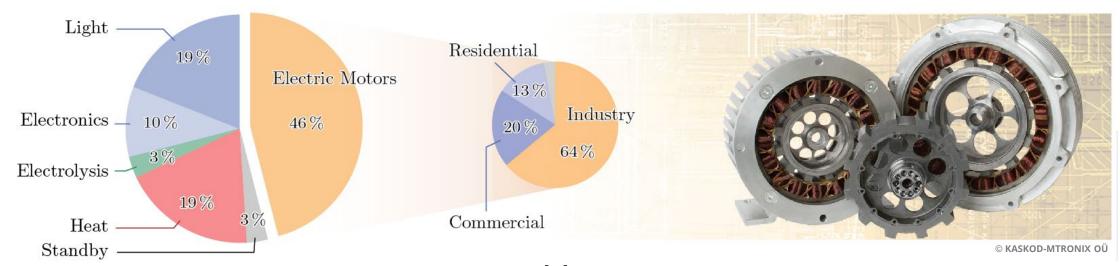


Vienna Rectifier Front-End Dual Three-Phase PMSM Drive with Synergetic Control

Takanobu Ohno*, Michael Haider, Spasoje Mirić

University of Innsbruck, Institute for Mechatronics
Innsbruck Drives and Energy Systems Laboratory (iDES)
Technikerstraße 13a, Floor 1, Office 128
https://www.uibk.ac.at/mechatronik/ides/

October 29, 2025

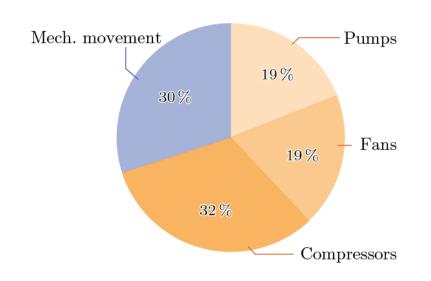


Introduction: Energy Impact and Future Outlook of Drive Systems

- Nearly 50 % of electricity used in industry is consumed by motor systems
- Enhancing their efficiency and control performance directly reduces global CO₂ emissions and energy costs

Eestimated share of global electricity demand by end-use [1*]

- The major applications of electric motors are pumps, fans, and compressors, representing the largest share of energy demand
- Implementing variable-speed drives (VSDs) can yield up to 10 % energy savings in these applications
- The market trend is shifting toward high-efficiency, high-power, grid-connected industrial drives



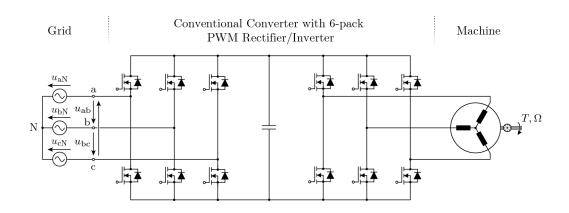
Introduction: Energy Impact and Future Outlook of Drive Systems

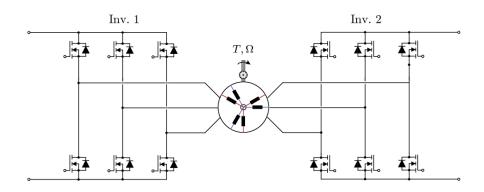

- Around 50 % of electricity used in industry is consumed by motor systems mainly pumps, fans, and compressors.
- Improving their efficiency and control performance has a direct impact on the global CO₂ footprint and energy cost.

Éstimated energy saving potential applying VSD [2*]

- Estimated share of global motor electricity demand by application[1*]
- The major applications of electric motors are pumps, fans, and compressors, representing the largest share of energy demand
- Implementing variable-speed drives (VSDs) can yield up to 10 % energy savings in these applications
- The market trend is shifting toward high-efficiency, high-power, grid-connected industrial drives

innsbruck Drive and Energy Systems Laboratory





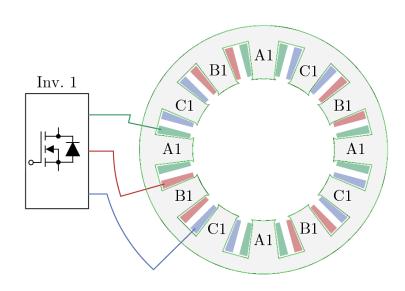
Introduction: Conventional VSD System

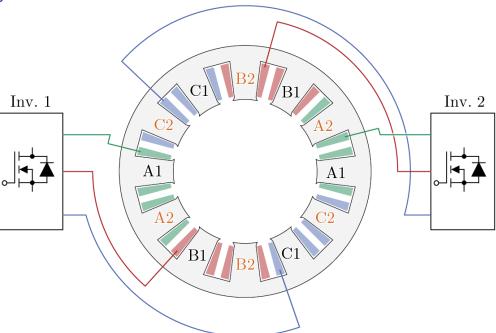
- ■. Well-established back-to-back PWM rectifier-inverter configuration
- Designed for efficient and torque control in various industrial drives

Conventional VSD system

Multi phase machine VSD system

- Further improvements in power efficiency, density, low torque ripple, and fault tolerance are increasingly demanded
- Multi-phase motor systems are emerging as a promising solution beyond conventional three-phase VSDs

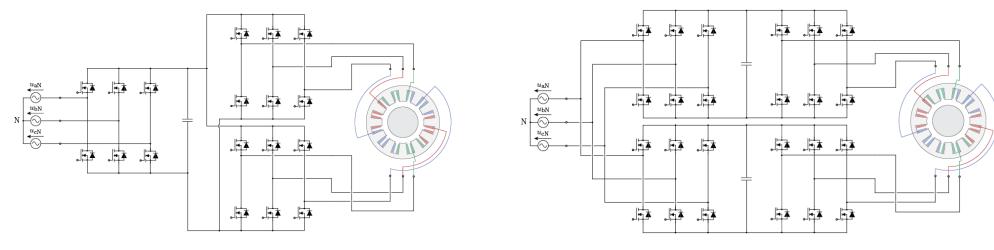




Introduction: Dual Three-Phase Machine

- Shares the same mechanical structure as a conventional three-phase machine, realized simply by reconfiguring the stator winding
- Better fault tolerance, torque ripple, and reduced device stress
- Enables enhanced performance without major mechanical redesign

Dual three-phase machine



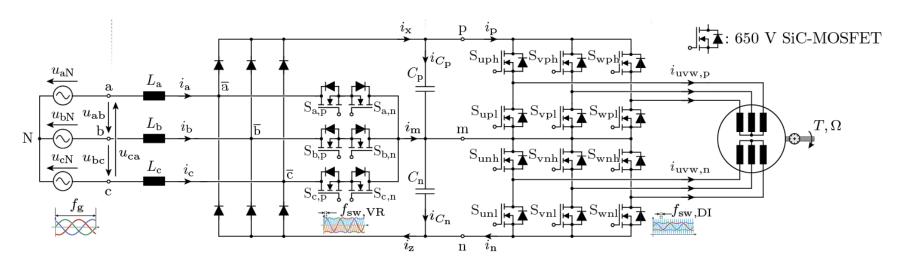
Introduction: Conventional Dual Three-Phase Machine Drive Systems

- **■** Two configurations have been studied:
 - Parallel inverters connected to a common DC link after active front end (AFE)
 - Independent AFEs, each feeding its own inverter

Shared DC link configuration [3*]

Indipendent DC link configuration [4*]

■ In both cases, 1.2 kV semiconductor devices are required for 400 V line-to-line AC input for secure margin of modulation for AFEs



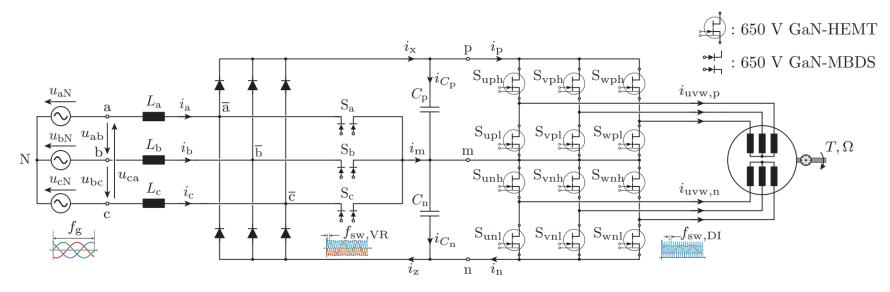
innsbruck Drive and Energy Systems Laboratory

Introduction: Proposed Configuration

- Vienna Rectifier (VR) front-end providing a neutral point
- Stacked Inverters are connected across the neutral point, enabling balanced DC input

Proposed Vienna Rectifier front-end stacked inverter-based dual-three-phase PMSM drive system

- The DC link capacitors only process switching frequency ripple enable film or ceramic capacitor technology
- Each inverter operates at 400 V, allowing the use of 600 V devices

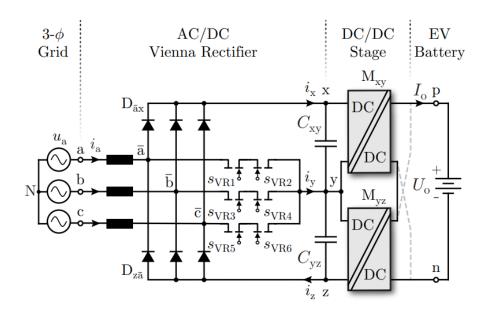


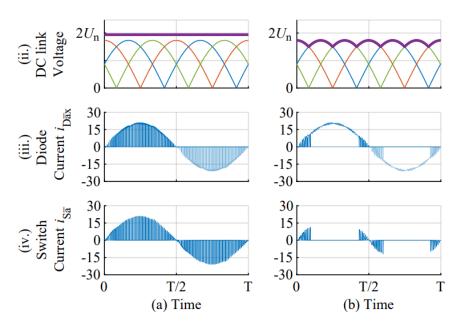
Introduction: Proposed Configuration

- ■.Vienna Rectifier (VR) front-end providing a neutral point
- Stacked Inverters are connected across the neutral point, enabling balanced DC input

Proposed Vienna Rectifier front-end stacked inverter-based dual-three-phase PMSM drive system

- The DC link capacitors only process switching frequency ripple enable film or ceramic capacitor technology
- Each inverter operates at 400 V, allowing the use of 600 V devices
- Enable use of GaN FETs for the inverter, and monolithic bidirectional GaN Devices for the VR
- With the boost capability and synergetic control of the VR, the system achieves efficient operation across a wide speed range





Introduction: Synergetic Control

- Synergetic Control have been developed in the literatures of EV charging system
- It enables over 66 % reduction in switching losses when applied to the Vienna Rectifier (VR)

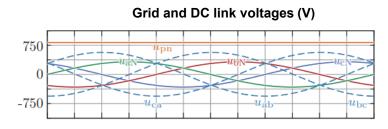
Conceptual power circuit of synergetic control for EV charger [5*]

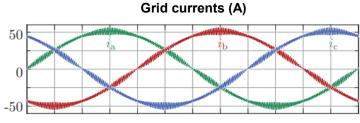
Wavefroms of VR operating with 3/3-PWM and 1/3-PWM [5*]

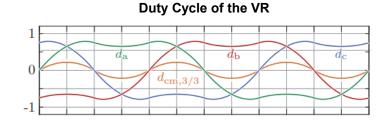
■ The same control principle can be effectively extended to the proposed configuration

Content

- **▶** Introduction
- Operation
- **▶** Simulation Results
- **Conclusions**





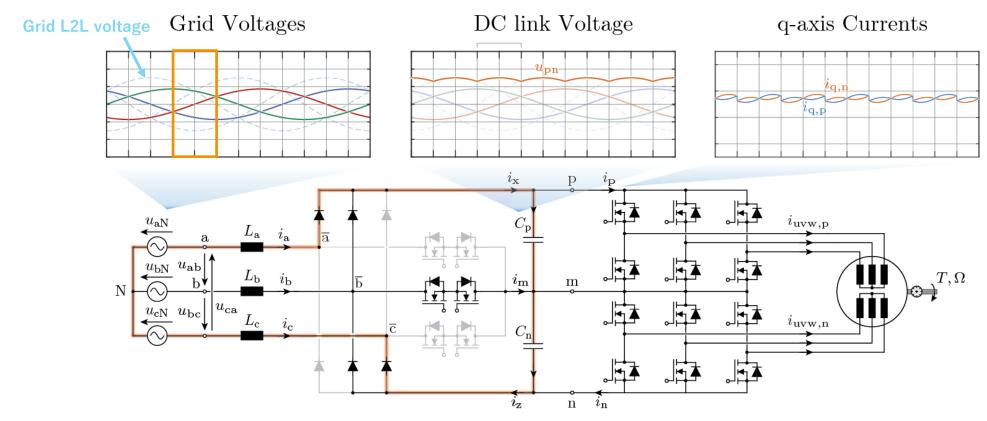


Operation: High-Speed Operation (3/3-PWM, full-boost mode)

- The VR boosts the DC link voltage to maintain current control capability against the rising motor back-EMF
- The VR simultaneously performs power factor correction (PFC), keeping grid currents sinusoidal

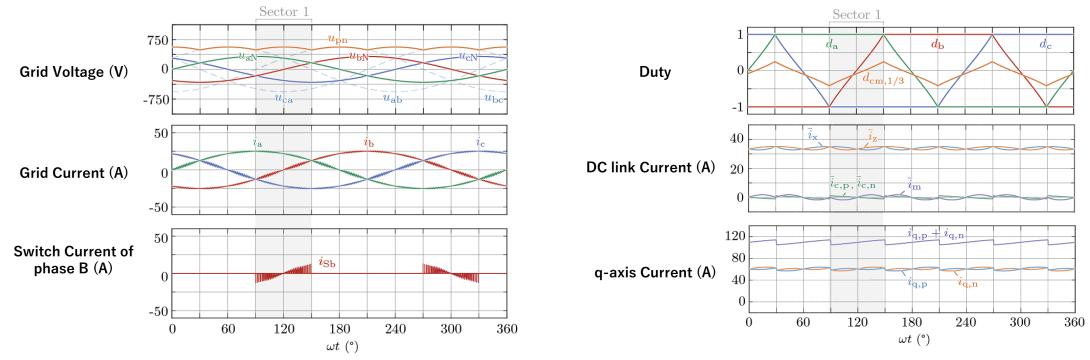
Waveforms of Vienna Rectifier at high-speed operation

- The common-mode voltage of the VR is controlled to ensure zero-midpoint current
- Each inverter applies field-oriented control (FOC) to regulate its respective phase current



Operation: Low-Speed Operation (1/3-PWM)

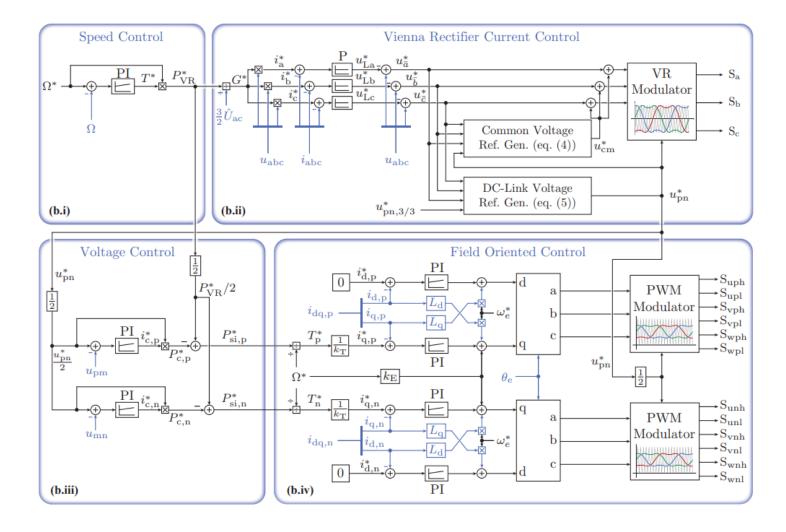
- At low speed, the machine back-EMF is small, and the required DC-link voltage is lower than the grid line-to-line voltage
- The q-axis current component of the inverters supports maintaining the DC-link voltage equal to the grid voltage
- Single-phase switching of the VR is sufficient to sustain power factor correction (PFC) operation



Operation: Low-Speed Operation (1/3-PWM)

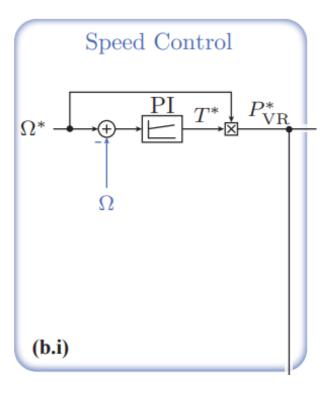
- High-frequency switching is active only during one-third of the grid period, resulting in over 66 % reduction in VR switching losses
- Through synergetic control with the stacked inverters, the grid currents remain sinusoidal with near-unity power factor
- The common-mode voltage of the VR is modulated to generate the 1/3-PWM duty cycles

■ The midpoint and DC-link capacitor currents fluctuate, but the resulting energy ripple is absorbed by the motor's mechanical inertia



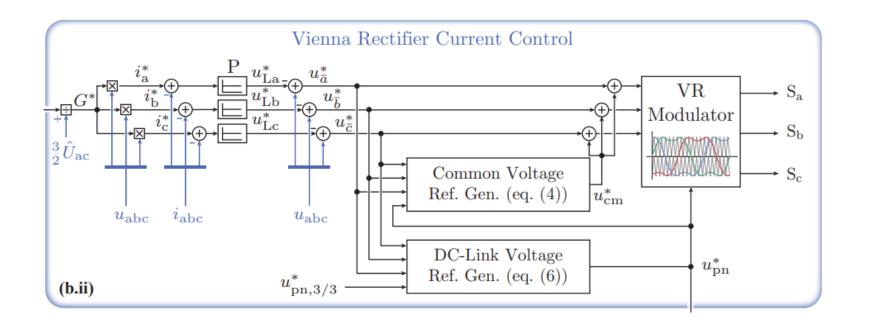
innsbruck Drive and Energy Systems Laboratory

Operation: Control Structure



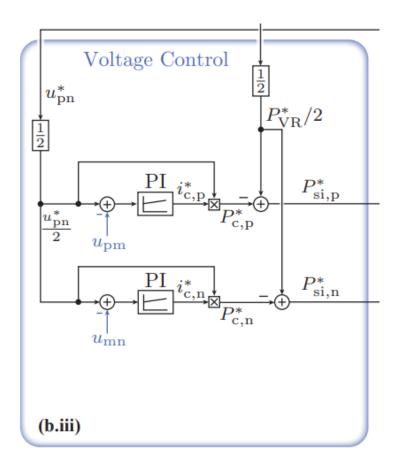
Operation: Speed Control

- The speed controller, forming the outermost control loop, operates with the lowest bandwidth
- Determines the required mechanical power, provided to later-stage controllers



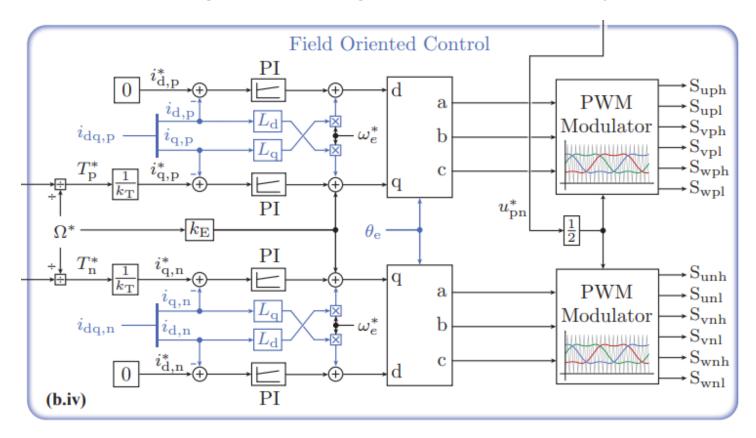
Operation: Current Control of the VR

- The power reference from the speed controller is fed into the VR current controller
- The inner control loops of the VR regulate the grid currents to follow their references
- Based on the voltage reference and operating state of the VR, the common-mode and DC-link voltage references are calculated



Operation: Voltage Control in 1/3-PWM

- From the voltage reference, the required capacitor power is calculated within the voltage control loop
- The sum of the mechanical power reference and the capacitor power reference is forwarded to the stacked inverter control stage



Operation: Motor Phase Current Control

- Field-oriented control (FOC) is applied to each inverter to regulate the motor phase currents
- The FOC ensures that the torque-producing and flux-producing current components accurately follow their references

Content

- **▶** Introduction
- Operation
- **►** Simulation Results
- **Conclusions**

Simulation Results: Simulation Conditions

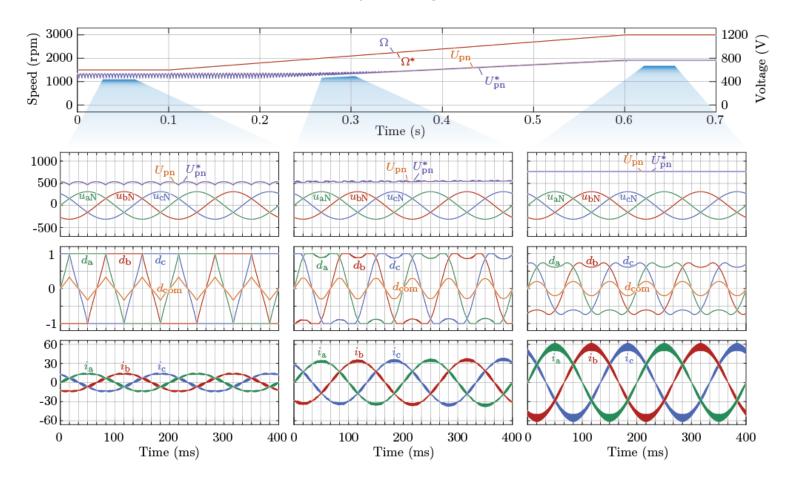
- The DC-link voltage reference is generated according to a V/f-based profile
- The current control margin $\gamma = 1.2$ is applied to ensure sufficient voltage headroom for accurate current regulation

TABLE I: Simulation parameters.

Parameter	Symbol	Value
Vienna Rectifier		
Grid voltage (line to neutral)	$\hat{U}_{ m ac}$	$325\mathrm{Vpk}$
Grid frequency	$f_{ m g}$	$50\mathrm{Hz}$
Switching frequency	$f_{ m sw,vr}$	$100\mathrm{kHz}$
Input inductance	$L_{\rm \{a,b,c\}}$	100 μΗ
DC-link voltage	$u_{ m pn}$	560 V to 800 V
DC-link capacitance	$C_{ m p}, C_{ m n}$	$10\mu\mathrm{F}$
Stacked Inverters	•	•
DC-link voltage	$u_{ m pm}, u_{ m mn}$	$280\mathrm{V}$ to $500\mathrm{V}$
Switching frequency	$f_{ m sw,si}$	$100\mathrm{kHz}$
dPMSM		
Flux linkage	$\hat{\Phi}$	$0.25\mathrm{Wb}$
Stator inductance	$L_{ m s}$	$2\mathrm{mH}$
Number of pole pairs	$N_{ m pp}$	2
Moment of inertia	J^{-1}	$0.0446 \mathrm{kg} \mathrm{m}^2$
Nominal phase voltage peak	\hat{U}	$260\mathrm{V}$
Nominal load torque	$T_{\rm load,nom}$	$79.6\mathrm{Nm}$
Nominal mech. power	P_{nom}	$25\mathrm{kW}$
Nominal mech. speed	n_{nom}	$3000\mathrm{rpm}$
Control Parameters		
Bandwidth of speed controller	$f_{ m bw,speed}$	$400\mathrm{Hz}$
Bandwidth of VR current controller	$f_{ m bw,vr}$	$10\mathrm{kHz}$
Bandwidth of voltage controller	$f_{\rm bw,voltage}$	$2\mathrm{kHz}$
Bandwidth of dq current controller	$f_{ m bw,dq}$	$10\mathrm{kHz}$

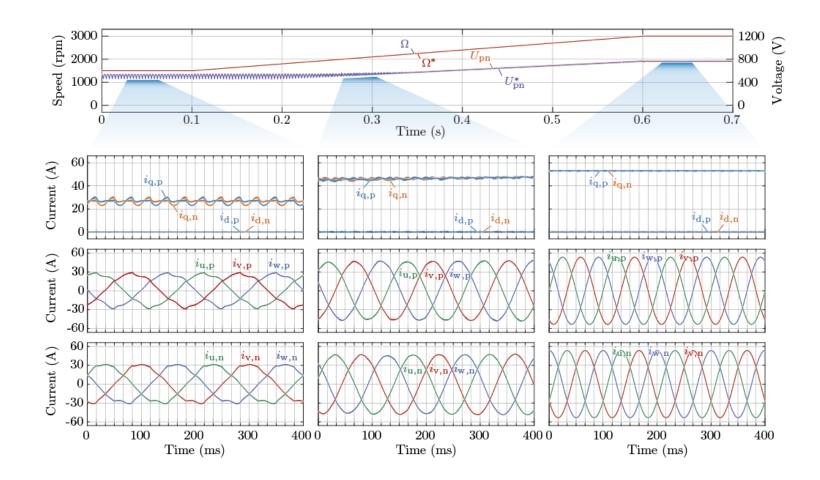
voltage reference

$$u_{\mathrm{pn}}^* = \gamma \; \frac{\text{nominal DC link Voltage}}{\text{nominal speed}} \Omega^*$$



Simulation Results: Vienna Rectifier Operation

- Both speed and DC link voltage track the references
- According to speed, the operation mode transitions smoothly, keeping PFC operation

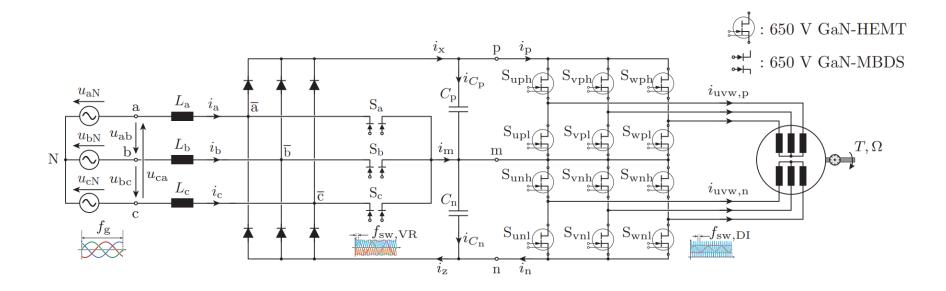


Simulation Results: Stacked Inverter Operation

■ The q-axis current intentionally fluctuates to shape the DC-link voltage into a humped profile under synergetic control

Content

- **▶** Introduction
- Operation
- **►** Simulation Results
- **Conclusions**



Conclusions

- A novel Vienna-rectifier-based dual three-phase PMSM (VR-dPMSM) drive architecture was introduced...
- The system enables operation with 600 V-class devices, allowing the use of GaN transistors and GaN-MBDSs.
- High performance drives can be feasible with boost characteristic and synergetic conrol across the wide speed range.

Thank you!

Motor Phase Current RMS

■ Motor phase current ripple

$$\begin{split} i_{\text{uvw,RMS}} &= \frac{I_{\text{q}}}{\sqrt{2}} \bigg\{ 1 + \frac{1}{I_{\text{q}}^2/2} \bigg[\frac{1}{4} \sum_{n=1}^{\infty} i_{\text{m,ripple}}(n)^2 \\ &+ \frac{1}{4} \sum_{n=1}^{\infty} i_{\text{c,ripple}}(n)^2 \bigg] \bigg\}^{1/2} \\ &= \frac{I_{\text{q}}}{\sqrt{2}} \sqrt{1 + \underbrace{0.0032}_{1} + 0.195 \cdot \bigg(\frac{C \cdot 2\pi f_{\text{g}} \cdot \hat{U}_{\text{ac}}}{\hat{I}_{\text{ac}}} \bigg)^2}, \end{split}$$
 Caused by midpoint current (0.16 %)

Caused by capacitor current (0.004 %)

■ Motor phase current ripple

$$P_C = \frac{U_{\text{pn},1/3}^* \bar{i}_{C,1/3}}{2} = -\frac{3}{4} C \hat{U}_{\text{ac}}^2 \omega_{\text{g}} \cos \omega_{\text{g}} t \sin \omega_{\text{g}} t. \tag{2}$$

$$\begin{aligned} |\Delta\Omega| &= \left| \frac{1}{J} \int \frac{2P_C}{\Omega^*} dt - \left\langle \frac{1}{J} \int \frac{2P_C}{\Omega^*} dt \right\rangle \right| \\ &= \left| \frac{3C\hat{U}_{\rm ac}^2}{8J\Omega^*} \right|. \end{aligned}$$

0.26 rpm wihtout speed controller

