Rudolf Kerschbamer

Game Theory

5 St. SS 2010

General Remarks

The course Game Theory will be taught in English. It consists of a weekly 3-hours lecture (LV-Nr.: 432164) as well as a 2-hours proseminar (LV-Nr.: 432165). The 3hours lecture is given by Rudolf Kerschbamer, the 2-hours proseminar by Wolfgang Höchtl.

Requirements

Basic knowledge of microeconomics as well as the willingness to deal with formal models are required. No previous knowledge of game theory is assumed (basic knowledge of the main concepts is of great help, of course).

Target Group and Course Credits within the Curriculum

Target group for this course are 'Magister'-students. Within the curriculum of the majors VWL, BWL, IWW and WIPÄD this course will be credited as follows (the required number of courses, resp. hours according to the curriculum of each major is added in parenthesis):

Studienrichtung	Anrechenbarkeit im Studienplan
VWL	als Aufbaukurs VWL, Wirtschaftstheorie gem. § 7 Abs. 2 (a) (1 Kurs) als wirtschaftswissenschaftlicher Kurs gem. § 7 Abs. 3 (a) (ein Wahlkurs) als Freies Wahlfach gem. § 8 (insgesamt 15 Stunden)
BWL	- als volkswirtschaftlicher Kurs gem. § 7 Abs. 2 (d) (2 Kurse) als Wirtschaftswissenschaftlicher Kurs gem. § 7 Abs. 3 (a) (ein Wahlkurs) als Freies Wahlfach gem. § 8 (insgesamt 15 Stunden)
IWW	- als volkswirtschaftlicher Kurs gem. § 7 Abs. 2 (f) (2 Kurse) als Wirtschaftswissenschaftlicher Kurs gem. § 7 Abs. 3 (a) (ein Wahlkurs) als Freies Wahlfach gem. § 8 (insgesamt 15 Stunden)
WIPäd	- als volkswirtschaftlicher Kurs gem. § 7 Abs. 2 (d) (1 Kurs) - als Freies Wahlfach gem. § 8 (insgesamt 15 Stunden)

Time and Place

The lecture will take place twice weekly on Mondays and Wednesdays from 11:0014:00 in SR 9, starting March 8, 2010. The 2-hours proseminar will take place twice weekly on Tuesdays and Thursdays from 15:00-16:45 in different rooms.

The preliminary meeting for the whole curse is on Monday, March 8, 11:00 in SR 9.

Lecture and Exam Dates:

Mo 08.03. 11.00-13.45	SR 9	Lectures 0\&1
We 10.03. 11.00-13.45	SR 9	Lecture 2
Mo 15.03. 11.00-13.45	SR 9	Lecture 3
We 17.03. 11.00-13.45	SR 9	Lecture 4
Mo 22.03. 11.00-13.00	HS 1	1st Exam
We 24.03. 11.00-13.45	SR 9	Lecture 5
Mo 12.04. 11.00-13.45	SR 9	Lecture 6
We 14.04. 11.00-13.45	SR 9	Lecture 7
Mo 19.04. 11.00-13.45	SR 9	Lecture 8
We 21.04. 11.00-13.45	SR 9	Lecture 9
Mo 26.04. 11.00-13.00	HS 1	2nd Exam
We 28.04. 11.00-13.45	SR 9	Lecture 10
Mo 03.05. 11.00-13.45	SR 9	Lecture 11
We 05.05. 11.00-13.45	SR 9	Lecture 12
Mo 10.05. 11.00-13.00	Madonnensaal	3rd Exam

Proseminar Dates:

Tue 09.03. 15.00-16.45	SR 1	PS 1
Thu 11.03. 10.00-11.45	SR 18	PS 2
Tue 16.03. 15.00-16.45	SR 11	PS 3
Thu 18.03. 10.00-11.45	SR 13	PS 4
Tue 23.03. 15.00-16.45	FSS	PS 5
Thu 25.03. 10.00-11.45	SR 18	PS 6
Tue 13.04. 15.00-16.45	FSS	PS 7
Thu 15.04. 10.00-11.45	FSS	PS 8
Tue 20.04. 15.00-16.45	SR 18	PS 9
Thu 22.04 10.00-11.45	SR 13	PS 10
Tue 27.04. 15.00-16.45	SR 11	PS 11
Thu 29.04. 10.00-11.45	SR 13	PS 12
Tue 04.05. 15.00-16.45	FSS	PS 13
Thu 06.05. 10.00-11.45	SR 18	PS 14

Outline of Contents

Below is an outline of the course that roughly but not precisely corresponds to each class session:

1. Representation of Games

Lecture 1 Representation of Games: normal-form representation, extensive-form representation, information sets, random moves, histories, pure strategies, relationship between extensive-form and normal-form, mixed strategies and expected utility

2. Dominance

Lecture 2 Static Games of Complete Information - Dominance: (strictly) dominant strategies, (strictly) dominated strategies, iterated deletion of strictly dominated strategies, iterated deletion and rationality, mixed strategies and dominance
3. Static Games of Complete Information: Nash Equilibrium

Lecture 3 Static Games of Complete Information - Pure Strategy Nash Equilibrium in Finite Games: definition of Nash equilibrium (NE), finding NE, best-response correspondences and NE, motivating NE, relation between NE and iterated deletion, existence of NE in pure strategies in finite games, multiplicity

Lecture 4 Static Games of Complete Information - Mixed Strategy Nash Equilibrium in Finite (Discrete) Games: definition of mixed strategy NE, finding mixed strategy NE, mixed best-response correspondences and mixed NE, motivating mixed NE, existence of (possibly mixed) NE in finite games

Lecture 5 Static Games of Complete Information - Nash Equilibrium in Infinite (Continuous) Games: finding NE in games with continuous strategy spaces, best-response correspondences and NE with continuous strategy spaces, strategic substitutes vs. strategic complements, applications in economics and finance, existence of NE in games with continuous strategy spaces
4. Dynamic Games of Complete Information: Subgame Perfect Equilibrium

Lecture 6 Dynamic Games of Complete Information - Subgame Perfect Nash Equilibrium in Finite Games: incredible threats and incredible promises, subgames, definition of subgame perfect Nash equilibrium (SPNE), finding SPNEs in games of perfect information (Backward Induction Procedure), finding SPNE in games of imperfect information (Generalized Backward Induction Procedure), NE versus SPNE, existence of SPNE in finite games

Lecture 7 Dynamic Games of Complete Information - Subgame Perfect Nash Equilibrium in Continuous Games with Perfect Information: finding SPNE in continuous games of perfect information, SPNE outcome vs. SPNE, games of positive externalities vs. games of negative externalities, NEs of simultaneousmove vs. SPNE of sequential move games, costs and benefits of precommitment:
first-mover advantage vs. second-mover advantage, strategic effect and direct effect of first-stage behaviour, applications

Lecture 8 Dynamic Games of Complete Information - Subgame Perfect Nash Equilibrium in Continuous Games with Imperfect Information: finding SPNE in continuous games of imperfect information, strategic precommitments to affect future interactions, formal analysis of incentives for precommitment, strategic effects and direct effects, Tirole's animal terminology to characterize commitment strategies, a graphical analysis of precommitment effects

Lecture 9 Dynamic Games of Complete Information - Subgame Perfect Nash Equilibrium in Games with (Potentially) Infinite Sequences of Moves: finding SGPE in games with (potentially) infinite sequences of moves, motivation for repeated games, finitely and infinitely repeated games, finitely repeated games with unique and with multiple NE in stage-game, one-stage-deviation principle, infinitely repeated games and discounting, applications of infinitely repeated games (cooperation in social dilemmas, collusion), characterizing SPNE outcome paths in payoff space (folk theorems), infinite horizon, infinite action bilateral bargaining
5. Static Games of Incomplete Information: Bayesian Equilibrium

Lecture 10 Static Games of Incomplete Information-Bayesian Equilibrium in Finite (Discrete) Games: incomplete information, Harsanyi transformation, definition of Bayesian equilibrium (BE), finding BE in finite games, correlated types, applications, existence of BE in finite games
BE
Lecture 11 Static Games of Incomplete Information - Bayesian Equilibrium in Infinite (Continuous Action and/or Continuous Type Spaces) Games: definition of BE in games with continuous action and/or continuous type spaces, finding BE in games with continuous action and/or continuous type spaces, Cournot with asymmetric information on cost, purification of mixed strategies, first price auction

6. Dynamic Games of Incomplete Information: Perfect Bayesian Equilibrium

Lecture 12 Dynamic Games of Incomplete Information - Perfect Bayesian Equilibrium in Finite Games: motivation for definition of perfect Bayesian equilibrium (PBE), elements of PBE, definition of PBE, finding PBE, applications

Lecture 13 Dynamic Games of Incomplete Information - Perfect Bayesian Equilibrium in Signalling Games: definition of signalling game, translation of definition of PBE (for general games) to a definition of PBE for signalling games, finding PBE in signalling games, applications of signalling in economics and finance

Lecture 14 Dynamic Games of Incomplete Information - Refinements of Perfect Bayesian Equilibrium: implausible beliefs off-the-equilibrium-path, forward induction, domination-based refinements on beliefs, intuitive criterion, other refinements, applications

Most likely we will not cover Lectures 13 and 14!

References:

The main textbook will be

Gibbons, R., A Primer in Game Theory, $1^{\text {st }}$ ed., Harvester/Wheatsheaf, New York 1992

Parts of the course are also based on:
Myerson, R., Game Theory - Analysis of Conflict, 1st ed., Harvard University Press, Cambridge 1991

Mas-Colell, A., M. Whinston and J. Green, Microeconomic Theory, Oxford University Press, New York and Oxford 1995

Binmore K., Fun and Games, D.C. Heath \& Co., Lexington 1992
Osborne, M. J., An Introduction to Game Theory, Oxford University Press, Oxford 2004

Kreps, D. M., Game Theory and Economic Modelling, Clarendon Press, Oxford 1990

Course Requirements

Regular attendance in class: I require regular attendance and participation in class. If you cannot attend for any reason, I ask that you inform me per e-mail. Please don't provide any reasons, just inform me that you cannot attend.

Problem sets: To help you to gain ease in applying the tools of non-cooperative game theory, there will be weekly problem sets. Please work on the problems in small groups (comprising no more than four students each)

Participation in three written exams: The three exams include material from both parts of the course. You find the exam dates and places on one of the earlier pages

Please note the above dates now, and keep them free from any other obligations. I can offer alternative exam dates only in exceptional circumstances.

Grading Scheme for this Course:

Will be announced in one of the first meetings.

Registration

Registration by computer. Attendance in the first meeting (March 8 !) is nevertheless required!

