. Thus, only the lower equilibrium is stable.

12



Figure 6: Non-Existence of Bubbles
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Existence of Trinomial Bubble Processes. The above numerical examples in figures 3
and 4 seem to suggest that lower interest rate levels suppbliles, whereas higher
interest rates can punctuate a bubble. Reassuringlysthexfectly in line with traditional
intuitions of bubbles.

Let us now analyze more generally under which conditionslmiprocesses can exist.
Looking at figure 5, one can see that the solution may ceaseadbifthe gray line does
no longer intersect with the black curve, like in figure 6. Aagmal condition is given in
the following proposition.

Proposition 1 In a rational expectations equilibrium, a price process exhibit a trino-
mial bubble if and only ify < ¢/(1 +r — 3) and

e (13)

that is, for largeq, smallr, small~ or large 3.

The parametety captures the uncertainty in the market. The smajlethe larger are
mean and variance of the distribution, the more uncertaimeipotential market size. For
~v < 1, the mean is infinite, and for < 2, the variance is infinite. The paramefgs does
not appear in the analysis, which shows that for the existena bubble only the shape
of the upper tail matters. The smallerthe more likely a bubble can be sustained.

In the extreme case af — 1, the expected market size becomes infinite, ands/(y —
1))>~! — 1. Hence, a bubble can emerge if- 1 +r — 3. On the other hand, if — oo,

the market size is almost certainhy, and a bubble can never be sustained, independent
of the sizes of other parameters. This is the traditionakwacd induction argument of
Tirole (1982).
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The larger the interest rate the less likely is the possible existence of a bubble. This i
in line with the intuition that central banks can punctuatélides by increasing interest
rates, and that bubbles are more likely to emerge it inteadss are low.

Bubbles can exist especiallygfis high, that is, if the underlying asset is rather safe. This
seems to be in line with the recent housing bubble in the Un&.odher countries. Real
estate itself has a bankruptcy probability of almost zdrasty ~ 1.° Hence, as argued
above, the difference between the fundamental valusd the steady-state price is higher
for more risky assets, but the likelihood that a bubble eeig larger for rather safe
assets.

Finally, the parametes describes how steep the incentive schemes of managershere. T
larger3, the later the bonus payments to the manager kick in, andgheiis the power

of the contract, and the more prominent is the effect of tédid liability of the manager.
Hence, we have the result that the emergence of bubbles lesaoore likely when fonds
manager compensation is higher powered. The following égusummarizes all these
observations for the case= 2. Condition (13) then implies that > (v — 1)/y = 1/2,
hences > 0.5 in the figure. For parameters below the surface, bubblesassfie.

Figure 7: Feasibility of a Bubble

%If real estate is seen as a risky investment, then mainlyuseceeal estate prices can be driven away
from fundamentals, not because real estate is inheresky.ri
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4 Bubbles in General

We have argued that a very special kind of a bubble procesdtittomial bubble, exists

if and only if (13) holds. We now make this result more genesathowing that, if (13)
fails to hold, the only rational expectations equilibriunogess is the non-bubble process
with pricep. With other words, bubble processes in general exist if argib(13) holds.
The argument is simple. A trinomial bubble does not exidtéf turves in figure 6 do not
intersect, i.e. there is not solution forand hence prices in the bubble eventually increase
too fast to be sustainable. But any other bubble, not neglssaomial, would have to
allow for prices to increase at least as fast as in a trinomihble. So if, for a given set

of parameters, no trinomial bubble path exists, no bubhieegast at all.

Proposition 2 In a rational expectations equilibrium, a price process exibit a gen-
eral bubble if and only ify < ¢/(1 4+ r — ) and

O K

hence if(13) holds.

This is the main result of our paper. If the condition holthgre are multiple rational ex-
pectations equilibria, including bubble equilibria. letkondition does not hold, there is
only one steady-state (non-bubble) equilibrium price pssc There are no bubbly equi-
libria, neither trinomial nor of any other shape.

Note again the difference between the dynamic deviati@r fundamentals in this sec-
tion and the static deviations in section 2.2, which arisgs t limited liability. We
summarize the comparative statics in table 1. It shows homenease of a parameter
in the left column impacts on the static deviation from fumégtals (middle column),
and if it moves the market towards the region where dynamiblas are possible (arrow
upwards in the right column).

5 Policy Measures

In this section, we examine whether certain policy meastivashave been suggested in
the public debate can prevent the creation of bubbles in @det Specifically, we look
at an asset-price augmented Taylor rule, caps on bonusedatoay long-term compen-
sation, a financial transaction (Tobin-) tax, and capitqureements.
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Table 1: Effects of Variations of Parameters

Static deviation| Bubble condition
p/p (13)
Y — AN
T AN AN
15 / /
q N\ /
d — —
(but multiplier)

5.1 An Augmented Taylor Rule

We have already seen that a central bank can punctuate aebioyplicreasing interest
rates. Let us now analyze the impact of a preannounced stt@ate increase in the case of
a bubble, following a Taylor rule that takes asset price figfteinto account. Specifically,
assume a version of the rule used in Bernanke and Gertlet}200

re =17+ U (1 — ) + 0 (pe/pr—1 — 1), (15)

wherer; is gross consumer price index (CPI) inflation, andp, ; asset price inflation
of the only asset in the economy as defined above. For now weatdfe influences
of asset price inflation on CPI inflation by setting CPI infhatiequal to its target rate.
The target rate of asset price inflation is assumed to be osén the above analysis, in
a bubblep,./p,; converges towards a constantinserting (15) in equilibrium into (12)
yields

¢ (A+7+v(d—1) =) =q(¢—B) (16)

as a necessary condition for a bubble to emerge. Like for (#8)an derive a condition
for parameters, ¢, 3, v andq, determining whether (16) has a solution forUnfortu-
nately, the condition is algebraically complex. An equilifon exists if and only if

q(p—B) > ¢ (1+7+¢ (¢ — 1) — B) with
b= 5= (1=B=0 =) 47+ 57—+ o0

A FHI=A) (1=0)) (1= (47— )= A1 +2) (1) — 24(1+9))) ).

The following figure 8 shows parameterands for which bubbles can exist, for = 2,

G = 09 andr = 10%. The figure shows that, in order to prohibit the emergence of
bubbles, a regulator (central bank) can either raise tleeast rate-, or threaten to raise
interest rates in the future if a bubble should occur by cottimgi to a Taylor rule with
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positives). If the central bank opts for the Taylor rule, it never adpaleeds to raise
interest rates: interest rates increases occur only asseqgaance of asset price move-
ments, but because of the credible announcement of thisyp@lith a sufficiently large
1)), asset prices do not rise and bubbles are prevented. Gumant shows that an aug-
mented Taylor rule can cause less distortions than diréstdast policies. However, if the
central bank cannot differentiate between price movendtrggo bubbles and changes in
the underlying fundamentals (such as the probability okbaptcy 1 — ¢), it faces a trade
off between preventing bubbles and the risk of unnecegsaalving the interest rate in
times without bubbles. A thorough examination of this traffewould require a fully
specified DSGE model, which is beyond the scope of this paper.

Remark 3 Monetary policy that systematically reacts to asset prnmegases can prevent
bubbles.

Figure 8: Effects of the Taylor Rule

=

0.15"

0.10" No bubble

0.05/
Bubble possibl

0.1 0.2 0.3 0.4

5.2 Caps on Bonuses

The bonus payment to a manageHis= « ((pt+1 +d)/p — ﬁ) if the underlying asset
continues to pay off (probability) and, if there is a bubble, it does not burst (probability
1 — Q). Absent a bubble, this bonus payment is a constant. In aléuiblequalsxy (gbt +
d/p — ﬁ). Let us first ask whether a potential cap on this bonus would n the early
life of a bubble, hence potentially deterring a bubble frameeging in the first place, or
whether it would bind in the later stadium of a bubble. In tigdr case, the bubble would
have to bust with probability 1 at some dafeso a backward induction argument would
show that the bubble could not have existed in the first place.
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In the term for the bonus payment, increases over time, but/p, decreases. In the
aggregate, due to (11a), we have

By =a (¢ +d/p—B) = ad] (L+r—F)/q.

Hence, bonuses increase over time in a bubble, and caps ois bagments would be-
come binding in later stages of a bubble. As a consequenceaweoncentrate on large
pricesp,, so thatp, becomes a constant, and the maximum bonus is

B=a(p-p)=a¢’(1+r—0)/q.
Now assume that the regulator puts a ¢apn the bonus.

There are two ways the regulation can be implemenkédt, the compensation scheme
could be adjusted such that bonuses abBvare less likely to occur, for example by
reducinga or increasings. However,a does not have an effect on the existence of
bubbles, and an increase ithwould forward the emergence of bubbles. Hence, this
policy would backfire and make bubbles more likely.

Secondpne could adjust the compensatiomtm{max{ca ((pr1 + d)/p: — ) 0}; B}.

Then, the bubble will burst with certainty at some point eflite if « (gb—ﬁ) > B, hence
if > B/a + 3. Consequently, for a given compensation scheme with paeaseand
3, a cap on bonus paymeniswill punctuate a bubble i3 /o + 3 < ¢, with ¢ defined
by (12).

The implicit function theorem shows hayvdepends on other exogenous parameters. For
example,d¢/dr > 0. To see this, define the terffi = ¢" (1 +r — 5) — q¢(¢ — 0),
which is zero due to the implicit equation (12) for The derivative)T'/0r is positive,

the derivativé)T'/0¢ must be negative if we concentrate on the most moderate aite
Consequentlyi¢/dr > 0. This proves the following remark.

Remark 4 Increasing interest rates and caps on bonus payments argisutibnal reg-
ulatory instruments.

Along the same line@)T'/dq < 0, hencelp/dq < 0. Alargerq can be identified with more
conservative investments. For example, if the assets veengriized mortgages, then a
high ¢ would stand for the prime market, and a lowewould represent the subprime
market. Then a cap on bonus payments would be more likely teffleetive on the
subprime segment. More generally, the following result \ddwld.

Remark 5 Caps on bonus payments are less effective in deterring bahblconserva-
tive fields of investment.
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5.3 Long-term Compensation

In the recent political discussion, it has often been argl@dmanagers’ incentives should
be made more sustainable, such that managers concentn@@mlong-term goals and
avoid short-termism. The same argument might be true fofdhds managers in our
model. To analyze this question, let us assume that the reanaceivesnax{0; o (y —
B3)} as before, but that she is liable with her compensation foerg@l future losses.
Hence, she will get nothing if the yield is negative in the tngsriod. In a steady state,
the market price will then be

a(l+r—8)=q a((p+d)/p—B),
d ¢?
- (1—@) +r

i.e. smaller than without long-term liability. If a bubblaists, the probability that the
bubble does not burst after two periods is

Q= q2pt/pt+2 = q2/¢27.

As a consequence, the one-period price increasaletermined by

a(l+r=08)=Qa(s—pB)=¢/¢""a(¢— ),
" (1+r—8)=q¢ (¢ - B).

The equation is similar to (12), only thais substituted by -, andq is substituted by?.
Because bubbles exist especially for smadind largeg according to proposition 1, we
find that long-term liability prevents the existence of bigsb For an even longer liability
period, the effect would be even larger.

P =D =

Remark 6 If fonds managers are liable for future developments widirthonuses, bub-
bles become less likely.

5.4 Financial Transaction Tax.

There are different possibilities how to implement a soezhllobin tax. We concentrate
on the implementations that affect the incentives of theagan and therefore alter the
probability of the emergence of bubbles. We denote the tathersafe asset with,
while the potentially different tax on the risky asset’isUnder such a tax regime, the
no-arbitrage condition (12) changes to

¢ [(L=t)(1+r)=B) =q[1—-1t)o -] (17)

19



The modified condition for the existence of bubbles is then

L B o\ q(1=1)
V<ﬁ> SO n0-t-5 (18)

The derivative of the above expression with respec¢tipositive, i. e. increasing the tax
on transactions of the risky asset can make bubbles impes#ilis important, however,
how the tax is implemented. If it is levied on all financial @iss including the safe one,
t equalst’ and the derivative of the above equation with respect toakéurns negative.
In such a case the possibility of bubbles can be created biuathie tax.

Remark 7 If the financial transaction tax is levied only on the riskyeis bubbles be-
come less likely. If, however, it is placed on the safe andiig asset alike, bubbles
become more likely.

5.5 Capital Requirements.

We have already argued that our fonds managers can be mats/difinancial interme-
diaries, for example banks. In this case, capital reguiatiould be the most prominent
policy tool. Our model suggests that capital requiremeantspng other things, have the
effect of preventing bubbles. The reason is straightfodwaf our fonds manager is a
bank, then pure equity finance would meaga- 0 and a rather lowy, whereas pure debt
finance would imply a higl# anda = 1. Hence the more equity capital a bank holds, the
lower ares anda. According to proposition 1, the lowet can foreclose the emergence
of bubbles.

Remark 8 Capital requirements can prevent bubbles.

In this subsection, the contract parametersnd S were treated as exogenous variables.
However, more realistically these variables will be setroptly by the investor, who de-
signs the contract. Therefore, we endogenize the compengstckage in the following
section.

5.6 Welfare

In order to justify any policy measure for the prevention abbles, it is necessary to
analyze the welfare effect of bubbles. We assume that atitagee risk neutral and have
identical utility functions,u; = ¢!_, + pc! for agenti, who is born at dat¢ — 1 and

consumes at date The discount factop must satisfyl/p < 1 + r, otherwise agents
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would not even have an incentive to invest into the riskfreget As a consequence,
¢._, = 0. Takingp also as the inter-generational discount factor, we carewrit

e e}

E()W = E(] Z Z ptui = Z ptE(]Ct,
t=0

7 t=0

where(, is aggregate expected consumption at datayments between managers and
investors in the same generations are mere transfers anat darectly enter the welfare
function. Now, absent a bubble, the price of the asset isy@waHence, the generation
that consumes at dateearnsC, = p from selling the asset. Generation 1 pay®r the
asset. Because there aveinvestors, each owning 1 dollar, the aggregate endowment of
generation 1isV. The investment into the riskfree assedis- p, sincep is already spent

on the risky asset. With probability generation 1 also getsfrom selling the asset, plus
the dividendd. Hence, the aggregate expected consumption of generatson 1

EqCr=q(d+p)+ (N —p)(1+7).

Generation 2 buys the asset only with probabititywith probability 1 — ¢ the firm is
bankrupt and there is nothing to buy. Hence

EyCy=q* (d+p)+ (N —qp) (1 + 7).

The equations for the following generations are similat wsenow look at the expected
consumption in a bubble. For concreteness, consider tiaial “example” bubble pro-
cess of section 3. Generation O then gé&fs= p, > p from selling the asset. Generation 1
buys the asset at prigg, but expects the price to rise po with probability @, to fall to

p with probabilityq — )y, and to fall to 0 with probability — ¢. Hence,

EyCl = Qo(d+p1)+ (¢ —Qo)p+ (N —po) (147),
and so on. Now consider welfare differences,

C'(,) — CO = Po _pu
Ey(C1—C1)=Qo(pr —p) — (L +7) (po — D),
Eo(Cy—Cs) = Q1 Qo (p2 — D) — Qo (1 +7) (p1 — D),

and so forth. Hence the aggregate welfare difference aradont
0o t—2
EAW = (po— ) + 3 o [T @ (Qus (0= 5) = (1+7) (01 — 7))
t=1 t'=0

=> p—-p) (1—p1+1) l:[Qu,

t=0
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which is non-positive ifl +r > 1/p. Consequently, the welfare effect of a bubble is
always negative, and zero only in the limiting casd of » = 1/p. Besides the effect of
shifting consumption across generations, total resowaeeseduced in a bubble because
of the reduced investment in the safe asset—representorgigm bond, productive cap-
ital or the like.

Alternatively, one can argue the following way. The paymsaritthe risky asset are not
affected if there is a bubble. But in a bubble, at dagt¢he young generation pays a
price p; higher tharp to the old generation born at date- 1. This is simply a transfer
of wealth between generations, with two consequences. ®tieethigher pricep; >

p, the young generation invests less into the the safe adsat) apportunity cost of
(1+r)(p: — p). The transfer is carried one period forward, hence it isalisted. But
because the riskfree rate+ r exceeds the inverse discount factolp, the aggregate
welfare effect is negative. Since bubbles always involiegsr abovep, this argument
proves the following proposition.

Proposition 3 (Welfare) Assume (13) holds, aridt- » > 1/p. Then of all equilibria, the
steady-state equilibrium is strictly welfare-optimal.

A social planner would set the price of the risky asset to .zédowever, this is not a
feasible solution in a decentralized equilibrium.

6 Endogenizing the Compensation Scheme

In the above analysis, the parameters of the compensatienmscfor the managers, 5,
and S, are taken as exogenous. In this section we are going torexplaich compensa-
tion scheme will emerge endogenously. We assume that tkstmvis risk averse, while
the manager is risk neutral. The remaining setup is as destimn the previous section,
i. e. an investor delegates the investment decision to a geanahose actions she cannot
observe. Since there are more managers than investors acomemy, the investor can
make take-it-or-leave-it offers to the managers, whichimie the expected profit of the
investor. In doing so, she has to consider the managerkipation constraint. Letting
y again denote the revenue generated by the manager, thaexkpecfit of the investor
is then

El = Eyy — E; max {O; ay — ﬁ)} —S.

We restrict the parameter to be lower or equal to unity, since in the opposite case a
highery can lead to a lower profit of the investor. Put differentlyttie extreme a very
high realization ofy could lead to bankruptcy of the investor under- 1. The manager
will only accept the contract if it fulfills

Etmax{(]; oz(y—ﬁ)}—i-SZA, (19)
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where A is the outside option of the manger (such as academia). $wece are more
managers than investors, the investor will choesg, andS such that the manager will
be at the limit of his participation constraint. This im@ithat equation (19) will hold
with equality. Inserting this result in the above profit ftioa yields E,I1 = E,y — A.
Hence, the investor maximizes her profit by reaping the ceteurplus of the manager.
The relation betweeR, «, andj can be seen by rewriting (19) as

S=A+Qaf-ad (20)

with
Q = fly)dy and ¢ = f(y)dy,

where the probability distribution af is denoted byf(y). The risk-neutral manager is
indifferent between values ¢, «, and(, as long as this equation is fulfilled. The risk-
averse investor, however, has an incentive to minimize #r@nce of her profits in the

different states of the economy. To this end, let us rewhte éxpected utility of the

investor as

/6 o0
EU(I) = / Uy — S)f(y)dy + /ﬁ Uy[l—a] +aB — S) f(y)dy.

The investor maximizes this expression subject to (20}, 0, anda < 1. Because of her
risk aversion, she tries to increase the profit in states avlthw realization ofy, relative
to states with a higl. Therefore she chooses= 1, S = 0, and resulting from equation
(20)
¢ —A

/6 = Q, *
The right-hand side decreases, starting from a large nyrfdse¥ = 0 to minus infinity
for § approaching infinity. Hence, a fixed point can be found. Wenoadetermine the
probability of a bubble, so let us take the extreme of tregtias a zero-probability event.
In this case()’ = g and¢’ = ¢ (1 + r). Equation (21) changes to

(21)

(14+r)g—A
q

p= <1+

Hence, we get the following remark.

Remark 9 A risk-averse investor chooses a loan contract with 1 + 7.

Importantly, this condition does not contradict (13). Gemsgently, with endogenous com-
pensation contracts, proposition 2 still applies.
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7 Conclusion

In this paper, there are two reasons why the price of an assgtsviate from its funda-
mental valueFirst, as also analyzed by Allen and Gale (2000), funds managersire
up the price of risky assets due to limited liability. Thi$eet is larger for riskier assets.
Seconda funds manager may be willing to spend more than the fundtaiealue on an
asset because she expects to earn even more when she safisdheSuch an increasing
bubble is more likely to emerge if the underlying asset iseatafe.

Our theory of bubbles is in line with some anecdotal evidebeging the dot-com bubble
(1998-2001), phantasies about the potential of internetsfivere exuberant. Possibly,
the asset prices of these firms were even more exaggerated theslimited liability of
traders. Hence, the traders’ limited liability let the egtdince appear as through a magni-
fying glass. When expectations became more realistictsagaees collapsed because the
correction of expectations was again magnified. This cotagegument follows thérst
explanation, hence it is especially reasonable for riskegs like the stock of dot-com
firms.

Following the “as-long-as-the-music-is-playing-youget-to-get-up-and-dance” expla-
nation for the recent U. S. housing bubble, managers boeghtisies because they thought
they could sell them at a higher price later, driving up mic€his argument follows the
secondexplanation, hence it is especially reasonable for fundaatly safe assets, like
real estate. Our model can make some proposals how to avoidbeibbles. One can
increase interest rates, implement a Taylor rule that seactasset-price developments,
cap bonus payments to fonds managers (if this is done theway), or introduce capital
requirements for managers (intermediaries). Due to itdivel simplicity, the model lends
itself to further discussions. For example, one could aersseveral assets, and discuss
whether a the collapse of a bubble in one market can be canmfpr the other markets.
One could plug bubbles into macro models and look at growfdces. Especially after
the recent burst of the housing bubble, the number of pasajiyplications seems vast.

Appendix

Proof of remark 1. To see this, assume théatises and, falls such that the fundamental
valuep remains unchanged, hende- p (1 4 — ¢)/q. The steady state prigeis then

_ 14+7r—gq
p=p )
“1l+r—q-0(1-q

which depends negatively apn This implies that, for given fundamental valpgthe
steady state pricgwill be higher for more risky assets. |
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Proof of proposition 1. We have already argued that the probability that a bubblst®ur
increases witht, or with p,. But, because;, is an increasing function af a bubble is
sustainable if and only if it is sustainable fgr— oo. Hence, if (12) has a solution for,
the bubble is sustainable. Now consider the limiting casejHich the lineg (¢ — 3) and
the curvep” (1 + r — 3) will only just touch. At the touching point, the slopes must b
equal, hence

(L+r=P)y¢"~ =g,

which implies that the touching pointis= 3~/(v — 1). Substituting the above solution
into (12), we find that the limiting case is reached at

By \7 By
(5=7) arr-m=a(=7-9)
Some algebra yields (13). We have checked the conditionsrumkich (12) has a solu-
tion. However, in a bubble, prices must increase, hencel. Considering the geometry
of the problem, this is the case if thigght hand of (12) is steeper in than the left

hand at the poinp = 1. Otherwise, the curves would intersect tor< 1. Evaluating

the derivative of left and right hand of (12) at the point= 1, we obtain the condition

v <q/(1+r—7).

Now let us turn to the comparative statics with respect,to, 5, andy. There are two
conditions that may become stricter or laxer. First, caadi{13) is satisfied iff

5\t
— T —L/— —q<0.
(I+r—=p)y (7_1> qg<0
The derivative of this term with respectgas negative, hence the condition is more likely
to be satisfied for large. The derivative with respect tois positive, hence (13) holds
rather for small. The derivative with respect tpis

i)y_l log b7

arm i (25) " 22

71

Now remember that the touching pointds= 5~/(y — 1). The above logarithm is
therefore positive, and the complete derivative with respe~ is positive. A largery
makes bubbles less likely. Finally, the derivative withpes tog is

o~ <7€1)7_1 (1+7) (76— 1)—57.

Again, at the touching point must exceed 1, hengg > (v — 1)/~. For the limiting
8 = (v — 1)/v, the numerator of the above fraction beconies-r) (y — 1) — By =
—r (v — 1) < 0. Hence for anys larger than the limitingy — 1)/, the numerator must
be negative. Thus the whole derivative is negative, andgetar makes bubbles more
likely. The second condition; < ¢/(1 + r — 3), has the same comparative staticsll
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Proof of proposition 2.  Assume that a price process exhibits a bubble, angthatp at
a datef, andp,., is distributed with distributior#(p,.1). Then, in a rational expectations
equilibrium,

oo Diiq + d N
a(1+7’—ﬁ)+52/ Qtamax{zL—@O}df(le)*’Sv
0 pt
14+7r— < _
0
oy Pl (Peitd N
h(pt+1) = Imax {]5;{4_1 ( o 6)70}

is an auxiliary function. The,,; implicitly defined by (10a) solves this equation for a
distribution that has probability mass only at one pgint (and zero angh). The ques-
tion is, from this three-point distribution, can we shifopability mass to other prices,
such that the above (22) still holds? The answer dependsesshiipe of.(p,.1). Some
straightforward analysis shows thatp, . ) is zero up top,.1 = G p; — d, then increases
and decreases again. Fpr; — oo, it again approaches zero asymptotically. The maxi-
mum of the integral is reached if all probability mass is tecsat

Bps—d
v—1

13:-4-1:7 > [Bp —d.

Hence, a trinomial process with the possible eveiits, p, and0 maximizes the right-
hand side of (22). Shifting probability mass to other pafté@;.;) reduces the value
of the integral. Note that no bubble can emerge if the leftehside of (22) is larger than
the right side for any price path. We can therefore conclbdg if no trinomial bubble
process exists, no other bubble process can exist eithathe&wther hand, if a trinomial
bubble process exists, it is an example for a general bulbsbeps. As a consequence,
(13) is the general condition for the existence of bubblegsses in rational expectations
equilibrium. [ |
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