Multitemporal Error Analysis of LiDAR Data for Geomorphological Feature Detection

R. Sailer (1), B. Höfle (2), E. Bollmann (1), M. Vetter (1), J. Stötter (1), N. Pfeifer (2), M. Rutzinger (3), and T. Geist (4)

(1) University of Innsbruck, Institute of Geography, Innsbruck, Austria

(2) Vienna University of Technology, Christian Doppler Laboratory for Spatial Data from Laser Scanning and Remote Sensing, Vienna

(3) International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands

(4) Austrian Research Promotion Agency (FFG), Vienna
ACL observations are funded by the Austrian Research Promotion Agency (FFG), Vienna.

Institute of Meteorology and Geophysics Innsbruck
Andrea Fischer et al.

Sebastian Weide, Thomas Niederwald, et al.
(1) Introduction

> Hintereisferner
> airborne LiDAR measurements from 2001 to 2008

(2) Error Analysis

> test areas
> results

(3) Multitemporal LiDAR Data Analysis

> selected geomorphological features
 - erosion / accumulation
 - dead ice
 - slope failure
 - permafrost

(4) Conclusions
(1) Introduction

Hintereisferner (HEF)

- 6.5 km
- 3700 to 2450 m a.s.l.
- 6.3 km²

observations since many decades

- length variations 1847
 (Span et al. 1997)

- mass balance 1952
 (Kuhn et al. 1999)

100 years of ice dynamics of Hintereisferner,
Central Alps, Austria.
Annals of Glaciology, 24, 297-302.

Kuhn, M. et al., 1999. Measurements and
models of the mass balance of Hintereisferner.
Introduction

<table>
<thead>
<tr>
<th>Project</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>hef01_011011</td>
<td>11.10.2001</td>
</tr>
<tr>
<td>hef02_020109</td>
<td>01.09.2002</td>
</tr>
<tr>
<td>hef03_020507</td>
<td>07.05.2002</td>
</tr>
<tr>
<td>hef04_020615</td>
<td>15.06.2002</td>
</tr>
<tr>
<td>hef05_020708</td>
<td>08.07.2002</td>
</tr>
<tr>
<td>hef06_020819</td>
<td>19.08.2002</td>
</tr>
<tr>
<td>hef07_020918</td>
<td>18.09.2002</td>
</tr>
<tr>
<td>hef08_030504</td>
<td>04.05.2003</td>
</tr>
<tr>
<td>hef09_030812</td>
<td>12.08.2003</td>
</tr>
<tr>
<td>hef10_030926</td>
<td>26.09.2003</td>
</tr>
<tr>
<td>hef11_041005</td>
<td>05.10.2004</td>
</tr>
<tr>
<td>hef12_051012</td>
<td>12.10.2005</td>
</tr>
<tr>
<td>hef13_061008</td>
<td>08.10.2006</td>
</tr>
<tr>
<td>hef14_071011</td>
<td>11.10.2007</td>
</tr>
<tr>
<td>hef15_080807</td>
<td>07.08.2008</td>
</tr>
<tr>
<td>hef16_080909</td>
<td>09.09.2008</td>
</tr>
<tr>
<td>hef17_xxxxxx</td>
<td>xx.xx.xxxx</td>
</tr>
</tbody>
</table>
(1) Introduction

EGU 2009 - Remote sensing of cryosphere
18:45–19:00 EGU2009-7405
The Hintereisferner - eight years of experience in method development for glacier monitoring with airborne LiDAR
Room 20 / Mon, 20 Apr, 15:30–17:00 / Room 33 / 17:30–19:00

Poster Programme / Halls X/Y / Mon, 20 Apr, 08:00–19:30
XY309 EGU2009-4665
Glacier surface feature detection and classification from airborne LiDAR data
B. Höfle, R. Sailer, M. Vetter, M. Rutzinger, and N. Pfeifer
(2) Error Analysis

for error analysis

exclusion of:
- snow / firn
- glacier ice
- dead ice
- permafrost
- erosion / accumulation
- vegetation
- anthropogenic influence
(2) Error Analysis

- absolut STD error
- difference to optimum value
- optimum value
- mean difference per slope class

![Graph showing error analysis with axes labeled in degrees and meters.](image-url)
(2) Error Analysis

mean of absolute differences = 0.08 m
STD = 0.01 m
(3) Multitemporal LiDAR Analysis
(3) Results

- **Dead Ice**
- **Slope Failure / Debris Flow**
- **Regressive Erosion / Deposition**
- **Permafrost?**

![Graphs showing results for different processes and phenomena.](image-url)
(3) Results

Profile RG01 – point 67 [~27°]

Profile FE_Q01 – point 22 [~40°]

Profile G01 – point 268 [~10°]
(4) Conclusions

(a) empirical slope dependent error
< 0.1 m on slopes < 60°
(4) Conclusions

(a) empirical slope dependent error

(b) analysed processes
- multi process features
- singular processes
- discontinuous processes
- continuous processes
(4) Conclusions

(a) empirical slope dependent error

(b) analysed processes
- multi process features
- singular processes
- discontinuous processes
- continuous processes
(4) Conclusions

c) high significance on annual base
[Δz a\(^{-1}\) >> ± absolute STD error]

- slope failure (shear slide)
- dead ice / stagnant ice
- glacier retreat / advance
(4) Conclusions

c) high significance on annual base
[\Delta z a^{-1} >> \pm \text{absolute STD error}]

- slope failure (shear slide)
- dead ice / stagnant ice
- glacier retreat / advance

moderate significance on annual base
[\Delta z a^{-1} >= \pm \text{absolute STD error}]

- gravitative processes (erosion / deposition)
(4) Conclusions

c) **High significance on annual base**

\[\Delta z \, a^{-1} \gg \pm \text{absolute STD error} \]

- slope failure (shear slide)
- dead ice / stagnant ice
- glacier retreat / advance

Moderate significance on annual base

\[\Delta z \, a^{-1} \geq \pm \text{absolute STD error} \]

- gravitative processes (erosion / deposition)

Low significance on annual base

\[\Delta z \, a^{-1} \approx \pm \text{absolute STD error} \]

- permafrost (without xy displacement)
 - \(\Delta z \) exceeds continuously absolute STD error
 - trend of \(\Delta z \) to be considered