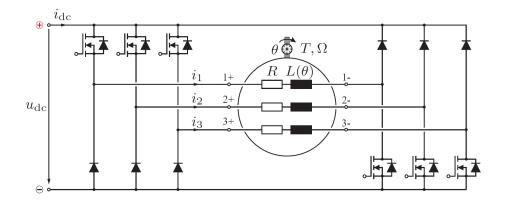


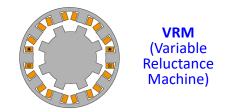
Current Source Inverter-Fed Variable Reluctance Motor Drive with DC-Machine-Like Control Characteristics

Spasoje Mirić | Predrag Pejović | Takanobu Ohno | Michael Haider

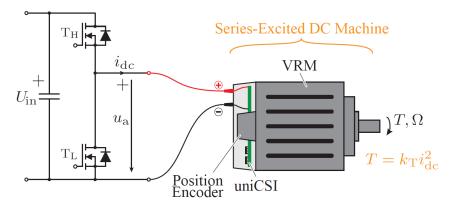
University of Innsbruck, Institute for Mechatronics
Innsbruck Drives and Energy Systems Laboratory (iDES)
Technikerstraße 13a, Floor 1, Office 128
https://www.uibk.ac.at/mechatronik/ides/

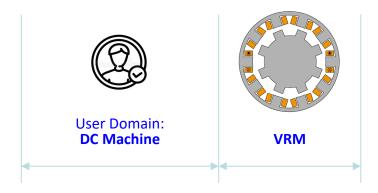
October 08, 2025



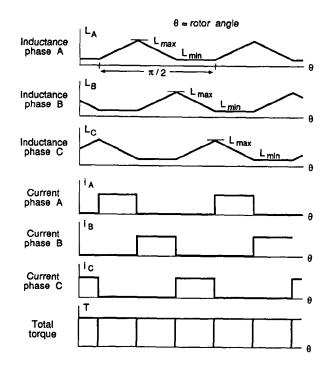

Motivation: Make Reluctance Motor Behave Like a DC Machine for the User

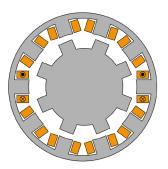
START

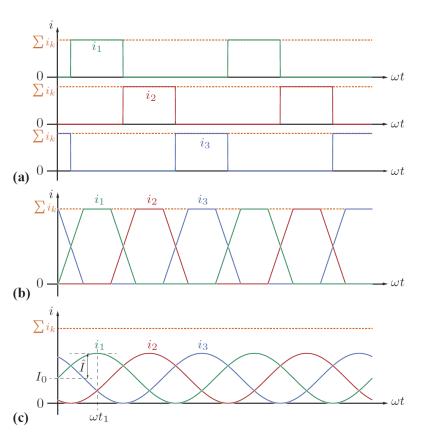

WITH WHY


- Variable reluctance machine (VRM) operation → challenge with controlling the currents especially at high speeds Non standard inverter topology due to unipolar currents → there are many inverter topology options for VRMs

Our goal is to make VRM simple as DC machine for the user \rightarrow

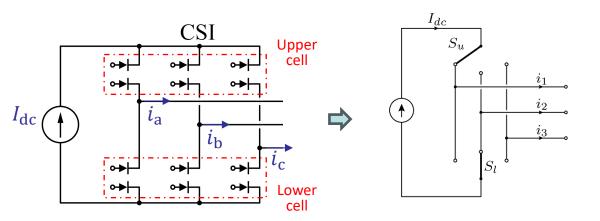


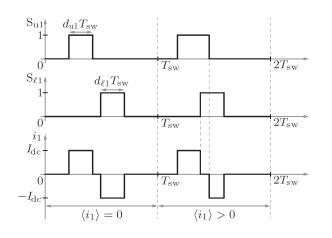



Reluctance Machine: Unipolar Currents

- Built from iron and copper \rightarrow no permanent magnets; good ratio of the torque and the moment of inertia \rightarrow good acceleration Torque is proportional to the inductance change and the square of the current \rightarrow unipolar phase currents

$$T \sim i^2 \frac{\partial L}{\partial \Theta}$$





Current Source Inverter (CSI) Modulation

- The task of the modulation is to ensure the desired value of the average phase current at the output Upper switch on \rightarrow positive current pulse; lower switch on \rightarrow negative current pulse; both switches on \rightarrow zero current
- Every switching state must ensure the 'flow' of the DC link current

Average value of the current $\langle i_1 \rangle$ is obtained by averaging the DC link current pulses.

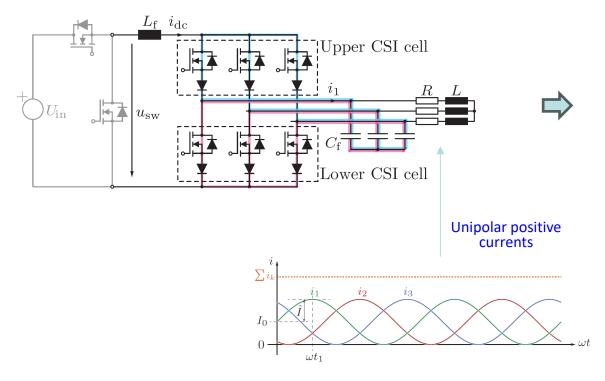
$$\langle i_1 \rangle = I_{dc}(d_{u1} - d_{l1})$$

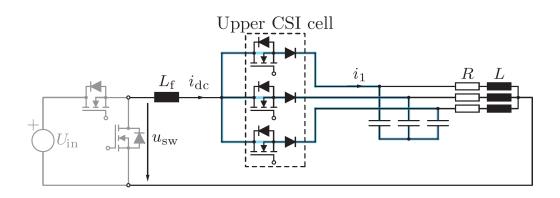
- Current source inverter modulation process has to ensure the following two conditions:
 - 1. Average value of the phase current:

$$\langle i_1 \rangle = I_{dc}(d_{u1} - d_{l1})$$

2. Continuity of the DC link current:

$$d_{11} + d_{12} + d_{13} = 1$$
 and $d_{11} + d_{12} + d_{13} = 1$



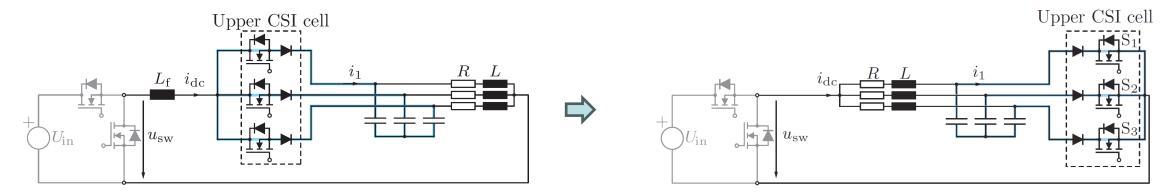


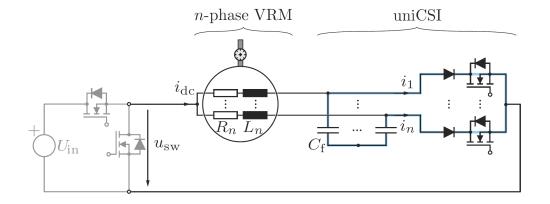
uniCSI: Current Source Inverter for Unipolar Currents (1)

- The average phase current is proportional to the duty cycle difference of the upper and lower CSI cells CSI needs a DC link inductor ($L_{\rm f}$) so we can build a DC link current source! If we need positive only current \rightarrow we can realize it with the upper cell only! The RL load (represents VRM) need positive only phase currents!

$$\langle i_1 \rangle = i_{dc}(d_{u1} - d_{l1})$$

How to further improve this topology? \rightarrow

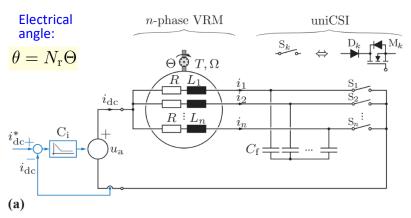




uniCSI: Current Source Inverter for Unipolar Currents (2)

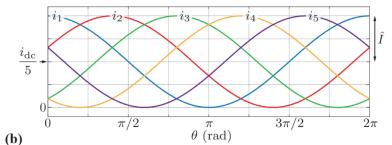
- Reluctance machine has open end windings due to unipolar currents \rightarrow remove the DC link inductor as machine common-mode inductance acts as $L_{\rm f}$ Series connection of the upper CSI cell and the RL load \rightarrow relocate them so that MOSFETs are connected to the GND (no gate driver isolation needed)

uniCSI topology for reluctance machines → ,switch per phase'



Variable Reluctance Machine (VRM) Drive with uniCSI

- Switch per phase uniCSI topology to supply VRM \rightarrow switch is series connection of a diode and a MOSFET (or bidirectional switch) For VRM, the phase currents sum up to the DC link current value \rightarrow for 5-phase example: $i_1+i_2+i_3+i_4+i_5=i_{\rm dc}$ We assume sinusoidal currents, but other waveforms like trapezoidal are possible


$$i_k = d_k i_{dc}$$

$$\sum_{k=1}^{5} i_k = i_{\rm dc}$$

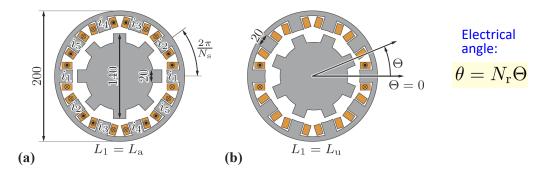
uniCSI duty cycles:

$$d_k = \frac{i_k}{i_{dc}} = \frac{m}{n} \cos\left(\theta + \theta_i - (k-1)\frac{2\pi}{n}\right) + \frac{1}{n}$$

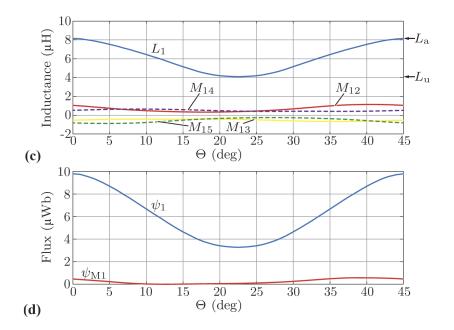
$$\sum_{k=1}^{n} d_k = 1$$

Phase currents:

$$i_k = m \frac{i_{dc}}{n} \cos \left(\theta + \theta_i - (k-1) \frac{2\pi}{n}\right) + \frac{i_{dc}}{n}$$



Variable Reluctance Machine Model


- We assume only self-inductance to be contributing to the flux linkage, which is justified by FEM simulations where the flux due to mutual inductances is negligible.
- In this example $N_r = 8$

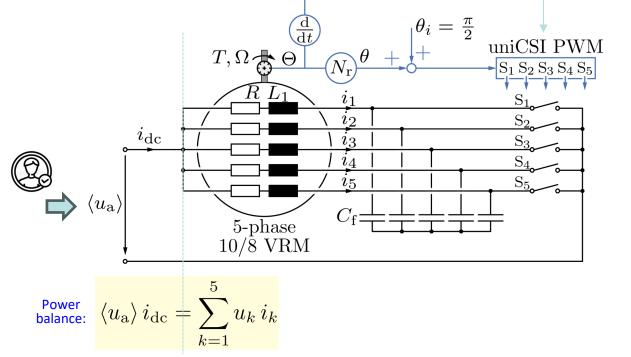
Sinusoidal inductance (used also in PLECS):

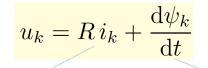
$$L_k(\theta) = L_u + (L_a - L_u) f_k(\theta)$$

$$f_k(\theta) = \frac{1}{2} + \frac{1}{2} \cos\left(\theta + (k-1)\frac{2\pi}{n}\right)$$

Flux linkage: $\psi_k(\theta) = L_k(\theta) \, i_k(\theta)$

Voltage equation used for modeling: $u_k = R \, i_k + rac{\mathrm{d} \psi_k}{\mathrm{d} t}$

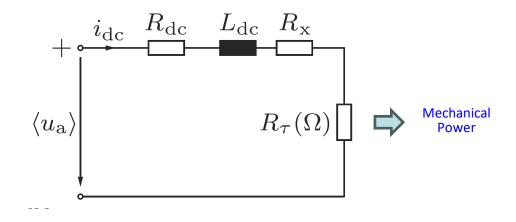




DC-Side of the uniCSI

• Electrical angle given by the rotor position as: $\theta = N_r \Theta$

$$d_k = \frac{i_k}{i_{dc}} = \frac{m}{n} \cos\left(\theta + \theta_i - (k-1)\frac{2\pi}{n}\right) + \frac{1}{n}$$

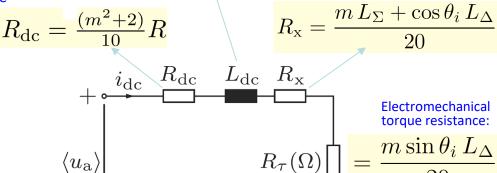


$$\langle u_{\mathbf{a}} \rangle i_{\mathbf{dc}} = R \sum_{k=1}^{5} i_{k}^{2} = \underbrace{\frac{m^{2} + 2}{10}}_{=R_{\mathbf{dc}}} R i_{\mathbf{dc}}^{2} \qquad \langle u_{\mathbf{a}} \rangle i_{\mathbf{dc}} = \sum_{k=1}^{5} \frac{\mathrm{d}\psi_{k}}{\mathrm{d}t} i_{k}$$

$$\langle u_{\rm a} \rangle i_{\rm dc} = \sum_{k=1}^{5} \frac{\mathrm{d}\psi_k}{\mathrm{d}t} i_k$$
$$= \left(L_{\rm dc} \frac{\mathrm{d}i_{\rm dc}}{\mathrm{d}t} + R_{\rm x} i_{\rm dc} + R_{\tau} i_{\rm dc} \right) i_{\rm dc}$$

VRMs DC-side equivalent circuit:

Torque of the VRM Supplied by uniCSI


- Equivalent circuit, expressions of circuit elements:
- *m* uniCSI modulation index
- θ_i current phase shift with respect to the shaft electrical angle θ

$$L_{\Sigma} = L_{\mathrm{a}} + L_{\mathrm{u}} \quad L_{\Delta} = L_{\mathrm{a}} - L_{\mathrm{u}}$$

Equivalent DC inductance:

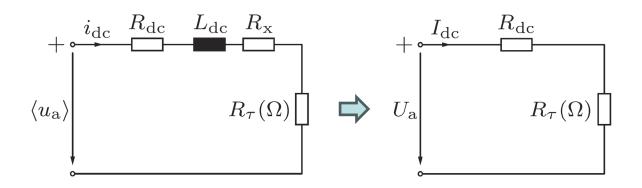
$$L_{
m dc} = rac{(m^2+2)L_{\Sigma} + 2m\cos heta_i\,L_{\Delta}}{20}$$
 Dynamic resistance:

Equivalent DC resistance:

■ Torque expression derivation → power balance

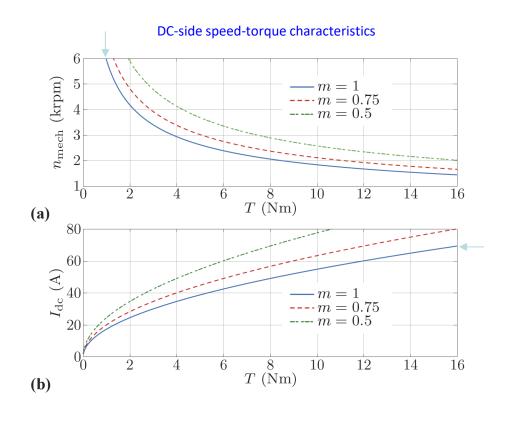
$$R_{\tau} i_{\text{dc}}^{2} = T \Omega = T \frac{\omega}{N_{\text{r}}}$$

$$T = \frac{2}{5} m \sin \theta_{i} L_{\Delta} i_{\text{dc}}^{2}$$


$$k_{\text{T}} = \frac{2}{5} m \sin \theta_{i} L_{\Delta}$$

DC-Side Speed-Torque Characteristic

• Speed-torque characteristics are derived for steady state \rightarrow inductor ($L_{\rm dc}$) and dynamic resistance ($R_{\rm x}$) disappear from the steady-state equiv. circuit



$$U_{\rm a} = R_{\rm dc} I_{\rm dc} + R_{\tau}(\Omega) I_{\rm dc}$$

$$R_{\tau}(\Omega) = k_{\rm T} \Omega$$

$$I_{\rm dc} = \sqrt{T/k_{\rm T}}$$

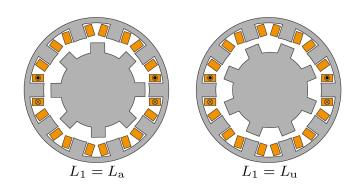
$$\Omega(T) = \frac{U_{\rm a}}{\sqrt{k_{\rm T} T}} - \frac{R_{\rm dc}}{k_{\rm T}}$$

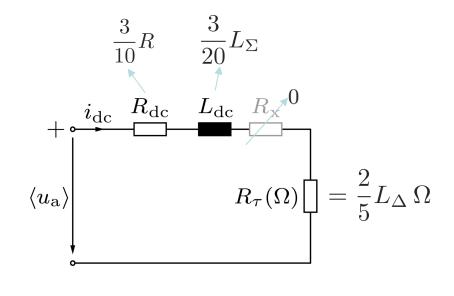
Best: m = 1

Maximizing Torque per Current

• We choose m and θ_i so that we get maximum torque per ampere \rightarrow we maximise the torque constant

$$T = \frac{2}{5} m \sin \theta_i L_{\Delta} i_{dc}^2$$

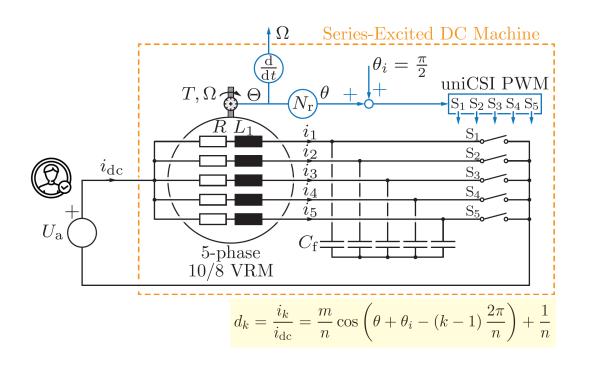

$$\frac{2}{5} L_{\Delta}$$

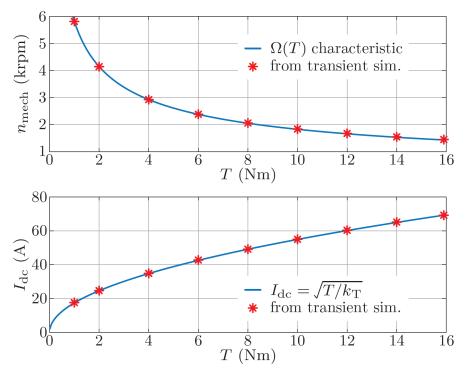

$$m = M = 1$$

$$\theta_i = \theta_I = \frac{\pi}{2}$$

Difference between the aligned and unaligned inductances

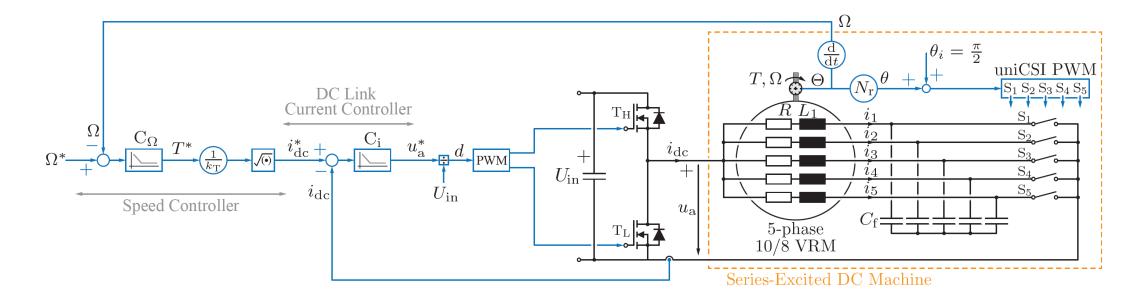
$$L_{\Delta} = L_{\rm a} - L_{\rm u}$$





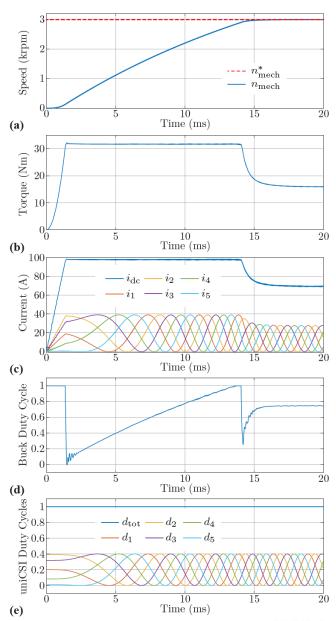
Open-Loop Operation of the uniCSI Supplied VRM

- We fixed modulation index m=1 and the phase shift $\theta_i=\pi/2$ phase currents are open-loop locked to the motor's shaft position. This results that the uniCSI supplied VRM behaves like a series-excited DC machine from the DC side connections. This enables a user to operate such drive system from the DC connections \rightarrow no user interaction with the VRM and uniCSI.


Each star represents a steady state value of the transient time domain simulation!

Speed Control with uniCSI-VRM Drive

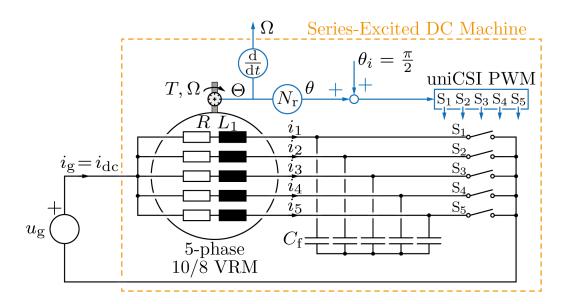
- Torque and therefore speed control is managed with the input converter, like with a conventional DC machine Open-loop operation of the uniCSI \rightarrow no controllers | constant m=1 | constant $\theta_i=\pi/2$ | no user interaction with uniCSI This drive systems decouples any expertise of reluctance machines from the user \rightarrow 'plug-and-play' DC drive system

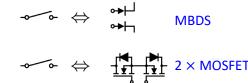

Simulation Results – Speed Transient

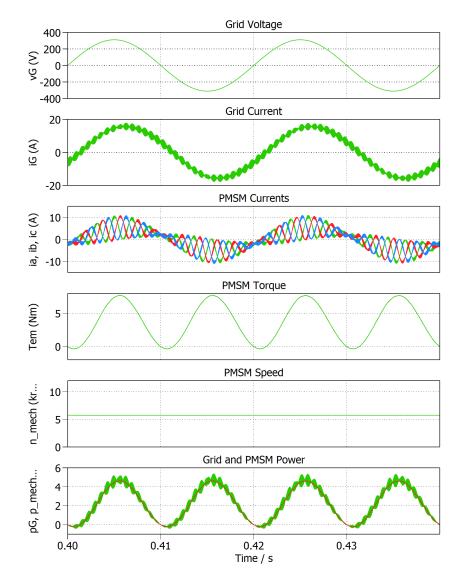
- Speed transient from standstill to nominal speed Quadratic relationship between the DC link current and the torque

Parameter	Symbol	Value
Buck		
Input voltage	$U_{ m in}$	$100\mathrm{V}$
Switching frequency	$f_{\rm sw,b}$	$300\mathrm{kHz}$
CSI		
Output capacitance	$C_{ m f}$	$0.2\mu\mathrm{F}$
Switching frequency	$f_{ m sw}$	$300\mathrm{kHz}$
Modulaiton index	M	1
Current angle	$ heta_I$	$\pi/2$
VRM		
Phase resistance	R	0.05Ω
Unaligned inductance	$L_{ m u}$	$0.5\mathrm{mH}$
Aligned inductance	$L_{ m a}$	$8.8\mathrm{mH}$
Number of stator teeth	$N_{ m s}$	10
Number of rotor teeth	$N_{ m r}$	8
Moment of inertia	J	$0.001 {\rm kgm}^2$
Nominal mech. power	P_{mech}	$5\mathrm{kW}$
Nominal mech. speed	n_{mech}	$3000\mathrm{rpm}$
DC-side		
DC-side resistance	$R_{ m dc}$	0.015Ω
DC-side inductance	$L_{ m dc}$	$1.395\mathrm{mH}$
Torque constant	$k_{ m T}$	$3.32{\rm mNmA^{-2}}$
Controller gains		
C _i closed-loop bandwidth	$f_{ m cc}$	$5\mathrm{kHz}$
C _i proportional gain	$K_{ m pc}$	$43.82\mathrm{V/A}$
C_i integral gain	K_{ic}	$33143{ m V/(As)}$
C_{Ω} cross-over frequency	$f_{ m cs}$	$0.5\mathrm{kHz}$
C_Ω proportional gain	$K_{\rm ps}$	$3.14\mathrm{s}\mathrm{N}\mathrm{m}$
C_{Ω} integral gain	K_{is}	$1974\mathrm{N}\mathrm{m}$

TABLE II: Simulation Parameters.

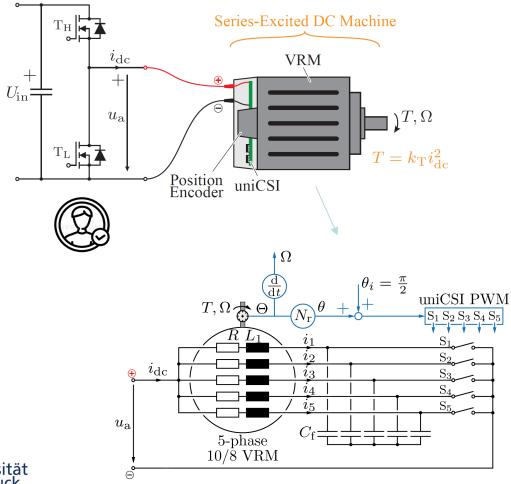


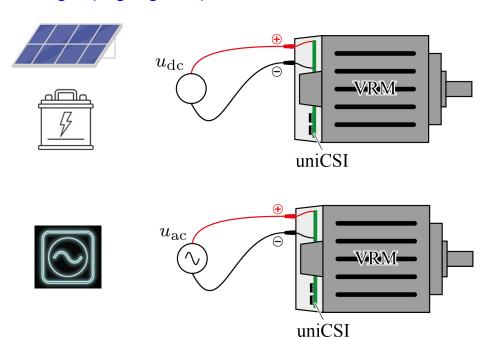




Grid Supplied uniCSI-VRM: Universal Machine

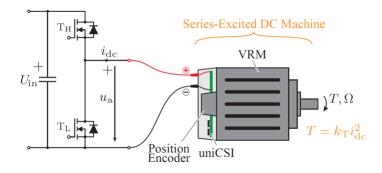
- Open loop controlled uniCSI behaves like a series excited DC machine Series excited DC machine → universal machine Grid power pulsation → buffered in drive train's inertia Future work → speed regulation capabilities





DC Machine Behavior of the uniCSI VRM

- With shown open loop control of the uniCSI, the whole drive behaves like a series excited DC machine (universal motor) High end speed control applications → DC link current control Simple applications → it can run without the DC link current control from DC and AC grid (ongoing work)



Conclusions

- Novel uniCSI topology
- Open-loop control
- DC-side speed torque characteristic
- > No user interaction with the inverter nor VRM control
- User 'sees' a DC machine
- > Speed-controlled drive system through input converter
- Universal machine
- Future work: Hardware verification and DC/AC voltage supply operation

Future motor building materials:

Thank you!

