Quantifying Uncertainty in Complex Simulation Models Using Ensemble Copula Coupling

Tilmann Gneiting

Heidelberg Institute for Theoretical Studies (HITS)
Karlsruhe Institute of Technology (KIT)

Innsbruck, May 21, 2014
Uncertainty Quantification and Numerical Weather Prediction (NWP)

Statistical Postprocessing of NWP Ensembles

Ensemble Copula Coupling

Case Study

Discussion
Uncertainty quantification

decision-making frequently depends on the output of complex mathematical models or simulators, such as in weather and climate prediction, flood risk assessment, air quality, groundwater contamination, disease spread, ...

increased recognition of the need for uncertainty quantification, as evidenced by the creation of SIAM and ASA interest groups, along with new journals, such as the joint SIAM/ASA Journal on Uncertainty Quantification

Nick Trefethen, SIAM News May 2012: “An answer that used to be a single number may now be a statistical distribution”

informed decision making depends on full joint probability distributions for insufficiently known quantities

typically, but not necessarily time forward, such as in numerical weather prediction
Numerical weather prediction (NWP)

Weather forecasting is considered the ultimate problem in meteorology (Bjerknes 1904)

Numerical weather prediction (NWP) is based on complex mathematical models that represent the physics of the atmosphere.

System of six partial differential equations (conservation of momentum, mass, energy and entropy, and equation of state) in six variables (two velocity components, density, pressure, temperature, humidity)

Equations are discretized and run forward in time to obtain deterministic forecasts of future states of the atmosphere.

Data assimilation systems provide initial conditions that describe the current state of the atmosphere on a 3d grid: millions of inputs.
Numerical weather prediction (NWP)

through the 1980s, weather forecasting had traditionally been viewed as a deterministic problem, despite two major sources of uncertainty, namely

- **initial conditions**: incomplete network of observations, measurement error, shortcomings in data assimilation, . . .

- **model formulation**: incomplete knowledge of physical processes (e.g., inaccurate parameterizations of sub grid-scale processes), incomplete and inaccurate numerical schemes, . . .

major shift of paradigms since the early 1990s, as expressed by Tim Palmer (2000):

> Although forecasters have traditionally viewed weather prediction as deterministic, a culture change towards probabilistic forecasting is in progress.

probabilistic weather forecasts quantify uncertainty using predictive probability density functions (PDFs), as opposed to single-valued point forecasts
What is a good probabilistic forecast? Maximizing sharpness subject to calibration

Gneiting, Balabdaoui and Raftery (2007) contend that the goal of probabilistic forecasting is to maximize the sharpness of the predictive PDFs subject to calibration.

Calibration refers to the statistical compatibility between the predictive PDFs and the realizing observations.

Joint property of the forecasts and the observations that can be assessed using the probability integral transform (PIT).

Sharpness refers to the spread of the predictive PDFs.

Property of the forecasts only.

Proper scoring rules such as the logarithmic score or the continuous ranked probability score (Gneiting and Raftery 2007) allow for a joint assessment of calibration and sharpness.
Proper scoring rules

A **scoring rule** is a function

\[s(F, y) \]

that assigns a numerical score to each pair \((F, y)\), where \(F\) is the **predictive CDF** and \(y\) is the realizing **observation**

We consider scores to be **negatively oriented** penalties that forecasters aim to **minimize**

A **proper** scoring rule \(s\) satisfies the expectation inequality

\[\mathbb{E}_G s(G, Y) \leq \mathbb{E}_G s(F, Y) \quad \text{for all} \quad F, G, \]

thereby encouraging **honest** and **careful** assessments (Gneiting and Raftery 2007)
Proper scoring rules

the most popular example is the logarithmic score,

\[s(f, y) = -\log f(y), \]

i.e., the negative of the predictive PDF, \(f \), evaluated at the realizing observation, \(y \)

a local score of integer order \(k \) depends on the predictive distribution via \(f(y), \ldots, f^{(k)}(y) \) only

the logarithmic score is local of order \(k = 0 \)

local scores of general order have been studied by Parry, Dawid and Lauritzen (2012) and Ehm and Gneiting (2012), with the Hyvärinen score,

\[s(f, y) = 2 \frac{f''''(y)}{f(y)} - \left(\frac{f'(y)}{f(y)} \right)^2, \]

being an example of order \(k = 2 \)
Proper scoring rules

In applications, our favorite score is the continuous ranked probability score,

$$\text{crps}(F, y) = \int_{-\infty}^{\infty} (F(x) - 1(x \geq y))^2 \, dx$$

$$= E_F |X - y| - \frac{1}{2} E_F |X - X'|$$

where X and X' are independent random variables with cumulative distribution function F

The continuous ranked probability score is reported in the same unit as the observations and generalizes the absolute error, to which it reduces in the case of a point forecast.

Provides a direct way of comparing point forecasts and probabilistic forecasts.

The kernel score representation allows for a direct multivariate analogue, the energy score.
NWP ensembles

preferred approach to **probabilistic weather prediction** is based on **ensembles** of **NWP forecasts**:

- **each ensemble member** is a single-valued, deterministic forecast using an NWP model

- the forecasts differ from each other with respect to the two major sources of uncertainty: **initial conditions** and/or **model formulation**

global ensemble prediction systems have been operational at NCEP and ECMWF since December 1992

limited area systems such as the **University of Washington Meso-scale Ensemble (UWME)** or the **COSMO-DE** system run by the German Weather Service (DWD) operate at lead times up to three days
University of Washington Mesoscale Ensemble (UWME)

48-hour ahead UWME forecast of maximum wind speed valid August 7, 2003
Uncertainty Quantification and Numerical Weather Prediction (NWP)

Statistical Postprocessing of NWP Ensembles

Ensemble Copula Coupling

Case Study

Discussion
Statistical postprocessing: EMOS/NR and BMA

NWP ensembles are subject to model biases and typically they show a lack of calibration.

thus, some form of statistical postprocessing is required in order to properly quantify uncertainty, to generate calibrated and sharp predictive PDFs.

we have developed two general approaches to the statistical post-processing of NWP ensembles:

- ensemble model output statistics (EMOS) or nonhomogeneous regression (NR), which fits a single, parametric predictive PDF using summary statistics from the ensemble (Gneiting et al. 2005)

- Bayesian model averaging (BMA), which fits a mixture density as predictive PDF, where each ensemble member is associated with a kernel function, with a weight that reflects the member’s relative skill (Raftery et al. 2005)
EMOS/NR and BMA for temperature

consider an ensemble forecast, x_1, \ldots, x_M, for temperature, y, at a given time and location

EMOS/NR employs a single Gaussian predictive density, in that

$$y \mid x_1, \ldots, x_M \sim \mathcal{N}(a_0 + a_1 x_1 + \cdots + a_M x_M, b_0 + b_1 s^2)$$

with location parameters b_0 and b_1, \ldots, b_M, and spread parameters c_0 and c_1, where s^2 is the ensemble variance

BMA employs Gaussian kernels with a linearly bias-corrected mean, i.e., the BMA predictive density is the Gaussian mixture

$$y \mid x_1, \ldots, x_M \sim \sum_{m=1}^{M} w_m \mathcal{N}(c_{0m} + c_{1m} x_m, \sigma_m^2)$$

with BMA weights w_1, \ldots, w_M, bias parameters c_{01}, \ldots, c_{0M} and c_{11}, \ldots, c_{1M}, and spread parameters $\sigma_1^2, \ldots, \sigma_M^2$
Ensemble model output statistics (EMOS) or nonhomogeneous regression (NR)

<table>
<thead>
<tr>
<th>Weather Quantity</th>
<th>Range</th>
<th>Distribution (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>$y \in \mathbb{R}$</td>
<td>Normal</td>
</tr>
<tr>
<td>Pressure</td>
<td>$y \in \mathbb{R}$</td>
<td>Normal</td>
</tr>
<tr>
<td>Precipitation amount</td>
<td>$y^{1/2} \in \mathbb{R}^+$</td>
<td>Truncated logistic</td>
</tr>
<tr>
<td></td>
<td>$y \in \mathbb{R}^+$</td>
<td>Generalized extreme value</td>
</tr>
<tr>
<td>Wind components</td>
<td>$y \in \mathbb{R}$</td>
<td>Normal</td>
</tr>
<tr>
<td>Wind speed</td>
<td>$y \in \mathbb{R}^+$</td>
<td>Truncated normal</td>
</tr>
</tbody>
</table>

u-wind at Hamburg, valid April 1–14, 2011 at 00 UTC, 24-hour lead time
Bayesian model averaging (BMA)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>Kernel ((g))</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>(y \in \mathbb{R})</td>
<td>Normal</td>
<td>(c_0 + c_1 m x_m)</td>
<td>(\sigma_m^2)</td>
</tr>
<tr>
<td>Pressure</td>
<td>(y \in \mathbb{R})</td>
<td>Normal</td>
<td>(c_0 + c_1 m x_m)</td>
<td>(\sigma_m^2)</td>
</tr>
<tr>
<td>Precipitation accumulation</td>
<td>(y^{1/3} \in \mathbb{R}^+)</td>
<td>Gamma</td>
<td>(c_0 + c_1 m x_m)</td>
<td>(d_0 + d_1 m x_m)</td>
</tr>
<tr>
<td>Wind components</td>
<td>(y \in \mathbb{R})</td>
<td>Normal</td>
<td>(c_0 + c_1 m x_m)</td>
<td>(\sigma_m^2)</td>
</tr>
<tr>
<td>Wind speed</td>
<td>(y \in \mathbb{R}^+)</td>
<td>Gamma</td>
<td>(c_0 + c_1 m x_m)</td>
<td>(d_0 + d_1 m x_m)</td>
</tr>
<tr>
<td>Visibility</td>
<td>(y \in [0, 1])</td>
<td>Beta</td>
<td>(c_0 + c_1 m x_m^{1/2})</td>
<td>(d_0 + d_1 m x_m^{1/2})</td>
</tr>
</tbody>
</table>

Temperature in Berlin valid April 1–14, 2011 at 00 UTC, 48-hour lead time, rolling 30-day training period.
Bayesian model averaging (BMA)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>Kernel (f)</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation accumulation</td>
<td>(y^{1/3} \in \mathbb{R}^+)</td>
<td>Gamma</td>
<td>(c_0 + c_1 x_m)</td>
<td>(d_0 + d_1 x_m)</td>
</tr>
</tbody>
</table>

precipitation accumulation in Frankfurt, valid May 18–31, 2011, 24-hour lead time, rolling 30-day training period
Uncertainty Quantification and Numerical Weather Prediction (NWP)

Statistical Postprocessing of NWP Ensembles

Ensemble Copula Coupling

Case Study

Discussion
Ensemble copula coupling (ECC)

EMOS/NR and BMA apply to any single weather variable at any single location and any single look-ahead time.

However, individually postprocessed distributions fail to account for multivariate dependence structures.

The most pressing need now is to develop postprocessing techniques that yield physically realistic probabilistic forecasts of spatio-temporal weather trajectories for multiple weather variables at multiple locations and multiple look-ahead times.

Key applications include air traffic control, ship routeing, hydrologic predictions and renewable energy management.
Example

illustration: 24-hour ensemble forecast of surface temperature and pressure at Berlin and Hamburg valid May 27, 2010 before and after BMA postprocessing
Sklar’s theorem

EMOS/NR and BMA apply to any single weather variable at any single location and any single look-ahead time

yielding a univariate or marginal predictive cumulative distribution function (CDF), \(F_l \), for any given univariate weather quantity \(Y_l \)

with each multi-index \(l = (i, j, k) \) referring to weather variable \(i \), location \(j \) and look-ahead time \(k \)

we seek a physically realistic and consistent multivariate or joint predictive CDF, \(F \), with margin \(F_l \) for each \(l = 1, \ldots, L \)

Sklar’s theorem (1959): every multivariate CDF \(F \) with margins \(F_1, \ldots, F_L \) can be written as

\[
F(y_1, \ldots, y_L) = C(F_1(y_1), \ldots, F_L(y_L))
\]

where \(C : [0, 1]^L \rightarrow [0, 1] \) is a copula, i.e., a multivariate CDF with standard uniform margins
Copula approaches

in order to issue physically realistic and consistent probabilistic forecasts of spatio-temporal weather trajectories

it remains to specify and fit a suitable copula $C : [0, 1]^L \to [0, 1]$

if L is small, or if specific structure can be exploited, parametric families of copulas work well

- Gel et al. (2004), Berrocal et al. (2007), Pinson et al. (2009), Schuhen et al. (2012) and Möller et al. (2013) use Gaussian copulas

- parametric or semi-parametric alternatives include elliptical, Archimedean, hierarchical Archimedean and pair copulas

if L is huge and no specific structure can be exploited, we need to resort to non-parametric approaches, based on empirical copulas, with the Schaake shuffle (Clark et al. 2004) and ensemble copula coupling (ECC) being particularly attractive options
Ensemble copula coupling (ECC)

given an NWP ensemble of size M for the weather variables Y_l, where $l = 1, \ldots, L$, ensemble copula coupling (ECC) proceeds in three steps

univariate postprocessing: for each $l = 1, \ldots, L$, apply EMOS/NR or BMA to obtain a postprocessed predictive CDF, F_l

quantization: for each $l = 1, \ldots, L$, obtain a discrete sample of size M from F_l, namely

$$\tilde{x}_m = F_l^{-1}\left(\frac{m}{M+1}\right), \quad m = 1, \ldots, M$$

ensemble reordering: take the function $C : [0, 1]^L \to [0, 1]$ in Sklar’s theorem to be the empirical copula of the raw ensemble, i.e., arrange the postprocessed values in the same rank order as the raw ensemble values

implicit in scattered recent work in the meteorological and climatological literatures
Ensemble copula coupling (ECC)

illustration: 24-hour ensemble forecast of surface temperature and pressure at Berlin and Hamburg valid May 27, 2010 before and after postprocessing with BMA
Ensemble copula coupling (ECC)

illustration: 24-hour ensemble forecast of surface temperature and pressure at Berlin and Hamburg valid May 27, 2010 before and after postprocessing with BMA + ECC
Uncertainty Quantification and Numerical Weather Prediction (NWP)

Statistical Postprocessing of NWP Ensembles

Ensemble Copula Coupling

Case Study

Discussion
ECMWF ensemble

statistical postprocessing for the **European Centre for Medium-Range Weather Forecasts (ECMWF)**’s 50-member ensemble

BMA, EMOS/NR and ECC applied to surface **temperature, pressure, precipitation**, and the **u wind** component

at the airports in **Berlin-Tegel, Frankfurt** and **Hamburg**, Germany at lead times of 24 and 48 hours

parameters for **BMA and EMOS/NR** are **estimated** on a **rolling 30-day training period**, with member specific parameters constrained to be equal

the **test period** ranges from May 1, 2010 through April 30, 2011

for details and further results see Schefzik, Thorarinsdottir and Gneiting (2013)
Results: Univariate weather quantities

<table>
<thead>
<tr>
<th></th>
<th>CRPS</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berlin</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Temp. (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ENS</td>
<td>1.21</td>
<td>1.23</td>
</tr>
<tr>
<td>24 ENS+BMA</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>48 ENS</td>
<td>1.25</td>
<td>1.26</td>
</tr>
<tr>
<td>48 ENS+BMA</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>Pressure (hPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ENS</td>
<td>0.54</td>
<td>0.55</td>
</tr>
<tr>
<td>24 ENS+BMA</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>48 ENS</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>48 ENS+BMA</td>
<td>0.77</td>
<td>0.74</td>
</tr>
<tr>
<td>Precip. (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ENS</td>
<td>0.25</td>
<td>0.41</td>
</tr>
<tr>
<td>24 ENS+BMA</td>
<td>0.23</td>
<td>0.40</td>
</tr>
<tr>
<td>48 ENS</td>
<td>0.26</td>
<td>0.41</td>
</tr>
<tr>
<td>48 ENS+BMA</td>
<td>0.26</td>
<td>0.43</td>
</tr>
<tr>
<td>u-Wind (ms⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ENS</td>
<td>0.83</td>
<td>0.96</td>
</tr>
<tr>
<td>24 ENS+BMA</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>48 ENS</td>
<td>0.82</td>
<td>0.89</td>
</tr>
<tr>
<td>48 ENS+BMA</td>
<td>0.75</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Results: Univariate weather quantities

Frankfurt, 48-hour lead time
Results: Multivariate weather quantities

ensemble forecasts of temperature or pressure at all three sites simultaneously, at 48-hour lead time

<table>
<thead>
<tr>
<th>Energy score</th>
<th>Temp (°C)</th>
<th>Pressure (hPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS</td>
<td>2.34</td>
<td>1.48</td>
</tr>
<tr>
<td>ENS+BMA</td>
<td>1.93</td>
<td>1.48</td>
</tr>
<tr>
<td>ENS+BMA+ECC</td>
<td>1.92</td>
<td>1.43</td>
</tr>
</tbody>
</table>

![Charts showing energy scores for temperature and pressure](image_url)
Uncertainty Quantification and Numerical Weather Prediction (NWP)

Statistical Postprocessing of NWP Ensembles

Ensemble Copula Coupling

Case Study

Discussion
The future of weather forecasting

Tim Palmer (2000):

Although forecasters have traditionally viewed weather prediction as deterministic, a culture change towards probabilistic forecasting is in progress.

Tim Palmer (2012):

... in the coming decade, NWP centres should start to focus exclusively on developing probabilistic forecast systems, dropping their separate higher-resolution deterministic forecast systems, and, importantly measuring progress, and formulating strategic goals, principally in terms of improvements to probabilistic scores.
Uncertainty quantification

strong recognition of the need for **uncertainty quantification** in complex **simulators**

the term **ensemble copula coupling (ECC)** refers to a general **four-stage approach** to uncertainty quantification

1. generate a **forecast ensemble**, using multiple runs of the simulator with perturbed initial conditions or model parameters

2. apply **statistical postprocessing** techniques to obtain calibrated and sharp **univariate** predictive **CDFs**

3. **sample** from the postprocessed predictive **CDFs**

4. merge the discrete univariate margins using the **empirical copula** of the **forecast ensemble**

ECC approaches combine **analytic**, **numerical** and **statistical modeling** and are likely to be very broadly applicable
Selected references

