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Loss Aversion 
Loss aversion is one of the most important concepts in behavioral economics 

(Camerer, 2008). It is consistent with a wide range of empirical findings such as the 

endowment effect (Thaler, 1980; Kahneman et al., 1990), status quo bias (Samuelson 

and Zeckhauser, 1988), equity premium puzzle (Benartzi and Thaler, 1995), labor 

supply of cabdrivers (Camerer et al. 1997), disposition effects in condominium sales 

(Genesove and Mayer, 2001) and animal behavior (Chen et al. 2006) to name a few. 

Loss aversion is traditionally defined in the context of lotteries over monetary 

payoffs (Kahneman and Tversky, 1979; Köbberling and Wakker, 2005; Schmidt and 

Zank, 2005). However, people often incur losses that may not be measurable in 

monetary terms (e.g. loss of a close friend or a relative, loss of faith, reputation or 

prestige, loss of a sports title, loss of animal species etc). This paper extends the notion 

of loss aversion to decision problems where outcomes (consequences) may not be 

measurable in monetary terms.  

Numerous experimental studies demonstrate that people generally have fuzzy 

preferences over lotteries, i.e. they choose in a probabilistic manner (e.g. Camerer, 1989; 

Hey and Orme, 1994; Loomes and Sugden, 1998). Therefore, this paper also extends the 

notion of loss aversion to allow for the possibility of fuzzy preferences.  

The paper is organized as follows. Section 1 defines comparative loss aversion 

in the context of an arbitrary outcome set. Section 2 considers the implications of the 

proposed definitions of comparative loss aversion for expected utility theory. Section 3 

does the same for rank-dependent utility theory. Section 4 extends the notion of loss 

aversion to a more general setup where people have fuzzy preferences over lotteries. 

Section 5 discusses probabilistic loss aversion in the context of different models of 

probabilistic choice. Section 6 defines absolute loss aversion. Section 7 concludes. 
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1. Comparative Loss Aversion 
Let X denote a finite set of outcomes (consequences) that contains at least two 

elements. We will treat X as an arbitrary abstract set, which is not necessarily a subset of 

Euclidean space n. Let X-⊂X be a nonempty proper subset of X. The elements x-∈X- are 

called losses and they can be, for example, “loss of $100”, “loss of a key chain”, “loss 

of faith”, “loss of virginity” etc. Let X+ ≡ X \ X- denote the complement of X-. The 

elements x+∈X+ are called gains and they can be, for example, “gain of $200”, “gain in 

experience”, “weight gain” etc. If an outcome “loss of A” is in X- this does not imply 

that a symmetric outcome “gain of A” necessarily belongs to X+. 

A lottery L: X → [0,1] is a probability distribution on X, i.e. it delivers an 

outcome x∈X with a probability L(x) ∈ [0,1] and ∑x∈X L(x)=1. The set of all lotteries is 

denoted by ℒ. Let L+ : X → [0,1] denote a loss-free lottery that yields only gains with a 

positive probability i.e. ( ) 1
x X

L x
+ +

+ +∈
=∑  and L+(x-)=0 for any x-∈X-. Let ℒ+ ⊂ ℒ be the 

set of all such loss-free lotteries. Finally, let L- : X → [0,1] denote a gain-free lottery that 

yields only losses with a positive probability i.e. ( ) 1
x X

L x
− −

− −∈
=∑  and L-(x+)=0 for any 

x+∈X+. Let ℒ- ⊂ ℒ be the set of all such gain-free lotteries. 

In this and the next two sections we consider a “traditional” decision maker who 

has a unique binary preference relation  on ℒ. As customary, we will use the sign  to 

denote the asymmetric component of , and the sign ~ to denote the symmetric 

component of . We will consider two individuals: an individual ♀ characterized by a 

preference relation ♀ and an individual ♂ characterized by a preference relation ♂. 

We begin with a definition of comparative loss aversion that parallels Yaari’s 

definition of comparative risk aversion (Yaari, 1969). 
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Definition 1 An individual ♀ is more loss averse than an individual ♂ if  

a) L+ ♂ L implies L+ ♀ L for all L+∈ℒ+ and all L∈ℒ; 

b) L+ ~♂ L implies L+ ♀ L for all L+∈ℒ+ and all L∈ℒ;   

c) there exist L+∈ℒ+ and L∈ℒ such that L+ ~♂ L and L+ ♀ L. 

According to Definition 1, a more loss averse individual strictly prefers a loss-

free lottery over another lottery whenever a less loss averse individual does so as well. 

In addition, a more loss averse individual weakly prefers a loss-free lottery over another 

lottery whenever a less loss averse individual is exactly indifferent between the two.  

This definition of the more-loss-averse-than relation between individuals is quite 

general. Specifically, Definition 1 does not require that lottery outcomes are measurable 

in real numbers. It also does not require that individual preferences are represented by a 

specific decision theory (e.g. prospect theory). In particular, comparative loss aversion is 

defined in terms of observable preferences and not as a property of an unobservable 

function (e.g. a value function in prospect theory) that represents these preferences. 

Definition 1 captures a very simple idea—if a less loss averse individual likes a 

certain loss-free lottery then a more loss averse individual should moreover do so. 

Alternatively, we can define comparative loss aversion based on a logical negation of 

the above statement—if a less loss averse individual does not like a certain gain-free 

lottery then a more loss averse individual should moreover do so. To distinguish this 

alternative concept of comparative loss aversion from Definition 1 above, we refer to 

this second concept of comparative loss aversion as “gain proneness” rather than “loss 

aversion”. Thus, in the remainder of this paper, we write that an individual ♀ is more 

loss averse than an individual ♂ if we refer to Definition 1 above and that an individual 

♀ is more gain prone than an individual ♂ if we refer to Definition 2 below. 
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Definition 2 An individual ♀ is more gain prone than an individual ♂ if  

a) L ♂ L- implies L ♀ L- for all L∈ℒ and all L-∈ℒ-; 

b) L ~♂ L- implies L ♀ L- for all L∈ℒ and all L-∈ℒ-;   

c) there exist L∈ℒ and L-∈ℒ- such that L ~♂ L- and L ♀ L-. 

Definition 1 is not equivalent to Definition 2. If an individual ♀ is more loss 

averse than an individual ♂ this does not imply that ♀ is also more gain prone than ♂ or 

vice versa. Finally, we define strong comparative loss aversion as follows. 

Definition 3 An individual ♀ is strongly more loss averse than an individual ♂ if the 

individual ♀ is both more loss averse and more gain prone than the individual ♂. 

If an individual ♀ is more loss averse (or more gain prone) than an individual ♂, 

this does not imply that ♀ is also more risk averse than ♂. Specifically, it is possible 

that a less loss averse (or gain prone) individual ♂ strictly prefers a sure loss of x-∈X- 

over a lottery L∈ℒ and at the same time a more loss averse (or gain prone) individual ♀ 

strictly prefers L over a degenerate lottery that yields x- for sure. Hence, the individual 

♀ is not always more risk averse than the individual ♂ (e.g. Blavatskyy, 2008b).  

However, Definition 1 implies that if a less loss averse individual ♂ strictly 

prefers a sure gain of x+∈X+ over a lottery L∈ℒ then a more loss averse individual ♀ 

does so as well and if the individual ♂ is exactly indifferent between the two then the 

individual ♀ weakly prefers the sure gain. In other words, the individual ♀ is more risk 

averse than the individual ♂ in the domain of gains. Definition 2 implies that if a less 

gain prone individual strictly prefers a lottery L∈ℒ over a sure loss of x-∈X- then a more 

gain prone individual does so as well. Hence, a more gain prone individual is a more 

risk seeking individual in the domain of losses. On the other hand, a more risk averse 

individual is not necessarily a more loss averse (or less gain prone) individual as well. 
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Proposition 1 If an individual ♀ is more loss averse than an individual ♂, or 

vice versa, then  

a) L+ ♀ M+ if and only if L+ ♂ M+ for all L+, M+∈ℒ+;  

b) L+ ~♀ M+ if and only if L+ ~♂ M+ for all L+, M+∈ℒ+. 

Proof is presented in the Appendix. 

Proposition 1 is an intuitive implication of Definition 1. We can unambiguously 

rank two individuals in terms of their loss preferences only if they have identical 

preferences over loss-free alternatives (gain lotteries). If the two individuals do not have 

the same preferences in choice without any losses, one of them may choose a specific 

loss-free lottery because it is her most preferred alternative and not because she is 

averse to losses. Thus, to have a meaningful concept of comparative loss aversion, we 

need to consider individuals with identical preferences over the set of loss-free lotteries.  

An analogous result holds for gain proneness. Since Definition 2 is effectively a 

mirror image of Definition 1, we prove only the results for loss aversion and state the 

corresponding results for gain proneness as corollaries. 

Corollary 1 If an individual ♀ is more gain prone than an individual ♂, or vice 

versa, then  

a) L- ♀ M- if and only if L- ♂ M- for all L-, M-∈ℒ-;  

b) L- ~♀ M- if and only if L- ~♂ M- for all L-, M-∈ℒ-. 

Corollary 1 captures the same simple intuition for gain proneness as Proposition 

1 does for loss aversion. We can unambiguously rank two individuals in terms of their 

gain proneness only if they have identical preferences over gain-free alternatives (loss 

lotteries). Otherwise, one individual may dislike a particular gain-free lottery, because it 

is her least preferred alternative and not because she is prone to gains. 
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2. Loss Aversion in Expected Utility Theory 
This section considers comparative loss aversion in the context of expected 

utility theory (von Neumann and Morgenstern, 1944). If preferences admit expected 

utility representation then there exists an utility function u:X→ that is unique up to a 

positive linear transformation, such that  

(1) L  M  if and only if   ∑x∈X L(x)u(x) ≥ ∑x∈X M(x)u(x), 

for any two lotteries L, M ∈ ℒ.  

According to formula (1), a lottery L is weakly preferred over a lottery M if and 

only if the expected utility of L is greater than or equal to the expected utility of M. The 

following result follows immediately from Proposition 1.  

Corollary 2 If an expected utility maximizer ♀ with utility function u♀:X→ is 

more loss averse than an expected utility maximizer ♂ with utility function u♂:X→, 

then there exist a>0 and b∈ such that u♀(x+) = au♂(x+) + b for all x+∈X+. 

Corollary 2 simply states that whenever two individuals can be ranked in terms 

of loss preferences, they must have the same utility function in the domain of gains, up 

to a positive linear transformation.  

Proposition 2 An expected utility maximizer ♀ with utility function u♀:X→ is 

more loss averse than an expected utility maximizer ♂ with utility function u♂:X→ if 

and only if there exist a>0 and b∈ such that 

a) u♀(x+) = au♂(x+) + b for all x+∈X+; 

b) u♀(x-) ≤ au♂(x-) + b for all x-∈X-; 

c) there exists a loss x-∈X- such that u♀(x-) < au♂(x-) + b. 

Proof is presented in the Appendix.  
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Proposition 2 states that an individual ♀ is more loss averse than an individual ♂ 

if and only if we can normalize the utility function of the individual ♂ for two arbitrary 

gains so that ♂’s normalized utility function coincides with ♀’s utility function in the 

domain of gains and ♂’s normalized utility of any loss x-∈X- is greater than or equal to 

♀’s  utility of x- (and it is strictly greater for at least one loss x-∈X-).  

Figure 1 illustrates Proposition 2 when X+ is the set of positive real numbers + 

and X- is the set of negative real numbers -. 

 

Corollary 3 An expected utility maximizer ♀ with utility function u♀:X→ is 

more gain prone than an expected utility maximizer ♂ with utility function u♂:X→ if 

and only if there exist a>0 and b∈ such that 

a) u♀(x-) = au♂(x-) + b for all x-∈X-; 

b) u♀(x+) ≥ au♂(x+) + b for all x+∈X+; 

c) there exists a gain x+∈X+ such that u♀(x+) > au♂(x+) + b.  

a+b

1au♂(x)+b 

b

u♀(x) 

u♂(x) 

0 x 

Figure 1 An expected utility maximizer ♀ with utility function u♀(x) is more 
loss averse than an expected utility maximizer ♂ with utility function u♂(x) 
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Corollary 3 establishes a parallel result to Proposition 2 for the case of gain 

proneness. In this case, an expected utility maximizer ♀ is more gain prone than an 

expected utility maximizer ♂ if and only if we can normalize their utility functions so 

that the two coincide in the domain of losses and ♀’s normalized utility function does 

not fall below ♂’s utility function in the domain of gains (and it is strictly above ♂’s 

utility function for at least one gain x+∈X+). Thus, under expected utility theory, 

conditions for gain proneness are simply a mirror image of those for loss aversion.  

Figure 2 illustrates Corollary 3 when X+ is the set of positive real numbers + 

and X- is the set of negative real numbers -. 

 

By comparing necessary and sufficient conditions from Proposition 2 with those 

from Corollary 3 we arrive at the first impossibility result. 

Corollary 4 One expected utility maximizer cannot be strongly more loss averse 

than another expected utility maximizer. 

Corollary 4 effectively states that Definition 1 and Definition 2 are mutually 

exclusive under expected utility theory. In other words, if an expected utility maximizer 

a+b

1

au♂(x)+b 

b

u♀(x)

u♂(x) 

0 x 

Figure 2 An expected utility maximizer ♀ with utility function u♀(x) is more 
gain prone than an expected utility maximizer ♂ with utility function u♂(x) 
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♀ is more loss averse than another expected utility maximizer ♂ then the individual ♀ 

cannot simultaneously be more gain prone than the individual ♂ and vice versa. 

If preferences admit expected utility representation, we can establish a stronger 

relationship between risk aversion on one side and loss aversion and gain proneness on 

the other side. For completeness, let us first define comparative risk aversion as follows. 

Definition 4 An individual ♀ is more risk averse than an individual ♂ if  

a) x ♂ L implies x ♀ L for all x∈X and all L∈ℒ,  

b) x ~♂ L implies x ♀ L for all x∈X and all L∈ℒ,   

c) there is one outcome x∈X and one lottery L∈ℒ such that x ~♂ L and x ♀ L. 

Definition 4 captures a simple idea—if a less risk averse individual prefers a degenerate 

lottery that yields one outcome x∈X for sure over another lottery L∈ℒ then a more risk 

averse individual should moreover do so. 

Proposition 3 If an expected utility maximizer ♀ is more risk averse than 

another expected utility maximizer ♂ then: 

a) the individual ♀ is also more loss averse than the individual ♂ provided that 

the set X+ has no more than two elements distinct in terms of desirability, 

b) the individual ♂ is more gain prone than the individual ♀ provided that the 

set X- has no more than two elements distinct in terms of desirability. 

Intuitively, if the set X+ contains no more than two outcomes that are distinct in 

terms of desirability, then we can normalize the utility functions of two individuals so 

that they coincide in the domain of gains. The utility function of a more risk averse 

individual then does not exceed the normalized utility function of a less risk averse 

individual in the domain of losses i.e. a more risk averse individual is also a more loss 

averse individual. A similar intuition applies to the case of gain proneness. 
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3. Loss Aversion in Rank-Dependent Utility Theory 
This section considers the concept of comparative loss aversion in the context of 

rank-dependent utility theory (Quiggin, 1981). In rank-dependent utility theory there 

exists an utility function u:X→ that is unique up to a positive linear transformation, 

and a unique strictly increasing probability weighting function w:[0,1]→[0,1] with 

w(0)=0 and w(1)=1, such that  

(2) 
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

    if and only if   

,

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

L M u x w L y w L y

u x w M y w M y

∈ ∈∈ ≥ >

∈ ∈∈ ≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞− ≥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞≥ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑


 

for any lotteries L, M ∈ ℒ. The following result follows immediately from Proposition 1. 

Corollary 5 If a rank-dependent utility maximizer ♀ with an utility function 

u♀:X→ and a probability weighting function w♀:[0,1]→[0,1] is more loss averse than a 

rank-dependent utility maximizer ♂ with an utility function u♂:X→ and a probability 

weighting function w♂:[0,1]→[0,1], then w♀(p) = w♂(p) for all p∈[0,1] and there exist 

a>0 and b∈ such that u♀(x+) = au♂(x+) + b for all x+∈X+. 

Recall that an unambiguous ranking of two individuals according to their loss 

attitudes is possible only if the two individuals share the same preferences over loss-free 

lotteries (Proposition 1). In the context of rank-dependent utility theory this implies the 

following. We can rank two rank-dependent utility maximizers according to their loss 

attitudes only if the two individuals have the same probability weighting function and 

the same utility function in the domain of gains, up to a positive linear transformation 

(Corollary 5).  

Note that Corollary 5 implies that the two rank-dependent utility maximizers 

have the same ranking of gains in terms of their desirability. 



 12

Proposition 4 A rank-dependent utility maximizer ♀ with an utility function 

u♀:X→ and a probability weighting function w♀:[0,1]→[0,1] is more loss averse than a 

rank-dependent utility maximizer ♂ with an utility function u♂:X→ and a probability 

weighting function w♂:[0,1]→[0,1] if and only if there exist a>0 and b∈ such that 

a) w♀(p) = w♂(p) for all p∈[0,1]; 

b) u♀(x+) = au♂(x+) + b for all x+∈X+; 

c) u♀(x-) ≤ au♂(x-) + b for all x-∈X-; 

d) there exists a loss x-∈X- such that u♀(x-) < au♂(x-) + b. 

Proof is presented in the Appendix. 

Note that Proposition 4 does not require that the two rank-dependent utility 

maximizers have the same ranking of losses in terms of their desirability. 

Proposition 4 characterizes the concept of comparative loss aversion within a 

rank-dependent utility theory. In particular, Proposition 4 shows that comparative loss 

aversion is entirely captured by the curvature of the utility function and it is not related 

to the shape of the probability weighting function. The restrictions on the curvature of 

the utility function, which are required for one individual to be more loss averse than 

another individual, are exactly the same as in expected utility theory (cf. Proposition 2). 

Namely, the two individuals should have the same utility function in the domain of 

gains (up to a positive linear transformation) and a more loss averse individual should 

have an utility function that lies below the corresponding normalized utility function of 

a less loss averse individual in the domain of losses.  

The necessary and sufficient conditions for gain proneness under rank-

dependent utility theory are analogous to those given in Proposition 4 for loss aversion. 
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Corollary 6 A rank-dependent utility maximizer ♀ with an utility function 

u♀:X→ and a probability weighting function w♀:[0,1]→[0,1] is more gain prone than a 

rank-dependent utility maximizer ♂ with an utility function u♂:X→ and a probability 

weighting function w♂:[0,1]→[0,1] if and only if there exist a>0 and b∈ such that 

a) w♀(p) = w♂(p) for all p∈[0,1]; 

b) u♀(x-) = au♂(x-) + b for all x-∈X-; 

c) u♀(x+) ≥ au♂(x+) + b for all x+∈X+; 

d) there exists a gain x+∈X+ such that u♀(x+) > au♂(x+) + b. 

Finally, a combination of necessary and sufficient conditions from Proposition 4 

and Corollary 6 yields an impossibility result for rank-dependent utility theory. 

Corollary 7 One rank-dependent utility maximizer cannot be strongly more loss 

averse than another rank-dependent utility maximizer. 

Intuitively, if one rank-dependent utility maximizer were strongly more loss 

averse than another then both individuals would have the same probability weighting 

function, the same utility function over the domain of gains (up to a positive linear 

transformation) and the same utility function over the domain of losses (up to a positive 

linear transformation). So the two individuals can only differ to the extent how losses 

are valued in relation to gains. If we normalize utility functions of the two individuals 

so that they coincide in the domain of gains, a more loss averse individual would have a 

lower utility function in the domain of losses. However, this implies that if we 

renormalize the two utility functions so that they coincide in the domain of losses, a 

more loss averse individual would have a lower utility function in the domain of gains. 

Hence, a more loss averse individual cannot simultaneously be a more gain prone 

individual as well. 
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In the context of rank-dependent utility theory, Definitions 1 and 2 are related to 

the intuitive ideas of Kahneman and Tversky (1979) who pioneered the concept of loss 

aversion in behavioral economics. According to Kahneman and Tversky (1979), a more 

loss averse individual is characterized by an utility function that exhibits a greater kink 

at the reference point. Within the framework developed in Section 1, we can define the 

reference point as a unique outcome r that may be regarded both as a gain and as a loss. 

Technically, we can extend the set of feasible outcomes to X ∪ {r} so that the set of 

losses now is X- ∪ {r} and the set of gains now is X+ ∪ {r}. It turns out that the 

definition proposed by Kahneman and Tversky (1979) is equivalent to a combination of 

greater loss aversion and lower gain proneness. Formally, this result is captured by the 

following Corollary 8, which follows immediately from Proposition 4 and Corollary 6.  

Corollary 8 A rank-dependent utility maximizer ♀ with an utility function 

u♀:X→ and a probability weighting function w♀:[0,1]→[0,1] is more loss averse and 

less gain prone than a rank-dependent utility maximizer ♂ with an utility function 

u♂:X→ and a probability weighting function w♂:[0,1]→[0,1] if and only if 

a) w♀(p) = w♂(p) for all p∈[0,1]; 

b) there exist a>0 and b∈ such that u♀(x+) = au♂(x+) + b for all x+∈X+; 

c) there exist c>0 and d∈ such that u♀(x-) = cu♂(x-) + d for all x-∈X-; 

d) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

u x u r u x u r
u x u r u x u r

− −

+ +

− −
<

− −
♀ ♀ ♂ ♂

♀ ♀ ♂ ♂

, for all x-∈X- and x+∈X+. 

According to Corollary 8, one individual is more loss averse and less gain prone 

than another individual if the two individuals have the same probability weighting 

function, the same utility function over the domain of gains (up to a positive linear 

transformation), the same utility function over the domain of losses (up to a positive 
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linear transformation) but the utility function of the first individual has a greater kink at 

the reference point.  

Figure 3 illustrates Corollary 8 when the set of gains is the set of non-negative 

real numbers and the set of losses is the set of non-positive real numbers (the reference 

point is zero).  

 

As a final point, condition d) in Corollary 8 implies that we can use the index 

( ) ( ) ( )
( ) ( )

, ,
u x u r

I x x r
u x u r

−
− +

+

−
= −

−
♀ ♀

♀
♀ ♀

 as an interpersonal measure of greater loss aversion 

and lower gain proneness for an individual ♀. Individuals with a higher index I(x-, x+, r) 

are characterized by an utility function that exhibits a greater kink at the reference point. 

Notice that I(x-, x+, r) is a local index of greater loss aversion and lower gain proneness 

for a specific loss x-∈X- and a specific gain x+∈X+. Interestingly, we can consider index 

I(x-, x+, r) as a discrete version of the index of loss aversion proposed by Köbberling and 

Wakker (2005). 

u♀(x) 

cu♂(x)+d 

au♂(x)+b 
u♂(x) 

0 x 

Figure 3 A rank-dependent utility maximizer ♀ with utility function u♀(x) is 
more loss averse and less gain prone than a rank-dependent utility maximizer 
♂ with utility function u♂(x) 
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4. Probabilistic Loss Aversion 
Numerous experimental studies find that people do not always choose the same 

alternative when presented with exactly the same decision problem on two separate 

occasions within a short period of time (e.g. Camerer, 1989; Hey and Orme, 1994; 

Loomes and Sugden, 1998). In general, people often make contradictory choices if none 

of the lotteries transparently dominates other alternatives. In this section we will extend 

Definitions 1-3 to a more general setup where people may choose in a probabilistic 

manner. 

In the remainder of this paper we assume that the primitive of choice is a binary 

choice probability function P:ℒ ℒ→[0,1], which is also known as a fuzzy preference 

relation (e.g. Zimmerman et al., 1984). Notation P(L,M) denotes probability that an 

individual chooses lottery L ∈ ℒ over lottery M ∈ ℒ in a direct binary choice. For any L, 

M ∈ ℒ, L ≠ M, probability P(L,M) is observable from the relative frequency with which 

an individual chooses L when asked to choose repeatedly between L and M. We 

consider two individuals: an individual ♀ and an individual ♂ characterized by binary 

choice probability functions P♀(.,.) and P♂(.,.) correspondingly.  

Definition 5 An individual ♀ is probabilistically more loss averse than an 

individual ♂ if P♀(L+,L)≥P♂(L+,L) for all L+∈ℒ+ and all L∈ℒ and there exist at least one 

loss-free lottery L+∈ℒ+ and one lottery L∈ℒ such that P♀(L+,L)>P♂(L+,L). 

Definition 5 simply states that a more loss averse individual is always at least as 

likely to choose a loss-free lottery over any other lottery as a less loss averse individual. 

Definition 5 of the more-loss-averse-than relation between individuals is very general. 

In particular, lottery outcomes may not be measurable in real numbers. We also do not 

require that fuzzy preferences over lotteries are represented by a specific model of 
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probabilistic choice. Thus, Definition 5 applies to very distinct models of probabilistic 

choice, e.g. when people have multiple preference relations on ℒ (Loomes and Sugden, 

1995) or when people have a unique preference relation on ℒ but they make random 

errors (Hey and Orme, 1994; Blavatskyy, 2007). Last but not least, Definition 5 is more 

compact than Definition 1.  

Along the same lines we can extend Definitions 2 and 3 into Definitions 6 and 7. 

Definition 6 An individual ♀ is probabilistically more gain prone than an 

individual ♂ if P♀(L, L-)≥P♂(L, L-) for all L∈ℒ and all L-∈ℒ- and there exist at least one 

lottery L∈ℒ and one gain-free lottery L-∈ℒ- such that P♀(L, L-)>P♂(L, L-). 

Definition 7 An individual ♀ is probabilistically strongly more loss averse than 

an individual ♂ if the individual ♀ is both probabilistically more loss averse and 

probabilistically more gain prone than the individual ♂. 

By replacing lottery L∈ℒ in the first part of Definition 5 with a loss-free lottery 

M+∈ℒ+, we immediately arrive at the following result. 

Corollary 9 If an individual ♀ is probabilistically more loss averse than an 

individual ♂, or vice versa, then P♀(L+, M+)=P♂(L+, M+) for all L+, M+∈ℒ+.  

According to Corollary 9, the ranking of individuals in terms of their loss 

attitudes is possible only if they choose in identical manner between loss-free lotteries. 

If this is not the case, heterogeneous loss attitudes are confounded with heterogonous 

tastes over loss-free lotteries and no clear comparison of individuals in terms of 

comparative loss aversion can be made. An analogous result holds for gain proneness. 

Corollary 10 If an individual ♀ is probabilistically more gain prone than an 

individual ♂, or vice versa, then P♀(L-, M-)=P♂(L-, M-) for all L-, M-∈ℒ-. 
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5. Loss Aversion in Different Models of 
Probabilistic Choice 
One of the simplest models of probabilistic choice is the constant error/tremble 

model. Harless and Camerer (1994) argue that people have a unique preference relation 

on ℒ but they do not always choose their preferred lottery. With a constant probability 

τ∈[0,0.5] a tremble occurs and people choose a less preferred alternative (for instance, 

due to a lapse of concentration). Specifically, in a constant error/tremble model there 

exists an utility function u:X→ that is unique up to a linear transformation, such that  

(3) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

, 0.5,

1 ,

x X x X

x X x X

x X x X

L x u x M x u x

P L M L x u x M x u x

L x u x M x u x

τ

τ

∈ ∈

∈ ∈

∈ ∈

⎧ <
⎪⎪= =⎨
⎪ − >⎪⎩

∑ ∑
∑ ∑
∑ ∑

 

for any two lotteries L, M ∈ ℒ and a probability τ∈[0,0.5]. The following result follows 

directly from the proof of Proposition 2 and Corollary 3. 

Corollary 11 An individual ♀ with utility function u♀:X→ and the probability 

of a tremble τ♀ is probabilistically more loss averse (more gain prone) than an individual 

♂ with utility function u♂:X→ and the probability of a tremble τ♂ if and only if τ♂ = τ♀ 

and conditions a)-c) of Proposition 2 (Corollary 3) are satisfied. 

Let us now consider probabilistic loss aversion in the context of a strong utility 

model (e.g. Luce and Suppes, 1965). In this model there exists an utility function 

u:X→ that is unique up to a positive linear transformation, and a strictly increasing 

function :→[0,1], which is unique up to a positive dimensional constant and satisfies 

(v)+(-v)=1 for all v∈, such that  

(4) P(L,M) =  ( ∑x∈X L(x)u(x) – ∑x∈X M(x)u(x) )  

for any two lotteries L, M∈ℒ.  
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Function (.) captures the sensitivity of binary choice probabilities to differences 

in the expected utility of the two alternatives that an individual needs to choose from. If 

function (.) is the cumulative distribution function of a normal distribution with zero 

mean and constant standard deviation, model (4) becomes the Fechner model of random 

errors (Fechner, 1860; Hey and Orme, 1994). If function (.) is the distribution function 

of the logistic distribution, model (4) becomes Luce choice model (Luce, 1959). 

Blavatskyy (2008a) provides axiomatic characterization of the choice rule (4). 

Proposition 5 A strong utility maximizer ♀ characterized by a pair of functions 

(u♀, ♀) is probabilistically more loss averse than a strong utility maximizer ♂ charac-

terized by a pair of functions (u♂, ♂) if there exist a>0 and b∈ such that 

a) u♀(x+) = au♂(x+) + b for all x+∈X+; 

b) u♀(x-) ≤ au♂(x-) + b for all x-∈X-; 

c) ♀(av) = ♂(v) for all v∈[-δ, δ], where ( ) ( )max min
x Xx X

u x u xδ
+ ++ +

+ +∈∈
= −♂ ♂ ; 

d) ♀(av) ≥ ♂(v) for all v∈(δ, Δ], where ( ) ( )max min
x Xx X

u x u x
− −+ +

+ −∈∈
Δ = −♂ ♂ ;1 

e) either there exists a loss x-∈X- such that u♀(x-) < au♂(x-) + b or there exists 

v∈(δ, Δ] such that ♀(av) > ♂(v) or both. 

Proof is presented in the Appendix. 

Proposition 5 shows that in a strong utility model loss aversion is related both to 

the curvature of the utility function u(.) and the shape of the sensitivity function (.). On 

the one hand, an individual ♀ can be more loss averse than an individual ♂ if they have 

the same utility function in the domain of gains (up to a positive linear transformation) 

but ♀’s utility function lies below ♂’s normalized utility function in the domain of 
                                                 
1 Note that condition d) is equivalent to ♀(av) ≤ ♂(v) for all v∈(-Δ,-δ] due to the skew-symmetric 
property of the sensitivity function (.). 
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losses. On the other hand, an individual ♀ can be more loss averse than an individual ♂ 

if they have the same sensitivity function in the neighborhood of zero (up to a positive 

dimensional constant) but individual ♀ is more sensitive to large differences in utility. 

Interestingly, a strong utility model allows individual ranking in terms of 

comparative loss aversion but not in terms of comparative risk aversion. Wilcox (2008) 

and Blavatskyy (2008b) show that risk aversion cannot be defined within a strong utility 

model. Thus, there are models where loss aversion is well defined even though risk 

aversion is not. 

6. Absolute Loss Aversion  
So far we considered only comparative loss aversion. To measure absolute loss 

aversion, we need to fix one binary choice probability function PLN : ℒ ℒ → [0,1]. An 

individual is called loss neutral if she has the binary choice probability function PLN(.,.). 

An individual is called loss averse if she is more loss averse (according to Definition 5) 

than the loss neutral individual. Similarly, an individual is called loss seeking or loss 

loving if the loss neutral individual is more loss averse than this individual.  

Notice that the concept of absolute loss aversion depends on an ad hoc selection 

of a loss neutral binary choice probability function PLN(.,.).2 This is similar to our 

temperature measurement that requires an arbitrary selection of zero temperature (e.g. 

the triple point of water in the Celsius scale or absolute zero in the Kelvin scale). 

Similarly, our time measurement also requires an ad hoc selection of an epochal date 

(e.g. the incarnation of Jesus in the Gregorian calendar, the creation of the world in the 

Hebrew calendar or the immigration of Muhammad in the Islamic calendar). 

                                                 
2 The definition of risk aversion also requires a priori “normalization” of risk neutral preferences (e.g. 
Epstein, 1999; Blavatskyy, 2008a). Similarly, in order to define uncertainty aversion we need an arbitrary 
definition of uncertainty neutrality (e.g. Epstein, 1999). 
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In a special case when lotteries have only monetary outcomes and people have 

deterministic preferences, Kahneman and Tversky (1979) arbitrary selected a loss 

neutral preference relation so that a loss neutral individual is exactly indifferent between 

accepting and rejecting a symmetric bet that yields a 50%-50% chance of either a loss 

of –x or a gain of x, for all x∈+. In other words, loss aversion is defined as aversion to 

symmetric 50%-50% lotteries. Several later studies also adopted this convention (e.g. 

Schmidt and Zank, 2005). However, it is not clear how this natural “normalization” can 

be extended to a more general case when outcomes are not measurable in real numbers. 

7. Conclusion  
Loss aversion is a fundamental concept in behavioral economics. However, it is 

traditionally defined only in the context of lotteries over monetary payoffs. This paper 

extends the definition of loss aversion to a more general setup where outcomes are not 

necessarily measurable in real numbers and people do not necessarily have a unique 

preference relation over lotteries, i.e. they may choose in a probabilistic manner.  

This paper proposes two alternative definitions of comparative loss aversion. A 

more loss averse individual prefers a loss-free lottery (that yields only gains with a 

positive probability) over another lottery whenever a less loss averse individual does so 

as well. A more gain prone individual prefers an arbitrary lottery over a gain-free lottery 

whenever a less gain prone individual does so as well. More generally, an individual ♀ 

is probabilistically more loss averse than an individual ♂ if in any decision problem ♀ 

chooses a loss-free lottery at least as frequently as does ♂. Similarly, one individual is 

probabilistically more gain prone than another individual if in any decision problem she 

does not choose a gain-free lottery more often than the other individual. 

This paper shows that the above definitions of comparative loss aversion have 

very intuitive implications for well-known decision theories such as expected utility 
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theory and rank-dependent utility theory as well as for popular models of probabilistic 

choice such as the constant error/tremble model, Fechner model of random errors and 

Luce choice model. In particular, in these models loss aversion and gain proneness are 

related to the curvature of the utility function. If two individuals can be ranked in terms 

of their loss preferences (gain proneness), then they have the same utility function in the 

domain of gains (losses) up to a positive linear transformation but the utility function of 

a more loss averse (gain prone) individual lies below (above) the normalized utility 

function of a less loss averse (gain prone) individual in the domain of losses (gains). 

In a strong utility model, loss aversion may be also driven by the curvature of 

the sensitivity function—a more loss averse individual may be more sensitive to large 

differences in expected utility of the two lotteries that are compared. Interestingly, 

comparative loss aversion is well-defined in a strong utility model, even though 

comparative risk aversion is not. This highlights an important point that stronger loss 

aversion does not necessarily imply stronger risk aversion, or vice versa.  

However, a more loss averse individual is always a more risk averse individual 

in the domain of gains. At the same time, a less gain prone individual is always a more 

risk averse individual in the domain of losses. Thus, if one individual is simultaneously 

more loss averse and less gain prone (a condition that is equivalent to a greater kink at 

the reference point under rank-dependent utility theory) then this individual is also a 

more risk averse individual. In other words, traditional definitions of comparative loss 

aversion (greater kink at the reference point) necessarily imply risk aversion as well. 

Finally, the paper also shows that under expected utility theory a more risk averse 

individual is also a more loss averse (less gain prone) individual provided that the set of 

gains (losses) contains no more than two elements that are distinct in terms of 

desirability. 
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Appendix 
Proof of Proposition 1. 

Consider an individual ♀ who is more loss averse than an individual ♂.  

a) According to Definition 1, if L+ ♂ M+ then L+ ♀ M+ for all L+, M+∈ℒ+.  

Let us now assume that there exist two lotteries L+, M+∈ℒ+ such that L+ ♀ M+ 

but M+ ♂ L+. If M+ ♂ L+ then Definition 1 implies that M+ ♀ L+. However, this 

contradicts to our assumption that L+ ♀ M+. If M+ ~♂ L+ then Definition 1 implies that 

M+ ♀ L+. Again, this contradicts to our assumption that L+ ♀ M+. Therefore, it must be 

the case that L+ ♀ M+ if and only if L+ ♂ M+ for all L+, M+∈ℒ+. 

b) According to Definition 1, if L+ ~♂ M+ then L+ ♀ M+ for all L+, M+∈ℒ+. 

Moreover, if M+ ~♂ L+ then M+ ♀ L+ for all L+, M+∈ℒ+. Hence, if L+ ~♂ M+ then it must 

be the case that L+ ~♀ M+ for all L+, M+∈ℒ+. 

Let us now assume that there exist two lotteries L+, M+∈ℒ+ such that L+ ~♀ M+ 

but M+ ≁♂ L+. If M+ ♂ L+ then Definition 1 implies that M+ ♀ L+. However, this 

contradicts to our assumption that L+ ~♀ M+. Similarly, if L+ ♂ M+ then L+ ♀ M+ due to 

Definition 1 and the analogous contradiction arises. Therefore, L+ ~♀ M+ if and only if 

L+ ~♂ M+ for all L+, M+∈ℒ+. 

Similarly, we can prove that Proposition 1 holds when an individual ♂ is more 

loss averse than an individual ♀. Q.E.D. 

Proof of Proposition 2. 

We will first prove that if conditions a)-c) hold then an individual ♀ is more loss 

averse than an individual ♂. Consider two arbitrary lotteries L+∈ℒ+ and L∈ℒ. We will 

first prove that L+ ♂ L implies L+ ♀ L. Condition (1) implies that L+ ♂ L if and only if  

(5) ( ) ( ) ( ) ( )x X x X
u x L x u x L x

+ +
+ + +∈ ∈

>∑ ∑♂ ♂ .  

We can rearrange (5) into 
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(6) ( ) ( ) ( ) ( ) ( )x X x X
u x L x L x u x L x

+ + − −
+ + + + − −∈ ∈

− >⎡ ⎤⎣ ⎦∑ ∑♂ ♂ .  

Furthermore, we can multiply both sides of (6) on a positive constant a>0 and 

add ( ) ( ) ( )x X x X
b L x L x b L x

+ + − −
+ + + −∈ ∈

− =⎡ ⎤⎣ ⎦∑ ∑  to both sides of (6), b∈. This results in 

(7) ( ) ( ) ( ) ( ) ( )x X x X
au x b L x L x au x b L x

+ + − −
+ + + + − −∈ ∈
+ − > +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑♂ ♂ .  

If part a) of Proposition 2 holds then there exist a>0 and b∈ such that u♀(x+) = 

au♂(x+) + b for all x+∈X+. Hence, we can rewrite (7) as 

(8) ( ) ( ) ( ) ( ) ( )x X x X
u x L x L x au x b L x

+ + − −
+ + + + − −∈ ∈

− > +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑♀ ♂ .  

If part b) of Proposition 2 holds then u♀(x-) ≤ au♂(x-) + b for all x-∈X-. Thus, we 

can rewrite (8) as 

(9) ( ) ( ) ( ) ( ) ( )x X x X
u x L x L x u x L x

+ + − −
+ + + + − −∈ ∈

− >⎡ ⎤⎣ ⎦∑ ∑♀ ♀ .  

Finally, we can rearrange (9) into  

(10) ( ) ( ) ( ) ( )x X x X
u x L x u x L x

+ +
+ + +∈ ∈

>∑ ∑♀ ♀ ,  

which holds if and only if L+ ♀ L due to (1). Hence, L+ ♂ L implies L+ ♀ L for all 

L+∈ℒ+ and all L∈ℒ if parts a) and b) of Proposition 2 hold. 

To prove that L+ ~♂ L implies L+ ♀ L for all L+∈ℒ+ and all L∈ℒ we just need to 

replace the sign “>” with the sign “=” in (5)-(8) and with the sign “≥” in (9)-(10). 

Let us now prove that there exist L+∈ℒ+ and L∈ℒ such that L+ ~♂ L and L+ ♀ L. 

If part c) of Proposition 2 holds then there exists x-∈X- such that u♀(x-) < au♂(x-) + b. Let 

y,z∈X+ be two gains such that u♂(x-)<u♂(y)<u♂(z). Let L+ be a lottery that yields y for sure 

and let L be a lottery that yields x- with probability p and z with probability 1-p. 

Obviously, there exists a probability p such that  

(11) u♂(y) = pu♂(x-) + (1-p)u♂(z).  

If (11) holds then condition (1) implies that L+ ~♂ L. However, if we multiply 

both sides of (11) on a>0 and add b∈ to both sides of (11) we obtain 
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(12) u♀(y) = p(au♂(x-) + b) + (1-p)u♀(z),  

where we used the fact that u♀(x+) = au♂(x+) + b for all x+∈X+ due to part a) of 

Proposition 2. Since u♀(x-) < au♂(x-) + b, then it must be the case that u♀(y) > pu♀(x-) + 

(1-p)u♀(z). Hence, L+ ♀ L due to condition (1). In other words, we constructed two 

lotteries L+∈ℒ+ and L∈ℒ such that L+ ~♂ L but L+ ♀ L. 

To summarize, if parts a)-c) of Proposition 2 hold then conditions a)-c) of 

Definition 1 are satisfied i.e. an individual ♀ is more loss averse than an individual ♂. 

Let us now prove the necessity of parts a)-c) of Proposition 2. If an individual ♀ is more 

loss averse than an individual ♂ then part a) of Proposition 2 holds due to Corollary 2. 

Suppose that an individual ♀ is more loss averse than an individual ♂ but there 

is a loss x-∈X- such that u♀(x-) > au♂(x-) + b. In such case, for the two lotteries L+∈ℒ+ and 

L∈ℒ that we constructed above we must have L+ ~♂ L but L ♀ L+. However, this 

contradicts to condition b) in Definition 1 i.e. in this case an individual ♀ is not more 

loss averse than an individual ♂. Thus, part b) of Proposition 2 must hold for any x-∈X-.  

Finally, if part c) of Proposition 2 does not hold, i.e. u♀(x-) = au♂(x-) + b for all  

x-∈X-, then L+ ~♂ L implies L+ ~♀ L for all L+∈ℒ+ and L∈ℒ due to (1) and condition c) of 

Definition 1 cannot be satisfied. Q.E.D. 

Proof of Proposition 3. 

Blavatskyy (2008b) proves the following result. 

An expected utility maximizer ♀ with utility function u♀:X→ is more risk 

averse than an expected utility maximizer ♂ with utility function u♂:X→ if and only if   

(13) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

u y u x u y u x
u z u y u z u y

− −
≥

− −
♀ ♀ ♂ ♂

♀ ♀ ♂ ♂

, 

for any x, y, z ∈ X such that u♀(x) < u♀(y) < u♀(z) and there exists at least one triple of 

outcomes {x, y, z} ⊂ X for which inequality (13) holds with strict inequality. 

Let z ∈ X be the most preferred outcome for the individual ♀. In case there are 

several such outcomes, we simply let z to be one of them. Let y ∈ X be (one of) the 
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second most preferred outcome(s) for the individual ♀. Note that Definition 4 implies 

that outcomes z and y are correspondingly the best and the second best outcome for the 

individual ♂ as well. 

Let ( ) ( )
( ) ( )

u z u y
a

u z u y
−

=
−

♀ ♀

♂ ♂

 and ( ) ( )b u y au y= −♀ ♂ . Notice that u♀(z) = au♂(z) + b 

and u♀(y) = au♂(y) + b. If the set X+ has no more than two elements that are distinct in 

terms of desirability, it must be the case that u♀(x+) = au♂(x+) + b for all x+∈X+. Thus, 

condition a) of Proposition 2 is satisfied. 

Condition (13) implies that u♀(x) ≤ au♂(x) + b for all outcomes x∈X. Since X-⊂X, 

this implies that condition b) of Proposition 2 is satisfied. Finally, we know that there is 

at least one outcome x∈X, which is less desirable than the second-best outcome, such 

that u♀(x) < au♂(x) + b. If the set X+ has no more than two elements that are distinct in 

terms of desirability, then such outcome x must belong to the subset of losses X-. Hence, 

condition c) of Proposition 2 is satisfied as well.  

To summarize, we found two numbers a>0 and b∈ such that all conditions of 

Proposition 2 are satisfied provided that the set X+ has no more than two elements that 

are distinct in terms of desirability. In other words, the individual ♀ is more loss averse 

than the individual ♂. 

Similarly, let x ∈ X be (one of) the least preferred outcome(s) and let y ∈ X be 

(one of) the second least preferred outcome(s) for the individual ♀. Definition 4 implies 

that outcomes x and y are correspondingly the worst and the second worst outcome for 

the individual ♂ as well. 

Let ( ) ( )
( ) ( )

u y u x
c

u y u x
−

=
−

♂ ♂

♀ ♀

 and ( ) ( )d u y au y= −♂ ♀ . Using these two numbers we 

can renormalize the utility function of the individual ♀ so that u♂(x) = cu♀(x) + d and 

u♂(y) = cu♀(y) + d. If the set X- has no more than two elements that are distinct in terms 

of desirability, it must be the case that u♂(x-) = cu♀(x-) + d for all x-∈X-. 
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Condition (13) implies that u♂(z) ≥ cu♀(z) + d for all outcomes z∈X and there is at 

least one outcome z∈X for which this inequality holds with strict inequality. Hence, we 

found two numbers c>0 and d∈ such that: 

a) u♂(x-) = cu♀(x-) + d for all x-∈X- , 

b) u♂(x+) ≥ cu♀(x+) + d for all x+∈X+, 

c) there exists a gain x+∈X+ such that u♂(x+) ≥ cu♀(x+) + d. 

According to Corollary 3, the individual ♂ is then more gain prone than the 

individual ♀. Q.E.D. 

Proof of Proposition 4. 

We will first prove the sufficiency of conditions a)-d) in Proposition 4. Consider 

two arbitrary lotteries L+∈ℒ+ and L∈ℒ. We will first prove that part a) of Definition 1 

must hold i.e. L+ ♂ L implies L+ ♀ L.  

Condition (2) implies that L+ ♂ L if and only if  

(14) 
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

.

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

u x w L y w L y

u x w L y w L y

+ + + +
+ +

+ + + +

∈ ∈+ + + + +∈ ≥ >

∈ ∈∈ ≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞> −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

♂ ♂ ♂ ♂

♂ ♂ ♂ ♂

♂ ♂ ♂

♂ ♂ ♂

 

For any a>0 and b∈ we can rewrite condition (14) as follows  

(15) 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

y X y X
u y u x u

au x b w L y w L y

au x b w L y w L y

au x b w L y w L y

+ + + +
+ +

+ + + +

+ + + +
+ +

+ + + +

−

∈ ∈+ + + + +∈ ≥ >

∈ ∈+ + +∈ ≥ >

∈ ∈−
≥

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − >⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞> + − +⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ + −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

∑

♂ ♂ ♂ ♂

♂ ♂ ♂ ♂

♂ ♂

♂ ♂ ♂

♂ ♂ ♂

♂ ♂ ♂
( ) ( )

.
x X y u x− −

−
∈ >

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑
♂ ♂

 

If part a) of Proposition 4 holds, then the two individuals ♀ and ♂ have identical 

probability weighting functions. If part b) of Proposition 4 holds, there exist a>0 and 

b∈ such that u♀(x+) = au♂(x+) + b for all x+∈X+ and we can rewrite (15) as follows 
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(16) 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

y X y X
u y u x u y u x

u x w L y w L y

u x w L y w L y

au x b w L y w L y

+ + + +
+ +

+ + + +

+ + + +
+ +

+ + + +

− −

∈ ∈+ + + + +∈ ≥ >

∈ ∈+ + +∈ ≥ >

∈ ∈−
≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞> − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞+ + −⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

♀ ♀ ♀ ♀

♀ ♀ ♀ ♀

♂ ♂ ♂ ♂

♀ ♀ ♀

♀ ♀ ♀

♂ ♀ ♀ .
x X− −∈

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑

 

Let z-∈X- be the most desirable loss for an individual ♀ i.e. u♀(z-) ≥ u♀(x-) for all 

x-∈X-. Let Z-⊂X- be the set of all losses that an individual ♂ finds at least as good as z- 

i.e. u♂(x-) ≥ u♂(z-) for all x-∈Z-. If part c) of Proposition 4 holds then we can rewrite 

(17) 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

y X y Xx Z u y u x u y u x

y X y Xx Z u y u x u y u x

y X y X
u y u z u y u z

au x b w L y w L y

au z b w L y w L y

au z b w L y w L y

− −
− −

− −
− −

− −

∈ ∈−∈ ≥ >

∈ ∈−∈ ≥ >

∈ ∈−
≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ≥⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞≥ + − =⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

♂ ♂ ♂ ♂

♂ ♂ ♂ ♂

♂ ♂ ♀ ♀

♂ ♀ ♀

♂ ♀ ♀

♂ ♀ ♀

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

.

y X y X
u y u z u y u z

y X y Xx Z u y u x u y u x

u z w L y w L y

u x w L y w L y

− −

− −
− −

∈ ∈−
≥ >

∈ ∈−∈ ≥ >

≥⎥
⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞≥ − ≥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞≥ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑ ∑

♂ ♂ ♀ ♀

♀ ♀ ♀ ♀

♀ ♀ ♀

♀ ♀ ♀

 

We can repeat the above argument for a smaller set of losses X-\Z- and so forth. 

Since the set X- is finite, we then arrive at the result 

(18)  
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

.

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

au x b w L y w L y

u x w L y w L y

− −
− −

− −
− −

∈ ∈−∈ ≥ >

∈ ∈−∈ ≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − ≥⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞≥ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

♂ ♂ ♂ ♂

♀ ♀ ♀ ♀

♂ ♀ ♀

♀ ♀ ♀

 

Using (18) we can rewrite (16) as follows 

(19) 
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

.

y X y Xx X u y u x u y u x

y X y Xx X u y u x u y u x

u x w L y w L y

u x w L y w L y

+ + + +
+ +

+ + + +

∈ ∈+ + + + +∈ ≥ >

∈ ∈∈ ≥ >

⎡ ⎤⎛ ⎞ ⎛ ⎞− >⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞> −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

♀ ♀ ♀ ♀

♀ ♀ ♀ ♀

♀ ♀ ♀

♀ ♀ ♀

 

If (19) holds then L+ ♀ L due to (2). Hence, part a) of Definition 1 must hold. 
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To prove that part b) of Definition 1 must hold i.e.  L+ ~♂ L implies L+ ♀ L for 

all L+∈ℒ+ and all L∈ℒ we just need to replace the sign “>” with the sign “=” in (14)-(16) 

and with the sign “≥” in (19).  

Finally, let us prove that part c) of Definition 1 must hold i.e. there exist L+∈ℒ+ 

and L∈ℒ such that L+ ~♂ L and L+ ♀ L. If part d) of Proposition 4 holds then there exists 

x-∈X- such that u♀(x-) < au♂(x-) + b. Let y,z∈X+ be two gains such that u♂(x-)<u♂(y)<u♂(z). 

Let L+ be a lottery that yields y for sure and let L be a lottery that yields x- with 

probability 1-p and z with probability p. Since function w♂(p) is strictly increasing in p 

with w♂(0)=0 and w♂(1)=1, there exists a probability p such that  

(20) u♂(y) = (1- w♂(p))u♂(x-) + w♂(p)u♂(z).  

If (20) holds then L+ ~♂ L due to (2). If parts a) and b) of Proposition 4 hold, we 

can rewrite (20) as follows 

(21) u♀(y) = (1- w♀(p))(au♂(x-) + b) + w♀(p)u♀(z).  

Since u♀(x-)<au♂(x-)+b, then (21) implies u♀(y)>(1-w♀(p))u♀(x-)+w♀(p)u♀(z) i.e. L+ ♀ L 

due to (2). Thus, we constructed lotteries L+∈ℒ+ and L∈ℒ such that L+ ~♂ L but L+ ♀ L. 

Hence, if parts a)-d) of Proposition 4 hold then conditions a)-c) of Definition 1 

are satisfied i.e. an individual ♀ is more loss averse than an individual ♂. Let us now 

prove the necessity of parts a)-d) of Proposition 4. If an individual ♀ is more loss averse 

than an individual ♂ then parts a) and b) of Proposition 4 hold due to Corollary 5. 

Suppose that an individual ♀ is more loss averse than an individual ♂ but there 

is a loss x-∈X- such that u♀(x-) > au♂(x-) + b. In such case, for the two lotteries L+∈ℒ+ and 

L∈ℒ that we constructed above we must have L+ ~♂ L but L ♀ L+. However, this 

contradicts to condition b) in Definition 1 i.e. in this case an individual ♀ is not more 

loss averse than an individual ♂. Thus, part c) of Proposition 4 must hold for any x-∈X-.  

Finally, if part d) of Proposition 4 does not hold, i.e. u♀(x-) = au♂(x-) + b for all  

x-∈X-, then L+ ~♂ L implies L+ ~♀ L for all L+∈ℒ+ and L∈ℒ due to (2) and condition c) of 

Definition 1 cannot be satisfied. Q.E.D. 
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Proof of Proposition 5. 

Consider two arbitrary lotteries L+∈ℒ+ and L∈ℒ. Let us prove that if conditions 

a)-d) of Proposition 5 are satisfied then P♀(L+,L)≥P♂(L+,L). Equation (4) implies that 

(22) ( ) ( ) ( ) ( ) ( )( ),
x X x X

P L L L x u x L x u xϕ
+ +

+ + + +∈ ∈
= −∑ ∑♀ ♀ ♀ ♀ .  

If condition a) of Proposition 5 holds, we can rewrite equation (22) as follows 

(23) ( ) ( ) ( ) ( ) ( ) ( )( ),
x X x X

P L L L x L x au x b L x u xϕ
+ + − −

+ + + + + − −∈ ∈
= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑♀ ♀ ♂ ♀ .  

If condition b) of Proposition 5 holds and given that function ♀(.) is strictly 

increasing, we can rewrite equation (23) as follows 

(24) ( ) ( ) ( ) ( ) ( ) ( )( ),
x X x X

P L L L x L x au x b L x au x bϕ
+ + − −

+ + + + + − −∈ ∈
≥ − + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑♀ ♀ ♂ ♂ .  

Inequality (24) can be rearranged into 

(25) ( ) ( ) ( ) ( ) ( )( ),
x X x X

P L L a L x u x L x u xϕ
+ +

+ + + +∈ ∈
⎡ ⎤≥ −⎣ ⎦∑ ∑♀ ♀ ♂ ♂ .  

If conditions c) and d) of Proposition 5 are satisfied then we can rewrite (25) as 

(26) ( ) ( ) ( ) ( ) ( )( ),
x X x X

P L L L x u x L x u xϕ
+ +

+ + + +∈ ∈
≥ −∑ ∑♀ ♂ ♂ ♂ .  

The last inequality (26) simply states that P♀(L+,L)≥P♂(L+,L) due to equation (4). 

Let us now prove that if conditions a)-e) of Proposition 5 are satisfied then there 

exist two lotteries L+∈ℒ+ and L∈ℒ such that P♀(L+,L)>P♂(L+,L). According to condition 

e) of Proposition 5, at least one of the following conditions must hold: 1) there exists a 

loss x-∈X- such that u♀(x-) < au♂(x-) + b; 2) there exists v∈(δ, Δ] such that ♀(av) > ♂(v).  

If condition 1) holds, then for any lottery L∈ℒ that yields such an outcome x-∈X- 

with a positive probability inequalities (24)-(26) hold as strict inequalities and we have 

P♀(L+,L)>P♂(L+,L). If condition 2) holds, then for any two lotteries L+∈ℒ+ and L∈ℒ 

such that ∑x∈X L+(x)u♂(x) – ∑x∈X L(x)u♂(x) = v, inequality (26) holds as strict inequality 

and we have again P♀(L+,L)>P♂(L+,L). Q.E.D. 


