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Human subjects are proficient at tracking the mean and variance of rewards, and updating

these via prediction errors. Here, we addressed whether humans can also learn about

higher order relationships between distinct environmental outcomes, a defining ecological

feature of contexts where multiple sources of rewards are available. By manipulating the

degree to which distinct outcomes are correlated we show that subjects implemented an

explicit model-based strategy to learn the associated outcome correlations, and were adept

in using that information to dynamically adjust their choices in a task that required a

minimization of outcome variance. Importantly, the experimentally generated outcome

correlations were explicitly represented neuronally in right mid-insula with a learning

prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show

that the human brain represents higher order correlation structures between rewards, a

core adaptive ability whose immediate benefit is optimized sampling.
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Introduction

Risk is ubiquitous in nature with predation, starvation, adverse environmental change, or lack of

reproductive opportunity acting as constant background va

behavior. Animals evolved a variety of strategies to minimize risk such as diversifying mating

behavior (Fox, 2003) - esert bees mitigate against large temporal

variability in rainfall by stabilizing their birth rate (Danforth, 1999; Hopper, 1999). These risk-

spreading strategies act to minimize between-year variance in reproductive success in a similar

way to cost averaging, where financial investors periodically purchase risky asset to reduce the

overall risk of an investment portfolio (Dodson, 1989). Our concern here is with risk as defined

by outcome variability, measured from the variance of an outcome distribution. This is a first-

order approximation of risk commonly used as a critical decision variable in ecological

(Stephens, 1981) and financial (Markowitz, 1952) decision analysis.

While the aforementioned strategies are naive with respect to higher order structure in the

environment, organisms can reduce risk even more effectively if they deploy knowledge of how

different environmental states occur in relation to each other by representing correlations

(Yoshimura and Clark, 1991). Thus, a lion learning that buffalo congregate at water holes on

hotter days can reduce the chance of starvation by allocating more predation time to this food

source by simply registering that the weather on a particular day is hot. In effect, knowledge of a

covariance structure between discrete events allows inferences as to the presence, or in many

instances quantity, of one outcome merely by observing a complementary event without actually

having to sample on the inferred one.
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Risk minimization is also a key concept in financial and insurance markets. Hedging, the process

of combining multiple positions in different assets to reduce total risk in a portfolio is a common

risk minimization strategy in financial investments (Jorion, 2009). Modern portfolio theory

(MPT)(Markowitz, 1952) formalizes the concept of risk-spreading and relies upon correlations

between multiple assets to specify how they can be most efficiently combined to maximize

returns and minimize risk. Research in decision neuroscience provides extensive evidence for a

neural representation of key decision variables (Doya, 2008) with a focus heretofore on value

signals, putative inputs to the decision process such as action or goal values, and representations

of expected outcome after a choice (Hampton et al., 2006 ; Knutson et al., 2005; Lau and

Glimcher, 2007; Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007; Samejima et al.,

2005; Wunderlich et al., 2009; Wunderlich et al., 2010). There is now good evidence that

fundamental computational mechanisms underlying value-based learning and decision-making

are well captured by reinforcement learning algorithms (Sutton and Barto, 1998) where option

values are updated on a trial by trial basis via prediction errors (PE) (Knutson and Cooper, 2005;

Montague and Berns, 2002; O'Doherty et al., 2004; Schultz et al., 1997). More recently, there is

an emergent literature that suggests the brain not only tracks outcome value, but also uncertainty

(Huettel et al., 2006; Platt and Huettel, 2008) and higher statistical moments of outcomes such as

variance (Christopoulos et al., 2009; Mohr et al., 2010; Preuschoff et al., 2006; Preuschoff et al.,

2008; Tobler et al., 2009) and skewness (Symmonds et al., 2010).

An important component of outcomes, namely the statistical relationship between multiple

outcomes, and what neural mechanisms might support acquisition of this higher order structure

has remained unexplored. In principle, there are several plausible mechanisms including the

deployment of simple reinforcement learning to form individual associative links (Thorndike,
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1911), or a more sophisticated approach that generates decisions based upon estimates of

outcome correlation strengths. If the latter strategy is indeed the one implemented by the brain

then this entails a separate encoding of correlations and corresponding prediction errors beyond

that of action values and outcomes.

Here, we address the question of how humans learn the relationship between multiple rewards

and

Furthermore, we found evidence for a neural representation of correlation learning evident in the

expression of fMRI signals in right medial insula that increased linearly with the correlation

coefficient between two resources, a normalized measure of the strength of their statistical

relationship. A correlation prediction error signal, needed to provide an update on those

estimates, was represented in rostral anterior cingulate cortex and superior temporal sulcus. To

our knowledge, these behavioral and neural data provide the first evidence that subjects learn the

correlative strength between rewards and are able to use this information to make risk-optimal

choices.

Results

To investigate how humans learn correlations between outcomes we scanned 16 subjects using

whereby a power company generates fluctuating amounts of electricity from two renewable

energy sources, a solar plant and a wind park. We instructed subjects to create an energy

portfolio under a specific goal constraint necessitating keeping the total energy output as

constant as possible (Fig. 1A). Subjects accomplished this by adjusting weights that determined
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how the two resources were linearly combined. A normative best performance is achievable by

finding a solution that exploits knowledge of the covariance structure of these resources (Fig.

1B), a task design that approximates a simple portfolio problem in finance. Importantly, the

outcomes of the two resources co-varied with each other and this correlation between the two

outcomes changed probabilistically over time, requiring subjects to continuously update their

estimate

estimate of the correlation strength because a good performance is only accomplished if subjects

learn both the distribution of returns for each resource as well as their correlation. We rewarded

participants according to how stable they kept the total output of their mixed energy portfolio

relative to the variance resulting from an optimal strategy (specified by MPT-calculated optimal

weights).

Behavioral model comparison

We speculated that subjects might solve the task by learning the correlative strength between the

resources via a correlation prediction error, calculated from the cross product of the individual

Fig. 1C). This envisages that subjects represent a

continuous measure of outcome correlation and update this metric on a trial-by-trial basis. To

rule out alternative strategies we examined other computational models that could be used to

guide choice in our task, and fitted the free parameters of each model to get model predicted

portfolio weights that most closely resembled the actual responses for each subject.

One such alternative model-based strategy is to exploit trial-by-trial evidence to update a

representation of the portfolio weights directly instead of first estimating the correlation

coefficient. Similar to correlation learning, this model makes assumptions about the structure of
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the task and uses individual resource outcomes as a basis for learning. The main difference

between the covariance based model and this model is that in the former, subjects update an

estimate of the correlation via a prediction error and then translate this correlation strength into

task specific weights on every trial, while in the latter the estimate of task dependant weights (i.e.

the position on the response slider) are learnt directly. This differentiation is important because

the correlation coefficient is a normalized and therefore universal measure of the

interdependence between the two outcomes, while appropriate mixing weights are task specific

and would need to be relearned if the variances of the individual outcome change or the goal of

the task changes from risk minimization to maximization. Both of these strategies are model-

based as they require an understanding of how the two individual outcomes interact. There are

other potential modes of learning that we also consider. For example, subjects might implement

a more simple model-free reinforcement learning based on Q-learning of action values for

increasing or decreasing the weights. In contrast to the former approaches requiring subjects to

attend to the individual resource outcomes, a subject who updates action values in this model-

free way would instead consider the mixed portfolio outcome in every trial and try to minimize

its temporal fluctuation using simple outcome based updating. Any change in behavior following

a change in correlation between resources would then be due to a relearning of a new optimal

mix of actions rather than a more complete knowledge of the structure of the environment.

Finally, subjects might use a heuristic of detecting coincidences in the occurrence between

outcomes, without a full representation of the strength of correlation.

Out of all tested models, the model based on tracking the correlation coefficient best predicted

Fig. 2A, Table 1). The weights estimated

l choices
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(Fig. 2B) with the regression of actual observed weights on model predicted weights being

highly significant in every individual subject (p<<0.0001; average R2 across subjects = 0.77;

approximated normatively optimal portfolio weights

while subjects attempted to keep the total energy output stable (minimize variance) (Fig. 2C).

some lag, the latter resulting from a need to have multiple observations to reliably detect any

approximately compared to a normative calculation of the correlation coefficient over the

outcomes of the past 10 trials.

Neural representation of the correlation strength

If indeed the brain learns the relationship between two rewards by estimating their covariance

then this predicts that we should observe a neural representation of the computations that support

this process. Consequently, we tested for fMRI signals that track the covariance or correlation

strength, and because the outputs vary, there should also be a signal that updates this

information. Based on prior evidence, we predicted activity related to covariance would be seen

in insular cortex or striatum, areas implicated in encoding the risk or variance of individual

outcomes (Preuschoff et al., 2006; Preuschoff et al., 2008)

trial-by-trial estimates of the correlation coefficient and regressed those model-predicted time

series against simultaneously acquired fMRI data. We found BOLD activity in right mid-insula

varied with the correlation strength between the outputs of the solar and wind power plants (xyz

= 48, 5, -5; Z=4.12; p<0.001 FWE corrected; Fig. 3A). Right insula was the only region to



9

survive cluster level whole brain correction and we provide a comprehensive list of all activated

areas at a lower threshold (p<0.001 uncorrected) in Table 2.

We next determined whether the correlation strength is represented either as covariance, a raw

measure of how much the two variables fluctuate together, or as the correlation coefficient, a

scale invariant metric of the covariance normalized by the standard deviation of each resource.

We estimated two additional models using Bayesian estimation, with either the covariance or the

correlation coefficient as parametric modulator, and compared the ensuing log-evidence maps in

a random effects analysis. Activity in right mid-insula was better described by the correlation

coefficient than by covariance (exceedance probability of p>0.999). The linear relationship

between correlation coefficient and BOLD is visualized in a binned effect size plot (Fig. 3B).

We then verified whether this signal was more strongly represented at the time of outcome, when

new evidence is available to update estimates, or at choice when subjects actively readjust their

allocated weights for the two resources (Fig. 3C). In addition to plotting the effect timecourse we

tested these neural hypotheses by estimating a design where the correlation coefficient acted as

an unorthogonalized parametric modulator of activity at both the time of outcome and time of

choice. In this analysis we observed significant effects of correlation strength solely at the

outcome time (Z = 3.60, p = 0.01 FWE corrected) but not at the time of choice (Z = 2.40, p =

0.02 unc.).

decision variables in this process then we would expect that brain activity should be particularly

well explained in those subjects in whom our model also provides a good choice prediction. This

would be expressed in a relationship between the behavioral model fit and the model fit in the
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GLM against BOLD data. Consistent with our conjecture, we found a significant positive

correlation between R2 in the behavioral model and R2 in the MRI analysis (r = 0.50, p < 0.03;

Fig. 3D). In effect, this confirms that our model explains a larger proportion of the fluctuation in

the neuronal data in those subjects in which the model can also well explain choices.

Neural correlates of correlation prediction errors

A neural representation of correlation strength in our task entails that this estimate is updated

over time, a process ascribed to a prediction error signal. Analogous to risk prediction errors for

individual rewards (Preuschoff et al., 2008), the cross products of the two outcome prediction

errors provide a trial-by-trial estimate of the covariance strength. Using this regressor we found

that a correlation prediction error was tracked in fMRI activity in left rostral cingulate cortex

(xyz = -15, 44, 7; Z = 4.87; p<0.003 FWE corrected; Fig. 4; Table 2).

From correlation to portfolio weights

After observing an outcome, participants may have an imperative to change the slider position if

their currently set weights deviate from the estimated new best weights, in other words if they

are sub-optimal. We tested for a signal corresponding to the absolute (i.e. unsigned) deviation

between current and new weights on the next trial and found corresponding BOLD activity in a

region encompassing anterior cingulate (ACC) / dorsomedial prefrontal cortex (DMPFC) (xyz =

6, 26, 34; Z=4.22; p<0.001 FWE corrected) and in right anterior insula (xyz = 42, 23, -5; Z=4.04;

p<0.04 FWE corrected) at the time of the outcome (Fig. 5; Table 2). In contrast, no areas

corresponded directly to the portfolio weight values or a signed updating of weights, signals one
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would expect if subjects performed learning over task specific weights instead of the correlation

structure between outcomes.

Finally, an optimal solution to our task requires learning of the individual outcome variances in

addition to learning the covariance structure. When we tested for neural activity coupled to local

temporal fluctuations in the individual outcome variances we replicated previous findings in

highlighting a neural representations of outcome risk in striatum (xyz = -18, 5, 10; Z=3.81;

p=0.04 small volume corrected; Fig. S3).

Alternative model considerations

As an alternative to learning the correlation coefficient subjects might directly learn the weight

representation and perform RL over the weights instead of the correlation coefficient. If that

were the case then one would also expect to find a neuronal representation of the weights and

weight prediction errors, which were conspicuously absent in our data. Another possibility could

be that subjects simplified the problem to detecting outcome coincidences (both outcomes either

above or below mean versus one outcome above and the other below mean) instead of fully

quantifying the trial-by-trial covariance. In that case we would expect to find a neural signal

pertaining to mere outcome coincidences. We found no activations coupled to either the weight

or the weight prediction errors, or the trial-by-trial coincidences anywhere in the brain at our

omnibus cluster level threshold of p<0.05. Together with the inferior behavioral fit of the

coincidence model this suggests that subjects quantified the trial-by-trial relationship between

outcomes. We also implemented a model-free Q-learning algorithm as further alternative

strategy, which was clearly outperformed by the correlation model.
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Discussion

We show that human subjects are adept at learning correlations between two dynamic variables,

a process also represented neurally. Subjects were highly effective at exploiting this key metric

of the statistical relationship between the two individual resources to guide choice in a task

requiring minimization of outcome fluctuations. This finding is in contrast to an often proposed

model in behavioral finance, which suggests disregarding environmental structure and using

fixed weights according to the 1/N rule (Benartzi and Thaler, 2001). Our subjects performed

better than this simple heuristic and learnt a more optimal strategy through repeated

observations. At a neural level, fMRI signals in right mid-insula were coupled to the current

correlation coefficient while activity in rostral anterior cingulate encoded a correlation prediction

error, a signal used to update an estimate of the correlation strength based on new evidence in

every trial.

Although learning individual outcomes is a central part of decision making, the availability of

different rewards are rarely independent of each other in a natural environment. Our results

provide the first evidence that subjects also learn the relationship between multiple outcomes by

tracking their correlation, and can use this information to decrease overall sampling risk.

Commonly observed risk aversion in animals (Kacelnik and Bateson, 1996) and humans

(Tversky and Kahneman, 1981) is rational in an evolutionary context, as a small but constant

supply of food that always exceeds the critical minimum for survival is far more beneficial to



13

viability than periods of alternating deficiency and extreme excess. In some other instances risk

seeking behavior may occur, such as in gamblers, and may promote exploration and learning.

Note however that also in that case a representation of the correlation in the environmental

structure is beneficial as this information can be used both for risk minimization or

maximization.

To generalize our results to more natural situations we have to ascertain that the findings reflect

a specific mechanism of correlation learning instead of incidental task variables. Plausible

possibilities include shortcuts such as learning the position on the response slider by a model-

free gradient descent mechanism, or using a model-based strategy but without representing

individual outcome variances and normalized correlation coefficients and instead directly

learning a representation of the portfolio weights. Our behavioral and neural data render all these

explanations very unlikely. The best fitting learning rate for outcome variance is similar to the

learning rate for correlation and significantly above the one for value for each individual subject.

Importantly, we ensured that the signals in our study were not spurious reflections of the

individual variances of solar and wind plant outputs by explicitly modeling these signals with

additional (unorthogonalized) parametric regressors. A fluctuating trial-by-trial estimate of the

outcome variance is also represented neurally in striatum (Fig. S3), an area previously implicated

in variance learning (Preuschoff et al., 2006). While these neural signatures of risk and risk

prediction errors were somewhat weaker compared to covariance signals, we suggest this

observation is due to an amalgamation of signals tracking the two separate resource variances

within the same area, and because the variance of the two outcomes fluctuated only slightly over

the course of each experimental block. Importantly, we found no significant correlations with
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signals pertaining to alternative decision models anywhere in the brain at p<0.05 corrected.

Specifically, we examined if there was evidence for a direct representation of desired resource

weights, or weight prediction errors, signals one would expect instead of the correlation

coefficient if subjects used a more task specific strategy. We also did not find significant

correlations with a more qualitative measure of coincidences instead of fully quantified

correlations. Together with a superior behavioral fit of the correlation learning model, this

strongly supports the specificity of our neural results and effectively discounts the possibility that

the observed activations here relate to incidental task related learning processes instead of

learning the correlation between outcomes.

We found that anterior insula tracked the correlation strength between the outputs in a site

slightly posterior to regions previously implicated in tracking variance (Mohr et al., 2010;

Preuschoff et al., 2008). Combined these findings suggest that insular cortex may support a

general role in processing statistical information about the environment. At the same time,

anterior insula has been implicated in representing bodily states and their translation into feelings

and possibly awareness (Craig, 2009). Note that the calculus like role proposed here does not

contradict the idea that anterior insula represents subjective aspects of experience. Indeed, the

Somatic Marker Hypothesis postulates that rational decision theory requires emotional

anticipation of outcomes (Bechara et al., 1997), such that seemingly prudent behavior and

emotional decision making are intertwined (Paulus et al., 2003). The finding of a slightly

posterior encoding of correlation relative to risk also tallies with a structural model for how

unconscious state representations might be integrated into a sentient self along a posterior to

anterior insula (Craig, 2009). Adequate emotional risk assessment is immediately relevant for

fight or flight responses and might therefore require a more direct link to awareness then the
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meta parameters of how multiple such variables relate to each other (Bossaerts, 2010). The latter

assessment is largely subconscious and may, as implicit function, also be enacted during low-

level processing of multidimensional stimuli such as music and rhythm. Interestingly such tasks

have previously been associated with insula activation (Koelsch et al., 2006; Platel et al., 1997).

Our data show that the brain encodes the correlation coefficient of two outcomes, a normalized

value, instead of the covariance itself. In light of previous data (Bunzeck et al., 2010; Padoa-

Schioppa, 2009; Seymour and McClure, 2008) this hints that scale invariance is a ubiquitous

concept in encoding decision variables in the brain.

The representation of a prediction error in anterior cingulate fits neatly with mounting evidence

that this area is involved in learning and behavioral control. Several previous studies report a role

for anterior cingulate in an error-driven reinforcement learning system (Kennerley et al., 2006),

and in prediction errors for actions (Matsumoto et al., 2007) or social value (Behrens et al.,

2008). Together with risk prediction errors in anterior insula (Preuschoff et al., 2008) this

teaching signal for correlation strength might belong to a broader system involved in learning the

statistical properties of the environment.

We also observed an anticipatory signal reflecting an impetus to shift resource allocations on the

next trial in order to keep the total energy output stable. Interestingly, this signal was expressed

in a dorsomedial prefrontal cortex (DMPFC) cluster previously linked to updating learning in

relation to environmental volatility (Behrens et al., 2007), implying a more general role for this

region in adapting behavior to fluctuations in the statistical characteristics of the environment.

Most task-modulated activity, including correlation strength, its prediction error, and a signal

reflecting the need to alter responses, occurred at the time of outcome rather than at choice. This



16

suggests that task-relevant computations, including an evaluation of the appropriate action to

take after each outcome, occur at the point when individuals can best harvest new evidence. As

we focused on the mechanism of learning the correlation strength, rather than on how subjects

use this information, this raises the question of how exactly information about a covariance

structure is applied in a natural sampling environment. Here, we instantiated this mapping of

correlation coefficients into energy resource weights by using the normative function derived

from MPT. We assume subjects learnt the form of this non-linear transformation during initial

training, but it remains a question for future research how this translation is applied. Based on

our present results and previous findings that the brain encodes other statistical parameters such

as variance and skewness of outcomes (Preuschoff et al., 2008; Symmonds et al., 2010), we

speculate that in more naturalistic environments subjects form structural representations of the

world by encoding summary statistical parameters. Such a parameterized representation is both

efficient and flexible: the optimal response is dependent upon three parameters, the magnitude,

variance and correlation of the available resources, and knowledge of the individual parameters

allows fast adaptation in light of changes to any one of them. One way to expand our research to

more natural situations could be by changing the cost function to mimic an ecological survival

game with perishable outcomes. Such a paradigm would allow one to determine if subjects

indeed follow a variance minimizing strategy and incorporate information about reward

correlations.

The recent financial crisis has amply demonstrated that even experts have difficulties regulating

correlated risks in the financial domain and investors often deviate from rationality when making

financial decisions (Daniel et al., 2002; Kuhnen and Knutson, 2005). In contrast, we show here
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that individuals are adept at detecting and responding to correlations and appropriately selecting

actions to minimize risk in an intricate learning task. Indeed, this exquisite sensitivity taps into

an adaptive and evolutionary conserved ability of implicit neurobiological systems to learn

environmental reward structure through trial-by-trial sampling; intrinsic behavior that might

even supersede that of financial experts deciding about explicitly described statistics.

Experimental Procedures

Subjects

16 healthy subjects (7 female; 18 35 years old) with no history of neurological or psychiatric

illness participated in the study. Two additional pilot subjects from the lab were excluded from

the final analysis, as they were already familiar with the hypotheses in the experiment. The study

was approved by the Institute of Neurology (University College London) Research Ethics

Committee.

Task

To investigate whether and how subjects learn the reward structure in the environment we

designed a novel portfolio-mixing task in which knowledge of the correlation between two

of two power stations as stable as possible (i.e. minimize the variance of an energy portfolio) by

mixing the fluctuating outcomes of these two individual resources. They accomplished this by

adjusting weights which determined how the resources were linearly combined. A normative

best performance is achievable in this task by finding a solution that directly depends on

knowledge of the covariance structure of these resources, a task design that approximates a

simple portfolio problem in finance (Markowitz, 1952).

We presented the task to subjects as a resource management game that invoked a scenario

whereby a power company generates fluctuating amounts of electricity from two renewable
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energy sources, a solar plant and a wind park. The resource outputs rsun and rwind were drawn as

random numbers in every trial from distributions with a common mean M and variances 2
sun

and 2
wind. Importantly, the two outcomes co-varied with each other, and the strength of this

correlation changed probabilistically over time. This feature encouraged subjects to form an

estimate about the mean and variance of the individual outcomes and continually update their

assumption about the correlation strength.

Subjects participated in three consecutive experimental blocks, each corresponding to a 21 min

long session in an fMRI scanner (Siemens Trio 3T). They were instructed that the correlation

would probabilistically change over the course of the study but were not given further details

about specific parameters used. We also told subjects that the mean and variance of the two

resources would remain constant over one block of the experiment, a simplification to an

otherwise quite complex task that enabled subjects to perform well within the settings of this

experiment. As our goal was to assess covariance learning (in contrast to learning the values and

risk) this did not adversely impact on any mechanism we wanted to observe. However, mean and

variance values were different for each block. To give subjects the opportunity to learn these

basic statistical parameters (mean and variance) before making portfolio choices, we presented

them with a 20-trial observation phase at the beginning of each session. In this phase, which

immediately preceded the start of fMRI data acquisition, subjects only observed the individual

outcomes of the two resources and did not make any choices. There was no change in the ground

truth correlation during this phase. Data from pilot studies and model simulations confirmed that

20 observations of a time series were sufficient to form an estimate of its mean and variance. The

observation phase was followed by 84 choice trials, consisting of a 5 sec choice period and a

3 sec outcome period, separated by a blank grey screen of 1-6 sec duration (uniform

distribution). The inter-trial-interval was also 1-6 sec (Fig. 1A).

The portfolio weights (wsun, wwind) indicate how much of a fraction the portfolio contains from

both resources rsun and rwind (Portfolio outcome value Vp = wsun*rsun + wwind*rwind). Subjects were

allowed to set the portfolio weight wsun within a range between [-1, 2]. Setting negative weights

allowed subjects to trade-in a fraction of the trials output from one resource in exchange for

multiplying the other output by the same fraction. This concept echoes the possibility of short
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selling in financial markets and is important for this task as it permits risk minimizing for

positively correlated resources (see section variance minimizing strategies in the supplemental

text for further details). The constraint that both weights always add up to 1 automatically

determined the weight of the other resource (wwind = 1-wsun). A horizontal line on the choice

screen represented the slider during the choice period and icons of a solar and wind plant on both

ends indicated which resources were mixed in the portfolio. The parts of the slider involving a

negative weight were red while the middle part with both positive weights was shown in white

with the center position corresponding to a mix with equal weights. A yellow dot on the slider

indicated the current position and portfolio weights were additionally shown numerically next to

the resource icon. Subjects were able to make responses during the entire 5s choice period by

pressing two buttons on a button box with their right hand. Each button press moved the current

slider position a discrete step of 0.1 units in either direction. Moving the slider a step towards the

right always increased the weight for sun and decreased the weight for wind. A new choice

period started with the portfolio weights from the last trial and subjects were allowed to freely

move the slider as many steps in either direction as they wished during the choice period.

Importantly, subjects always had to determine the weights for the current trial prior to seeing the

actual outcome. Due to inherent stochastic outcomes, and because serial outcomes were

independently drawn, the only rational strategy was to set the weights in a way that would yield

the least portfolio variance in the long run and this measure depended on the current correlation.

fluctuation of a portfolio with optimal weights. The normative solution was calculated by the risk

minimizing formula of portfolio theory (see supplemental text for details). This ensured that

subjects were fairly scored given the stochastic outcomes on a trial-by-trial basis (i.e., even if

subjects played optimally the portfolio outcome would fluctuate around the target with the

amount of fluctuation dependent on the current covariance). Subjects received reimbursement of

10£ flat plus a fraction of the maximum bonus of 45£ in relation to task performance (Table S1).

All participants received basic instructive information about hedging strategies (similar to the

supplemental text ure S2) and practiced the task (same

number of trials than in the fMRI study but with different parameters for outcome mean and

variance) on a separate day prior to scanning. Note, however, that all instructions concerned
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exclusively how to set portfolio weights (i.e. how to respond) but not how to learn correlations

itself. Therefore this latter process cannot be confounded by the explicit information given here.

The reason for using a seemingly intricate portfolio task over having subjects merely report the

correlation directly is that explicit assessments of decision variables by self-report are often

biased (Kagel and Roth, 1997). Our procedure is in this respect very similar to other commonly

used behavioral measures such as auction biddings (Becker et al., 1964; Plassmann et al., 2007)

to identify subjec

behavior does not depend on individually subjective valuation or risk preference. Performance

behavior matched the normative optimal

solution (thereby incentivizing an accurate correlation representation) but was independent of the

actual amount or variance of the produced energy mix.

Importantly, during the experiment subjects never received direct feedback on their performance

at minimizing energy fluctuations (i.e. only saw trial-by-trial outcomes) and the bonus and

optimal weights were only revealed after the experiment. We omitted feedback during the task to

prevent subjects from using a strategy that is based on optimizing the performance feedback

instead of learning the correlation of the individual outcomes. While the portfolio value is shown

on every trial, and the deviance of this value from its mean gives some hints to performance, this

is only a crude measure of whether the current weights are good because even with optimal

weights the amount of portfolio fluctuation depends on the current correlation.

Because the optimal mixing weights (portfolio weights) in our task depend on individual

variance from solar and wind power plants and their correlation strength, the best strategy is to

learn the variances and correlations by observation of individual outcomes and then translate

these estimates into an optimal resource allocation (i.e. weightings). While subjects could learn

the statistical properties underlying outcome generation by observation, the outcomes of

individual trials were unpredictable. Their task was then to continuously mix the two resources

into an energy portfolio and thereby minimize the fluctuation of the portfolio value from trial to

trial.
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Generation of outcome values

Both resources fluctuated around a common mean, with outcomes drawn from a rectangular

distribution with a specific variance. In our task the standard deviation of one resource was

always twice that of the other because this maximized the influence of the correlation on the

portfolio weights (see Fig. S1 for details). The sequence of correlated random numbers for the

two resources were generated by the Cholesky decomposition method (Gentle, 1998). This was

realised by first drawing random numbers xA and xB for resources A, B from a rectangular

distribution. The outcome of the second resource xB was then modified as xB = xA * r +

xB*sqrt(1-r2), whereby r is the generative correlation coefficient. Finally, xA and xB were

normalized to their desired standard deviations (in the three blocks: 20/10, 15/30, 10/20) and

common means (30, 50, 40). We chose a rectangular distribution to increase the sensitivity of

our fMRI experiment in finding neural correlates of covariance and covariance prediction errors

as the linear regression against BOLD activity is most sensitive if the values of the parametric

modulators are distributed along their entire range. This is not true for normal distributed

outcomes, which have proportionally the largest amounts of data close to the mean.

We varied the generative correlation strength in discrete steps of [-.99, -.3, .4, .7, .95, .999]. The

observable correlation through sampling by the subject will however very on a continuous scale

also between these steps due to stochasticity in the outcomes. A change from the current to a

new correlation was determined probabilistically in every trial with a p=0.3 transition

probability, under the constraint that a change would only occur after the new correlation became

theoretically detectable by an ideal observer that was tracking the correlation coefficient in a

sliding window over the past 5 trials. In detail, after the normatively estimated correlation based

on the last 5 trials (similar to the sliding window model below) approached the new generative

correlation (with a deviation smaller than 0.2), the correlation was allowed to change on all

further trials. This prevented overly rapid changes in the generative correlation before subjects

could have possibly detected the new correlation coefficient from outcome observations. On

average (across subjects and sessions) the correlations changed every 10 trials. To discourage

subjects from persevering on a more favorable spot of the response scale that would give a
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reasonable result over a wider range of correlations, and instead be forced to track the correlation

suboptimal (farther from the optimum than 0.2) and they did not change their response within the

past 5 trials then the correlation would jump to the farthest extreme (either -.99 or +.999). This

increased the penalty on subjects payout at their current weights and ecouraged them to find a

better weight allocation. In practice, this constraint came rarely (never for 10 subjects, one or

two occurrences in five, and three occurrences in one subject) into use during the fmri

experiment.

Correlation learning model

We modeled trial-by-trial values of the correlation strength by using principles of reinforcement

learning (Sutton and Barto, 1998). Reinforcement learning generates in every trial a prediction

error as the deviation of the experienced outcome R from the predicted outcome. Those

prediction errors, multiplied by the learning rate, are then used to update predictions in future

trials.

resource value: Vi,t+1 = Vi,t
V

i,t (1)

i,t = R-Vi,t (2)

The squared prediction error is also a measure of the outcome fluctuation and thereby a

quantifier of risk. A sequence of continuously large prediction errors indicates that the outcomes

greatly fluctuate, whereby a sequence of small prediction errors indicate that prediction is precise

with little deviation. We used this to model the risk h for both resources:

resource variance: hi,t+1 = hi,t
R

i,t (3)

variance prediction erro i,t i,t
2-hi,t (4)

We then extended this model from independent outcomes to the interaction of outcomes,

whereby the product of the individual prediction errors measures the co-variation of two

outcomes:

resource covariance: covt+1 = covt
C

t (5)

t = hs1,t hs2,t covt (6)
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The correlation coefficient was then defined as the covariance normalized by the individual

standard deviations of the two involved outcomes:

resource correlation: t = covt / (sqrt(hs1,t) * sqrt(hs2,t)) (7)

In every trial the correlation coefficient was finally translated into a position on the response

slider using the normative function (h2,t covt) / (h1,t + h2,t 2*covt), which is derived in the

supplemental text. This relationship (Fig. S1) did not change over the entire course of the

experiment (because we always used the same ratio of 1:2 between outcome ).

We kept the mean of the resource outcomes constant during each session and therefore the

optimal strategy was indeed to not update those variables once a reliable estimate had been

formed during the observation phase of each block. In fact, the best fitting learning rate for

resource values was consistently very small across subjects (average 0.08), confirming that, as

intended by the design, subjects indeed treated the mean as a stable value after the initial

observation period and adjusted their learning rate downwards to reflect this steady nature

(Behrens et al., 2007).

We investigated whether subjects used different learning rates for variance and covariance

learning or whether these processes could be described by a single parameter. We did this by

comparing a model with separate parameters for variance and covariance learning with a model

that used a common parameter for both learning processes. We found that the reduced model

could describe learning as well as the full model if model complexity is considered (Table 1).

Note that both overall mean value and variance were constant during the experiment but the best

fitting learning rate for variance was higher than for value. This suggests that, in contrast to

mean outcome value, subjects continuously updated their estimate of individual risk in response

to local temporal fluctuations in the individual variances.

We therefore used the reduced model with a common risk/covariance learning parameter to

generate fMRI regressors. Parameter estimates were fit for every individual subject using least

squares minimization between model predicted weights and actual weights set by the subject (see

below).
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Alternative models

We created several alternative models that do not require learning of covariance information.

Those models are described in the supplemental experimental procedures.

Model comparison

each model such that the mean squared sum of the deviation between model predicted (wm) and

ights (ws) was minimized. As measure of model fit we then calculated the Bayesian

information criterion (BIC) (Schwarz, 1978) as

BIC =2L k ln(n) (8)

1/)(log)2log(
2

1 2 nwwnL
n

i

m
i

s
i (9)

where L is the negative log likelihood function, n = 252 trials and k the number of free model

parameters (Table 1). We also calculated a generalized r2-statistics for each model, which is a

standardized measure of model fit analogous to accounted variance (Nagelkerke, 1991). It is

computed as r2 1
L

Lrandom
.

Stimuli

Stimuli were presented on a gray background using Cogent 2000

(www.vislab.ucl.ac.uk/cogent.php) running in MATLAB. Stimuli were presented using an LCD

projector running at a refresh rate of 60 Hz, viewed by subjects via an adjustable mirror.

FMRI data acquisition



25

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany) using a 12-channel

phased array head coil. Functional images were taken with a gradient echo T2*-weighted echo-

planar sequence (TR = 3.128 s, flip angle = 90°, TE = 30 ms, 64 64 matrix). Whole brain

coverage was achieved by taking 46 slices in ascending order (2 mm thickness, 1 mm gap, in-

plane resolution 3 3 mm), tilted in an oblique orientation at -30deg to minimize signal dropout

in ventrolateral and medial frontal cortex (Weiskopf et al., 2006)

with foam pads to limit head movement during acquisition. Functional imaging data were

acquired in three separate 415-volume runs, each lasting about 21 minutes. The first five

volumes of each run were discarded to allow for T1 equilibration. A B0-fieldmap (double-echo

FLASH, TE1 = 10 ms, TE2 = 12.46 ms, 3x3x2 mm resolution) and a high-resolution T1-

weighted anatomical scan of the whole brain (MDEFT sequence, 1x1x1 mm resolution) were

also acquired for each subject.

FMRI data analysis

Image analysis was performed using SPM8 (rev. 3911; www.fil.ion.ucl.ac.uk/spm). EPI images

were realigned and unwarped using field maps (Andersson et al., 2001)

was segmented into gray matter, white matter, and cerebrospinal fluid, and the segmentation

parameters were used to warp the T1 image to the SPM Montreal Neurological Institute (MNI)

template. These normalization parameters were then applied to the functional data. Finally, the

normalized images were spatially smoothed using an isotropic 8-mm full-width half-maximum

Gaussian kernel.

Functional MRI (fMRI) time series were regressed onto a composite general linear model

(GLM) containing regressors representing the time of the choice, the time of the outcome screen,

and any button presses during the choice period. The outcome regressor was modulated by a

number of model derived decision variables. Modulators for outcome were: prediction errors for

the individual resource outcomes and the portfolio outcome ( 1, 2, p), the absolute deviation of

the portfolio outcome from the target (| p|), resource risk (h1, h2 1 2),

the correlation strength of the resources (

modulator captured the anticipated magnitude of actual weight updating in the next trial (|wt-
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wt+1|). In contrast to the default procedure in SPM, we entered all regressors and modulators

independently (without serial orthogonalization) into the design matrix. Thereby only the

additional variance that cannot be explained by any other regressor is assigned to the effect,

preventing spurious confounds between regressors (Andrade et al., 1999; Draper and Smith,

1998). Specifically, this ensured that the observed effects of correlation strength and correlation

prediction error are solely accountable by effects not explained by signals relating to the variance

of individual outcomes.

The regressors were convolved with the canonical HRF, and low frequency drifts were excluded

with a high-pass filter (128-s cutoff). Short-term temporal autocorrelations were modeled using

an AR(1) process. Motion correction regressors estimated from the realignment procedure were

entered as covariates of no interest. Statistical significance was assessed using linear compounds

of the regressors in the GLM, generating statistical parametric maps (SPM) of t values across the

brain for each subject and contrast of interest. These contrast images were then entered into a

second-level random-effects analysis using a one-sample t test against zero.

Anatomical localization was carried out by overlaying the t-maps on a normalized structural

image averaged across subjects, and with reference to an anatomical atlas (Duvernoy, 1999). All

coordinates are reported in MNI space (Mazziotta et al., 2001). Unless otherwise noted, all

statistics are FWE corrected at the cluster level for multiple comparisons at p<0.05 with a height

threshold of p<0.001 (using the cluster level statistics implementation within SPM). Small

volume correction in the outcome variance contrast for striatum was performed within a 12mm

sphere around the seed voxel coordinates (xyz = -10, 3, 3), which were taken from (Preuschoff et

al., 2006).

Region of interest analysis

We extracted data for all region of interest analyses using a cross-validation leave-one-out

procedure: we reestimated our main second-level analysis 16 times, always leaving out one

subject. Starting at the peak voxel for the correlation signal in right insula and for the correlation

prediction error in rACC we selected the nearest maximum in these cross-validation second-level
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analyses. Using that new peak voxel we then extracted the data from the left-out subject and

averaged across voxels within a 8mm sphere around that peak.

Binned effect size plots

To create the effect size plots of the parametric decision variables we first divided the values in

our parametric modulator into quartiles and estimating the average BOLD response in relation to

each bin. We did this by sorting all trials into four bins according to the magnitude of the model

predicted signal and defined the 25th, 50th, 75th, and 100th percentile of the range. Then we

created and estimated for each subject a new GLM with four new onset regressors containing the

trials of each bin. The parameter estimates of these onset regressors represent the average height

of the BOLD response for all trials in that bin. The data plots in Figs. 2 B and 3 B are the

average parameter estimates (across all subjects in the cross-validation analyses) converted to

percent signal change. This analysis was performed using algorithms in the rfxplot toolbox for

SPM (Glascher, 2009).

Covariance / Correlation comparison

For the test whether bold activity in right insula is better explained by a linear relationship with

covariance or correlation we estimated two additional GLMs on BOLD data, each with only one

regressor (either model predicted covariance or the correlation coefficient) using Bayesian

estimation (Friston et al., 2002). This produced a log-evidence map for each model and we

calculated average log evidences across all voxels within our region of interest for every subject

and performed a random effects model comparison (Stephan et al., 2009). This analysis suggests

that the correlation coefficient can explain BOLD activity in midinsula better than covariance

(Dirichlet alpha = 16.9 for correlation vs. 1.1 for covariance; posterior probability (correlation) p

Effect size time course plots



28

To visualize the nature of the BOLD response to the correlation coefficient as timecourse plot

over the entire trial we upsampled the entire extracted bold signal to 100ms (the effective

temporal resolution of the averaged timecourse is higher than the TR because our stimulus

presentation was jittered relative to slice acquisition), split the signal into trials and resampled

such that the onset of the choice screen is at time 0 and the onset of the outcome screen at 8.5

seconds in every trial. We then estimated a GLM across trials for every timepoint in each subject

independently. Lastly, we calculated group average effect sizes at each time point, and their

standard errors. The graph in Figure 2C shows the time series of effect sizes throughout the trial

for the regressor of interest. This method for plotting the effect size timecourse of a

parametrically modulated regressor is also described in detail elsewhere (Behrens et al., 2008).

Timing of correlation representations

To investigate whether subjects carried out task related computations at the time of the outcome

or at the time of choice, we estimated a separate GLM that was similar to the main GLM

described above except for an additional parametric modulator at the time of choice for the

correlation coefficient, i.e. the correlation coefficient modulated both the regressor at the time of

the choice screen and the outcome screen.

Representation of portfolio weights

We investigated the questions if subjects might learn task specific portfolio weights instead of

the more universal correlation between outcomes by estimating a separate GLM. This was

similar to the main GLM except that the parametric modulator was replaced by the portfolio

weight w and the correlation prediction error

error (wt+1 wt). The nonlinear relationship between and w allows us to differentiate between

representations of correlation and weights on the neural level.

Representation of outcome coincidences
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To test for a neural representation of more qualitative coincidences instead of the correlation

coefficient with estimated another GLM, similar to the main GLM except that the parametric

modulators an were replaced by a binary parametric modulator with a coincidence value of

sign(td1)*sign(td2).

Relationship between explained variance in behavioral model and BOLD data

To test for a relationship between behavior and neural model fit we compared R2 (explained

variance) in the behavioral model with the R2 in the fmri GLM. An R2 value for the behavioral

model was calculated for every subject by regressing trial-by-trial model predicted choice on

2 value for the fmri regression as the proportion of

variance in BOLD that was explained by our interest regressors in relation to the total variance

(R2 = RSSreg / RSStot), where RSSreg equals the explained variance (variance of the predicted

timecourse ypred = Xb, X = design matrix and b the regression coefficient) and RSStot is the

variance of the bold signal after adjusting for block and nuisance effects.

We also tested the influence of potential confounding variables on this relationship, namely the

fitted learning rate and the average absolute amount of weight updating per trial, by calculating

partial correlations. This analysis confirmed a significant correlation between behavioral and

neural fit (rxy=0.54, p=0.04) after accounting for potential confounds. Furthermore, there was no

relationship between these potential confounds and neural fit (ray=0.12, p=0.66; r|w|y=-0.14,

p=0.63).

Psychophysiological interaction (PPI) analysis
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We performed posthoc an exploratory PPI analysis (Friston et al., 1997) to investigate changes in

functional connectivity with right mid insula at the time of outcome (when almost all task related

activity was observed). The PPI term was Y x P, with Y being the BOLD timecourses in the

insula ROI and P indicating the time during the outcome screen. We then entered the seed region

BOLD Y, the psychological variable P, and the PPI interaction term into a new GLM. Findings

from this analysis are reported in Figure S4.
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Figure Captions

Figure 1. Experimental Design. (A) Subjects were presented with a slider to set portfolio

weights that determine the fraction of each resource (wind or solar power) in the energy mix

(screen 1). The weights could be set within the range [-1,2], with a fixed relationship that both

weights always add up to 1, i.e. wwind = 1-wsun. The trial outcome (screen 2) displayed the

individual resource values for sun and wind, and the portfolio value of the combined mix

(calculated by the weights from screen 1). (B) Optimal portfolio weight wsun (wwind = 1 wsun)

increases as a function of the correlation coefficient between sun and wind outcomes. The

background color indicates portfolio standard deviation (blue = small sd, red = large sd). Optimal

portfolio weights (for variance minimization) are displayed as white line, the gray lines indicate

the 10% interval around the optimal choice (a deviation of that amount from the optimal weights

would result in a 10% higher sd). (C) The correlation estimate (red line) is updated from trial

to trial (x-axis) via a correlation prediction error (green stems) and then in a second step used

to allocate weights in every trial. is calculated as the cross product between the two resource

outcome prediction errors (gray bars). The correlation coefficient that was used to generate the

data in this illustration is -.60 during the first 10 trials and afterwards changes to +0.80 (dashed

line). Learning of from is depicted here for a learning rate of 0.2.

Figure 2. Model fit and behavior (A

behavior best. Plotted are the Bayesian Information Criterions, which are corrected for the

different levels of complexity in the models (smaller values are better). The r2 value represents

the proportion of behavioral variance explained by each model. (B) Regression of actual weights

on model predicted weights. Data is pooled over all subjects; for single subject results see Table

1. Note that the deviations at the extremes are a result from bounding the possible weight range
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at -1 and 2; any behavioral errors at the boundary could therefore happen only in one direction.

(C) Both the response of a representative subject (blue) and the model predicted weights (red)

approach the normative best response under full knowledge of the generative correlation (black

line) with some lag, which results from the time necessary to observe changes in correlation.

Subjects responded after a 20-trial long observation-only phase (not shown).

Figure 3. Neural representation of correlation strength. (A) Neural activity in mid-insula cortex

correlated with the trial-by-trial model predicted correlation strength between the two resource

values at the presentation of the outcome screen. (B) Effect size plots (average percent signal

change across subjects). Data plotted separately for trials in which the model predicted

correlation strength was low and high in four bins (25 / 50 / 75 / 100 percentile of correlation

range, errors bars = SEM). Activity in insula increased linearly with the correlation coefficient

(which is, in contrast to the covariance, normalized by the standard deviations of the resources).

Data were extracted using a cross-validation (leave-one-out) procedure to ensure independence

of data used for localization and effect measure. (C) Timecourse plot of effect size for the

correlation coefficient regressor. The correlation coefficient is represented at the time of the

outcome screen, when new evidence becomes available, but not during the choice period. (D)

Comparison of explained variance in the behavioral model with the explained variance in the

fMRI analysis. Fluctuations in BOLD activity in mid-insula can be particularly well explained

within those subjects whose behavior is also well explained by the model (r = 0.50, p=0.03).

Each dot represents one subject and the line is the regression slope.

Figure 4. Neural representation of correlation prediction errors. (A) Activity in rostral

cingulate cortex correlated with the correlation prediction error. (B) Effect size plots (similar to

Fig. 2 B) for the cluster confirm a linear effect.
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Figure 5. Absolute weight updates. Activity in ACC/DMPFC and anterior insula correlated, at

the time of the outcome screen, with the absolute amount that subjects update the resource

allocation weights during the following choice.



Table 1: Model comparison and model fit

Medians
of best-fitting parameters for the compared learning algorithms. Parameters were fit to
individual subjects across the three scanning blocks.

NLL = model evidence (negative log likelihood, smaller is better); BIC = model evidence
corrected for complexity (Bayesian information criterion).

The (pseudo) r2

methods). The r2-forecast measure uses a similar normalization to quantify how well the
model could estimate the ground truth correlation. To estimate this value we refit the
parameters of each model to estimate ground truth correlations, pooled over all sessions and
subjects.

Model\
parameters

Correlation
var/cov

Correlation
val/var/cov

Q-
Learning

coincidence Sliding
window

1/N Random
choice

Value 0.08 0.08

Risk 0.25 0.25 0.16

Covariance 0.25 0.26 0.34

Learning rate 0.23
w step width 0.10

Window
length

9.93

n parameters 2 3 2 2 1 0 0
NLL 87.92 86.20 197.20 142.93 110.96 283.85 384.67

r2 .77 .78 .49 .61 .71 .26 0
BIC 186.90 188.99 405.45 296.92 227.44 567.69 769.35

r2 forecast .77 .77 .40 .56 .70 .26 0

Ì¿¾´» ï



Table 2: Significant activations in statistical parametric analysis.

voxels. * significant at p<0.05 FWE cluster level correction in entire brain. Coordinates in
MNI space.

x y z Z voxels p (FWE) Region Hemi

Correlation coefficient ( )
48 5 -5 4.12 59 0.001* mid insula R
60 -1 -5 3.87 mid insula (extending into superior

temporal sulcus)
48 -7 -2 3.77
-60 -1 -17 3.85 18 0.61 superior temporal sulcus L
-51 -10 -17 3.20
-18 -16 1 3.56 19 0.44 thalamus L
9 -55 37 4.50 8 0.96 precuneus R

12 -61 -5 3.33 5 0.90 occipital cortex L
-54 -40 4 3.31 4 0.96 superior temporal sulcus L

Correlation prediction error ( )
-15 44 7 4.87 36 0.003* rostral ACC L
-54 -25 -5 4.01 43 0.14 superior temporal sulcus L
-57 8 -23 3.95 4 0.99 anterior superior temporal sulcus L
-42 -61 37 3.63 17 0.80 inferior parietal lobe L
-60 -1 -14 3.61 10 0.93 superior temporal sulcus L
-63 -7 -8 3.48
12 -13 52 3.57 3 0.91 medial cingulate gyrus R
36 -10 7 3.23 3 0.99 posterior insula R

Absolute weight update
6 26 34 4.22 135 0.001* ACC / DMPFC R
-9 29 25 3.50 L
42 23 -5 4.04 55 0.04* anterior insula R
15 -64 34 3.95 40 0.04* precuneus R
51 26 22 3.81 7 0.73 DLPFC R
15 -31 26 3.73 15 0.38 cerebellum R
0 -19 -2 3.71 29 0.20 VTA vicinity

-33 17 -5 3.57 21 0.69 anterior insula L
-12 2 58 3.37 7 0.88 SMA L
0 -52 -35 3.18 6 0.97 cerebellum

Risk (average contrast over individual risk from both outcomes, h1/h2)
45 -4 -14 3.69 7 0.76 posterior insula R
45 -76 34 3.67 3 0.98 posterior parietal cortex R
18 -28 4 3.60 3 0.86 thalamus R
-21 2 7 3.55 7 0.85 striatum L
-42 -55 -35 3.38 3 0.99 cerebellum L

Risk prediction errors (average contrast over individual risk PE from both outcomes, 1/ 2 )
-24 23 -8 3.13 3 0.98 anterior insula L
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